Wandering Astray: Teenagers’ Choices of Schooling and Crime*

Chao Fua, Nicolás Graub and Jorge Riverab†

March 8, 2020

Abstract

We build and estimate a dynamic model of teenagers’ choices of schooling and crime, incorporating four factors that may contribute to the different routes taken by different teenagers: heterogeneous endowments, unequal opportunities, uncertainties about one’s own ability, and contemporaneous shocks. We estimate the model using administrative panel data from Chile that link school records with juvenile criminal records. Counterfactual policy experiments suggest that, for teenagers with disadvantaged backgrounds, interventions that combine mild improvement in their schooling opportunities with free tuition (by adding 22 USD per enrollee-year to the existing voucher) would lead to an 11% decrease in the fraction of those ever arrested by age 18 and a 17% increase in the fraction of those consistently enrolled throughout primary and secondary education.

*We thank Tatiana Reyes and Damián Vergara for excellent research assistance. We thank seminar and conference participants at Duke, PUC-Rio, Universidad de los Andes (Colombia), Universidad de Chile, Econometric Society Meetings for helpful comments. Nicolás Grau thanks the Centre for Social Conflict and Cohesion Studies (CONICYT/ FONDAP/15130009) for financial support. Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02). All errors are ours.

†a : University of Wisconsin and NBER, cfu@ssc.wisc.edu, b : Faculty of Economics and Business, University of Chile, ngrau@fen.uchile.cl, jrivera@fen.uchile.cl.
1 Introduction

Teenage years are a critical period in life, featuring major physical, psychological and attitudinal transitions. Faced with all these complications, some teenagers may experience a particularly difficult transition and wander astray, dropping out of school and/or even engaging in criminal activities. Juvenile delinquency is a serious problem in many countries. For example, in the U.S., over 725,000 teenagers were in detention centers in 2011, 40% of whom were black. Understanding why some teenagers wander astray is key to many social policies.

In this paper, we build and estimate a dynamic model of teenagers’ decisions of schooling and crime. We consider, in a coherent framework, four potentially important factors underlying different routes chosen by teenagers. The first factor is the heterogeneous endowments received by teenage years: teenagers come from different family backgrounds, attend primary schools of different quality, have different ability levels and different preferences.\(^1\)

The second factor consists of frictions that lead to unequal opportunities. First, schools can select students based on their backgrounds. Such selection is prevalent, although it may be less explicit in some countries than in others.\(^2\) Second, a teenager’s payoff from schooling may depend directly on one’s family background.\(^3\) Given these institutional frictions, teenagers of the same caliber but from different backgrounds may make different choices, which endogenously exacerbates the initial inequality.

The third factor is the uncertainty faced by teenagers about themselves and their future prospects, which relates to one of the defining features of adolescence known as “identity development.” In our model, a forward-looking teenager is uncertain about his own ability or productivity at school, but has a belief about it. Given his belief, a teenager chooses, in each period (if not in jail), whether or not to attend school and whether or not to participate in crime and thereby face the risk of being arrested and punished. If choosing to attend school, the teenager’s test score is realized at the end of the period, which depends on one’s school

\(^1\)Our model focuses on teenagers’ decisions and takes the endowment by teenage years as pre-determined. The word ability throughout this paper refers to one’s ability pre-determined by one’s innate ability and the investment received by teenage years. See Heckman and Mosso (2014) for a comprehensive review of the literature on early human development and social mobility.

\(^2\)For example, in many countries, the allocation of students to public schools often uses neighborhood-based priority rules, which puts students in poor neighborhoods at a disadvantage.

\(^3\)For example, a high school degree may not provide low-family-income teenagers the same option value of going to college as it does for teenagers with richer parents, if colleges are not affordable for the poor.
and family characteristics, one’s ability and a test score shock. A teenager uses his realized test score to update his belief about his ability, which will in turn affect his future decisions.

The last factor is “luck,” modeled as contemporaneous shocks that may affect one’s choices. Although contemporaneous, these shocks can have long-term impacts because of the dynamic nature of one’s choices, i.e., current choices may affect choice-specific payoffs in the future. Moreover, the impact of “luck” can be particularly strong when it interacts with other factors. For example, given uncertainties about oneself, bad test shocks can lower a teenager’s belief about his prospect of schooling and discourage him from following this path. Bad test scores can also limit a teenager’s choice set given institutional frictions such as selective high school admissions.

We apply our model to administrative data from Chile, which offer a great opportunity to study the paths chosen by different teenagers. In particular, we have linked administrative primary school and high school records of teenagers from the 34 largest Chilean municipalities with their juvenile criminal records. The linked data sets provide information on these teenagers’ family backgrounds, school characteristics, annual academic records of enrollment and performance, and annual criminal records of arrests and sentences. We estimate the model via the maximum likelihood method to recover parameters governing the distribution of preferences and learning abilities across teenagers from different backgrounds, the degree of uncertainties they face, the outcome test score production function, and how primary-to-secondary school transfer opportunities may vary with one’s observable and unobservable characteristics. The estimated model fits the data well.

We use the estimated model to conduct a series of counterfactual policy interventions, targeted at teenagers with disadvantaged family and primary school backgrounds, who are more likely to wander astray. We find that policies that make schools free alone and policies that improve schooling opportunities (primary school environment and primary-to-secondary school transfer opportunities) alone have very limited impacts, especially the former. A combination of these two types of measures would be three times as effective in keeping the targeted teenagers on the right track as either type of measures alone. For example, a free-tuition treatment combined with an improvement of schooling opportunities to the mediocre level would increase the fraction of those consistently enrolled throughout primary and secondary education from 68.76% to 80.43%, and reduce the fraction of those ever arrested by age 18 from 5.24% to 4.69%. The policy requires adding only about 22 USD to
the existing voucher per enrollee-year during high school and a relatively mild improvement in schooling opportunities by enrolling a targeted teenager in a median-quality primary school and giving him the same primary-to-secondary school transfer opportunities as faced by his counterpart from middle family backgrounds. At a higher cost of 280 USD per enrollee-year, enhancing the previous intervention with a guaranteed free seat in a mediocre private high school would lead to another 7 percentage-point increase in the fraction of consistently-enrolled teenagers and double the reduction in the fraction of ever-arrested teenagers.

Recent studies have investigated a wide range of potential factors that may affect criminal activities. Levitt and Lochner (2000) examine biological, social, criminal justice, and economic determinants of crimes. Factors that have been examined in more detail include the effect of police, incarceration and conditions in prison (Levitt 1996, 1997, 1998; Katz et al. 2003; and Di Tella and Schargrodsky 2004), social capital, social interactions and peer effects (Case and Katz 1991; Glaeser et al. 1996; Gaviria and Raphael 2001; Jacob and Lefgren 2003; Kling et al. 2005; and Sickles and Williams 2008), and family circumstances and structure (Glaeser and Sacerdote 1999; Donohue and Levitt 2001).

A strand of this literature has focused on the relationship between schooling and crime. For example, Lochner and Moretti (2004) find that school attainment significantly reduces participation in criminal activity. Freeman (1996) and Lochner (2004) both study the incapacitation effect of schooling and emphasize that education increases opportunity costs of crime.\footnote{Jacob and Lefgren (2003) find that youth property crime rates are significantly lower but youth violent crime rates are higher on days when school is in session than on days when it is not. Hjalmarsson (2008) and Cortés et al. (2020) find that arrest and incarceration prior to age 16 reduces the probability of high school graduation.} Lochner (2010) explores the direct effect of education on crime reduction via social and emotional development. Other studies have explored the extensions of the mandatory schooling age or the cutoff birth date for enrollment to study the effect of education on crime (Machin et al. 2011; Clay et al. 2012; Anderson 2014; Hjalmarsson et al. 2015; and Cook and Kang 2016).

Another focus has been on the persistence of youth crime.\footnote{See Blumstein et al. (1986), Gottfredson and Hirschi (1990), Sampson and Laub (1995), and Wilson and Herrnstein (1985) for examples in criminology.} For example, Nagin and Paternoster (1991), Nagin and Land (1993), Nagin et al. (1995), and Broidy et al. (2003) find that both unobserved individual types and state dependence (prior criminal behavior) are important. Merlo and Wolpin (2009), via a VAR approach, find important roles for het-
erogeneity in initial conditions and stochastic events in one’s youth in determining outcomes as young adults. Mancino et al. (2015) find small effects of experience (the accumulation of education and crime) and stronger evidence of state dependence.

Most studies in economics on crime follow the framework of Becker (1968), where individuals make rational choices.6 For example, in a closely related paper, Imai and Krishna (2004) estimate a dynamic model and find that the effect of forward-looking behavior is large in explaining youth criminal decisions.7 Following this literature, our paper maintains the assumption of forward-looking and rationality. However, we introduce information friction into the classical framework and allow for the possibility that teenagers may be ill-informed about their own abilities. In this aspect, our work is related to the literature that emphasizes uncertainties about own ability in one’s college choices (Altonji 1993, Arcidiacono 2004, Cunha et al. 2005, Stange 2012, Bordon and Fu 2015, and Arcidiacono et al. 2016). It is likely that uncertainties about own ability also play an important role at a younger age, which we consider in this paper.

2 Background

2.1 Teenage Crime in Chile

As is true in many other countries, teenage crime is a serious social issue in Chile. For example, in 2013, the number of arrests per 100 teens was 2.93 in Chile, as compared to 3 in the U.S. in 2014.8 In 2007, the Chilean Parliament passed the new Adolescent Criminal Responsibility Law, which established a system of responsibility for adolescents between age 14 and age 18 who violate the law.9 Offenders aged between 14 and 16 may be sentenced to up to 5 years and those older than 16 up to 10 years in closed or semi-closed detention centers, where they must take part in social reinsertion programs. Other penalties provided in the law include parole, community service and making reparations for damages caused.

6Some studies have questioned the assumption of rationality and forward-looking. For example, Wilson and Herrnstein (1985), Katz et al. (2003) and Lee and McCrary (2005) suggest that potential offenders may have very high discount rates or be myopic. On the other hand, consistent with individuals being forward-looking, Levitt (1998) shows that arrests decline faster after age 18 in states where punishments are relatively mild for juveniles than for adults than states where juvenile punishments are relatively harsh.

7Munyo (2015) calibrates a dynamic model of youths decisions between working and crime, with a special focus on different punishments for youths than for adults.

8U.S. Department of Justice.

9To learn more about this law and its implementation, see Berrios and Vial (2011).
Between 2007 and 2014, the average number of teens prosecuted under this law was about 20,160 per year, of whom 83% were male. Given the rare incidence of crime committed by girls, our study focuses on boys only.

2.2 Primary and Secondary Education in Chile

In 1980, the Chilean government introduced a major reform of its education system, one component of which was the introduction of vouchers such that schools were funded with a flat voucher per attendee.¹⁰¹¹ Both public and private schools can receive vouchers from the government. Since 1994, private schools have been allowed to charge additional fees up to a cap while still being eligible to receive government vouchers, subject to progressive crowd-outs.¹² Partly because of the tuition cap, some private schools opted out of the voucher system. As a result, there are three types of schools: municipal (public), private with voucher (voucher-private), and private without voucher (non-voucher-private). Non-voucher-private schools usually charge much higher tuition and serve students from “elite” family backgrounds. In 2014, 54.2% of the schools were public, 41% were voucher-private, and 4.8% were non-voucher-private. Of all students between Grade 1 and Grade 12, 39.1% were enrolled in public schools, 53.2% in voucher-private schools, and 7.7% in non-voucher-private schools.¹³ We focus on students enrolled in public and voucher-private schools.

Primary education lasts from Grade 1 to Grade 8; secondary education from Grade 9 to Grade 12. Progression from one grade to the other is not guaranteed: the Ministry of Education provides guidelines for grade retention, where a student is to be retained if his GPA or attendance falls below certain cutoffs. These rules are not always respected and schools have certain flexibility in implementing them (Díaz et al. 2018).

Among all public schools, 9.9% offer both primary and secondary education, 80.6% offer only primary education and 9.5% offer only secondary education. These figures are 38.5%,

¹⁰In 2008, a targeted voucher system was introduced to transfer more resources toward schools catering the poorest 40% of the population; students in our sample period were not affected by this new policy.

¹¹The other major components of the reform were 1) decentralizing public schools from the central government to municipalities, 2) making teachers’ contracts more flexible. For a summary of these reforms, see Gauri (1999), and Mizala and Romaguera (2000).

¹²In 2014, the cap was 84,232 pesos (about $110) per month (there are 10 academic months in Chile). Attendance fees crowd out government vouchers progressively, where the crowd-out rates are 0 for the first 0.5USE (1USE is about $30), 10% for the part between 0.5USE and 1USE, 20% for the part between 1USE and 2USE, and 35% for the part above 2USE.

¹³The fact that public schools (54% of all schools) cater only 39% of students is mostly driven by the fact that public schools are over-represented in rural areas, where schools are smaller.
48.5% and 13% among voucher-private schools. Therefore, most students have to change schools between primary and secondary education. During our sample period, school admissions were decentralized and conducted by individual schools. Good schools could be very selective, which selected students not only on primary school GPAs but may also on family backgrounds.\footnote{Many schools, especially non-public schools, required parents to report their income and present their marriage certificates; some schools even conduct parental interviews. See Contreras et. al. (2010) for an analysis of the selection process. In 2015, the Chilean Parliament passed a law to centralize the admission procedure for all public and voucher-private schools, which eliminated selection based on family background. This was gradually implemented from 2016.} The selective admission procedure, together with the differential fees, contributed to the segregation of students of different socioeconomic statuses (SES) across schools. An OECD review noted that “social segmentation has deepened such that increasingly, students from the same or similar socioeconomic backgrounds are schooled together.”\footnote{Reviews of National Policies for Education: Chile 2004, OECD, Page 57. For an example of studies on the relationship between the education market and the SES segregation in Chile, see Valenzuela et. al. (2013).}

In 1988, the Chilean government introduced a system of national standardized tests (SIMCE) as a way to measure student learning process and school performance, in which all students in proper grades participate.\footnote{See Meckes and Carrasco (2010) for details.} The government uses SIMCE results to allocate resources and to inform the public about the quality of schools by listing school-level results in major newspapers. However, individual test results are not released to students or schools. We obtained individual test results, which we use to standardize GPA’s across schools and to facilitate identification.

3 Model

We model a teenager’s dynamic choices of schooling and crime, who is faced with institutional frictions and uncertainties, including the uncertainty over his own ability.

3.1 Primitives

Across L locations, there are in total K primary schools and K' high schools, characterized by W_k.\footnote{Schools are either public or voucher-private. If both levels of education is offered in the same school, the school is counted both as a primary school and as a high school.} A teenager i is endowed with a vector of family background X_i (including home location l_i), a primary school k_{i0}, a type $\chi_i \in \{1, 2\}$ and ability a_i. A teenager knows his...
type χ_i but not his ability a_i. He has an initial belief about a_i and updates his belief over time as new information comes in. The researcher does not observe χ_i or a_i, which may be correlated with (X_i, W_{k_0}).

Given the fact that all individuals in our sample were consistently enrolled between Grades 1 and 4 and that no one had criminal records before age 10, we start the model at age 10 with the initial schooling $G_{i0} = 4$ for every i. In each period $t = 1, \ldots, T$ (corresponding to age 10 to age 18), except when he is in jail, a teenager decides whether or not to enroll in school (e_{it}) and whether or not to participate in criminal activities (d_{it}): $(e_{it}, d_{it}) \in \{(0, 0), (0, 1), (1, 0), (1, 1)\}$.

3.1.1 GPA and Grade Progression

One’s academic achievement is measured by one’s completed grade level (G_{it}) and standardized grade point average (GPA_{it}).\(^{18}\) GPA_{it} is a stochastic function of family characteristics X_i, school characteristics W_{kit}, whether or not one is repeating the current grade and ability a_i, where a_i enters with a normalized coefficient of 1, such that

$$\begin{align*}
GPA_{it} &= \gamma_{0G_{it}} + X_i \gamma_1 + W_{kit} \gamma_2 + \gamma_3 (1 - g_{it}) + a_i + \epsilon_{it}^{gpa} \\
&\equiv \overline{GPA}_{it} + a_i + \epsilon_{it}^{gpa}.
\end{align*}$$

G_{it} is i’s grade level at time t, and $\gamma_{0G_{it}}$ is a grade-specific constant. $g_{it} = 1$ if i successfully progressed to the current grade from the last period, so γ_3 is the effect of repeating a grade. ϵ_{it}^{gpa} is an i.i.d. shock drawn from $N(0, \sigma^2_{\epsilon_{it}^{gpa}})$. A student cannot separately observe a_i and ϵ_{it}^{gpa}. Let \overline{GPA}_{it} denote the part of GPA net of $a_i + \epsilon_{it}^{gpa}$.\(^{19}\)

We model grade progression as a stochastic function of school characteristics, GPA_{it} and one’s type, such that the probability that a student progresses to the next grade in $t + 1$ is given by

$$\Pr (g_{it+1} = 1|W_{kit}, GPA_{it}, \chi_i).$$

We allow one’s type to enter the progression function in order to account for factors known

\(^{18}\)Throughout this paper, GPA refers to standardized GPA that is comparable across schools. The standardization is done by comparing the school-specific GPA’s with the standardized SIMCE tests in 4th (10th) grade for primary (secondary) schools.

\(^{19}\)Given our focus on learning and uncertainties, we choose the specification (1), following the literature on learning (e.g., Arcidiacono (2004)), which differs from the value-added specification.
to the teenager but not to the researcher that may affect grade progression. Moreover, grade progression is uncertain even from the teenager’s point of view, due to unpredictable shocks and the fact that schools have some flexibility in implementing grade retention guidelines.\footnote{We assume that grade progression does not depend on one’s ability conditional on GPA and type, hence it does not provide further information about one’s ability. It would be much more complicated to update beliefs based on both the continuous GPA outcome and the binary grade progression outcome, yet without adding much insight to the model.}

3.1.2 Beliefs

The teenager does not know his ability a_i, but he has the rational initial belief that it is drawn from a type-specific distribution $N(\overline{\alpha}_i, \sigma_n^2)$ and uses his GPA information to update his belief. Let (EA_{it}, VA_{it}) be i’s updated beliefs about the mean and the variance of his ability at the end of period t, given by

$$(EA_{it}, VA_{it}) =
\begin{cases}
(EA_{it-1}, VA_{it-1}) & \text{if } GPA_{it} \text{ is not available,} \\
\left(EA_{it-1} \frac{\sigma_{gpa}^2}{\sigma_{gpa}^2 + VA_{it-1}} + (GPA_{it} - \overline{GPA}_{it}) \frac{VA_{it-1}}{\sigma_{gpa}^2 + VA_{it-1}}, \frac{\sigma_{gpa}^2}{\sigma_{gpa}^2 + VA_{it-1}} \right) & \text{otherwise.}
\end{cases}$$

When GPA_{it} is not available (e.g., if $e_{it} = 0$), one’s belief keeps unchanged. Otherwise, beliefs are updated following the Bayes rule. The speed at which one updates his belief is governed by the relative magnitude of σ_{gpa} versus σ_a, i.e., the dispersion of GPA shocks versus that of the ability distribution. Notice that because of the randomness in GPA realizations, ex ante identical teenagers may have different beliefs about themselves and act on them to choose different routes.

Remark 1 We introduce uncertainty and learning for two reasons. First, identity development is one of the defining features of adolescence. Arguably, learning about one’s schooling ability is an important component of identity development.\footnote{An ideal model would also allow the teenager to learn about his ability in criminal activities. However, such a model is not identifiable with our data: although aggregate crimes (caught and uncaught) are observable, at the individual level, neither uncaught crimes nor returns to crime are observable.} Second, as we will show later, our data exhibit patterns that are consistent with learning: a student is less likely to be enrolled if he has received negative signals about his ability.
3.1.3 Transition to High School

Between Grades 8 and 9, a transition happens between primary school and high school. Let the probability that i can transit to school k' be $p_{k'i}^{tr}$, with $\sum_{k'} p_{k'i}^{tr} = 1$. That is, a student can always get a seat in the high school system. Yet, whether or not one will attend high school is his choice. We model $p_{k'i}^{tr}$ as dependent on X_i, χ_i, one’s GPA, the characteristics of one’s primary school W_{k0} and the destination school $W_{k'}$, such that

$$p_{k'i}^{tr} = P^{tr}(X_i, \chi_i, GPA_i, W_{k0}, W_{k'}).$$ (4)

The direct effect of X and GPA_i on p^{tr} reflect the fact that schools can select based on family background and GPA. To allow for non-random matching based on unobservables, we introduce χ_i into $P^{tr}(\cdot)$. One’s primary school affects p^{tr} via two channels. First, it affects p^{tr} indirectly via its effect on academic achievement (GPA_i). Second, it can also affect the transition directly via W_{k0} and the interaction between W_{k0} and $W_{k'}$. For example, transition to higher-quality high schools may be easier if the quality of one’s primary school is also high.22 Through either effect, inequality at the primary school stage will lead to further inequality at the high school stage.

Remark 2 Without data on the application and admission process, we model the transition to high school in a reduced form way, which is a limitation. In our effort to address some of the selection issues in this process, we include unobserved individual characteristics (χ_i) among other variables in the stochastic transition function, and we estimate this transition process within the model.

3.1.4 Timing

For each $t = 1, \ldots, T$, the within-period (a year) timing of events is as follows:

1. Choice-specific payoff shocks $(v_{it} = \{v_{it}^{ed}\}_{ed})$ are realized, which are i.i.d. Type-1 extreme-value distributed.

2. A teenager chooses $(e_{it}, d_{it}) \in \{(0, 0), (0, 1), (1, 0), (1, 1)\}$.

22If a school offers both primary and secondary education, the probability that a student continues his education in the same school would be high because W_{k0} and $W_{k'}$ are almost identical in that case.
3. If $e_{it} = 1$, one’s GPA and grade progression (g_{it+1}) are realized. One’s belief about a_i is updated.

If $d_{it} = 1$, one’s arrest/non-arrest result is realized. If arrested, a jail sentence ($\tau_{it} \geq 0$) is prescribed, following a stochastic function of one’s age and criminal record.

3.1.5 State Variables

The vector of state variables Ω_{it} contains the following:

1. Permanent variables: χ_i, X_i.\(^{23}\)

2. Dynamic variables: $EA_{it-1}, VA_{it-1}, J_{it-1}, G_{it-1}, e_{it-1}, g_{it}, k_{it}$.

 (a) EA_{it-1}, VA_{it-1}: i’s belief about his ability, evolving according to (3).

 (b) $J_{it-1} = \lfloor J_{it-1,1}, J_{it-1,2} \rfloor$. $J_{it-1,1}$: the total number of past arrests. $J_{it-1,2}$: the total length of sentences received in the past.

 (c) G_{it-1}: the highest grade completed.

 (d) g_{it}: whether or not one progressed one grade between $t-1$ and t.

 (e) e_{it-1}: whether or not one was enrolled last period.

 (f) k_{it}: the ID of the one’s most recent school, which is k_{i0} if $G_{it-1} < 9$ and the ID of one’s high school if $G_{it-1} \geq 9$.\(^{24}\)

3. Transitory shocks to choice-specific payoffs: $v_{it} = \{v^{pd}_{it}\}_{ed}$

 The evolution from Ω_{it} to Ω_{it+1} is stochastic, because it depends on not only one’s choices (e_{it}, d_{it}) but also a vector Υ_{it} of factors realized at the end of t. The vector Υ_{it} consists of 1) GPA of it (if $e_{it} = 1$), which affects belief updating (EA_{it}, VA_{it}); 2) the grade progression shock (if $e_{it} = 1$), which, together with GPA of it, affects g_{it+1} and G_{it}; 3) the realization of arrest and sentencing outcomes (if $d_{it} = 1$), which affect J_{it}. To save on notation, we will write Ω_{it+1} instead of $(\Omega_{it+1}|\Omega_{it}, e_{it}, d_{it}, \Upsilon_{it})$.

\(^{23}\)Notice that a_i, being unknown to the teenager, is not a state variable. Instead, one’s beliefs about a_i, captured by (EA_{it-1}, VA_{it-1}), are dynamic state variables.

\(^{24}\)Within primary school or high school stage, school transfers are rare. We assume that transfers only happen between the two stages. If a student transferred schools between Grades 5 and 8 (Grades 9 and 12), we use the first primary school (high school) as his school.
The state space is large because the dynamic beliefs \((EA_{it-1}, VA_{it-1})\) are continuous variables. We solve the model via backward induction with Monte Carlo integration and interpolation (Keane and Wolpin 1994).

3.2 Teenager’s Problem

At \(t \leq T\), unless he is in jail and hence unable to make choices, a teenager’s problem is

\[
V_t(\Omega_{it}) = \max_{(e,d) \in \{(0,0),(0,1),(1,0),(1,1)\}} \left\{ V^{ed}_t(\Omega_{it}) \right\},
\]

where \(V^{ed}_t(\cdot)\) denotes the choice-specific value function. We specify \(V^{ed}_t(\cdot)\) for regular cases first, and then for the case of the last grade of primary education, where, if one chooses \(e_{it} = 1\), he may face the transition to secondary education at the end of the period.

3.2.1 Value Functions: Regular Cases

\(e = 0, d = 0\):

\[
V^{00}_t(\Omega_{it}) = v^{00}_{it} + \beta E_v V_{t+1}(\Omega_{it+1}),
\]

where the expected period payoff for being inactive in both activities is normalized to 0 and \(v^{00}_{it}\) is the payoff shock. The expectation for the next period is taken over the payoff shocks \(\{v^{ed}_{it+1}\}\).

\(e = 1, d = 0\): One’s utility from attending school depends on his GPA, characteristics \(X_i\), type \(\chi_i\), school characteristics \(W_{kit}\), whether or not he is also participating in crime \(d_{it}\), whether or not he is repeating a grade \((1 - g_{it})\), and whether or not he has a criminal record, given by

\[
U^{sch}(GPA_{it}, X_i, \chi_i, W_{kit}, d_{it}, g_{it}, J_{it-1}).
\]

Let \(F_{it}(z)\) and \(E_{it}(z)\) be the CDF and the expected value of some variable \(z\), viewed by teenager \(i\) at the beginning of \(t\), given his belief \((EA_{it-1}, VA_{it-1})\). The value of choosing \((1, 0)\) is given by

\[
V^{10}_t(\Omega_{it}) = \left(v^{10}_{it} - \varphi (1 - e_{it-1}) + \int \left(U^{sch}(\cdot) + \beta \sum_{g_{it+1}=0}^{1} \Pr (g_{it+1} | \cdot) E_v V_{t+1}(\Omega_{it+1}) \right) dF_{it}(GPA_{it}) \right). \tag{6}
\]
The parameter \(\varphi \), if positive, captures inertia effects or psychic costs for a non-enrollee to return to school. At the beginning of period \(t \), one has to form expectation about his outcome \(GPA_{it} \) (hence the integral over \(F_{it} (GPA_{it}) \)), which affects \(U^{sch} (\cdot) \) and the probability that he will proceed to the next grade \(\Pr (g_{it+1} = 1|W_{k_it}, GPA_{it}, \chi_i) \).

If one engages in criminal activities \((d = 1) \), he receives a type-specific utility for criminal activities \((r_{\chi_i}) \). With a location-specific probability \((1 - \rho_i) \), one is not arrested, in which case he enjoys a payoff \(R (l_i, X_i) \) that varies across locations and \(X_i \), and proceeds to the next period without additional criminal record. With probability \(\rho_i \), one is arrested and serves a jail time \((\tau \geq 0) \) drawn from a distribution that shifts with one’s criminal record \((J_{it-1}) \) and age \((t) \). In this case, he receives the utility of being arrested, which may differ depending on one’s criminal history.\(^{25} \) While in jail, one is not allowed to make decisions until \(t + \tau + 1 \) when one is out of jail and proceeds with an updated criminal record.\(^{26} \)

\[e = 0, d = 1 : \]

\[
V_{t}^{01} (\Omega_{it}) = \left(v_{it}^{01} + r_{\chi_i} + (1 - \rho_i) \left[R (l_i, X_i) + \beta E_v V_{t+1} (\Omega_{it+1}) \right] \right) + \rho_i E_{\tau| (J_{it-1}, t)} \left[u^j (J_{it-1}) + \beta^{\tau+1} E_v V_{t+\tau+1} (\Omega_{it+\tau+1}) \right].
\]

When engaging in both activities, one enjoys the expected contemporaneous utility from both (Line 1 of (7)). If not arrested, one enjoys the criminal payoff \(R (\cdot) \), observes \(g_{it+1} \), and continues to \(t + 1 \) with updated beliefs (Line 2). The last line of (7) describes the case when one gets arrested.

\(^{25}\)In an alternative specification, we allow the in-jail utility to depend not only on \(J_{it-1} \), but also on jail time \(\tau \). The added parameter is estimated to be close to zero, we therefore choose the simpler specification.

\(^{26}\)The sentence \(\tau \) may not be an integer (year), in which case, we round \(\tau \) to count the length of inaction periods, but the criminal record \(J_{it} \) is updated precisely.
3.2.2 Value Functions: the Last Grade of Primary Education

When the state variables are such that $G_{it-1} = 7$ and $g_{it} = 1$, the teenager is allowed to progress to Grade 8. In this case, the value functions $V_{t}^{10}(\cdot)$ and $V_{t}^{11}(\cdot)$ need to be modified: at the end of t, if one can proceed to the next grade ($g_{it+1} = 1$), a student will face the primary-secondary school transition, which involves an additional layer of expectation over the opportunities to transfer to different high schools. In particular, $V_{t}^{10}(\cdot)$ and $V_{t}^{11}(\cdot)$ in this special period differ from the regular value functions in that, the term $\sum_{g_{it+1}=0}^{1} \Pr (g_{it+1} | \cdot) \beta E_{v} V_{t+1} (\Omega_{it+1})$ in value functions (6) and (7) is replaced by

$$\Pr (g_{it+1} = 0 | \cdot) \beta E_{v} V_{t+1} (\Omega_{it+1}) + \Pr (g_{it+1} = 1 | \cdot) \sum_{k'} p_{k'|t}^{it} E_{v} V_{t+1} \left(\tilde{\Omega}_{it+1}, k'\right),$$

where $\tilde{\Omega}_{it+1}$ is the vector of state variables excluding the school ID.

3.2.3 Terminal Value

The terminal value function is given by

$$V_{T+1} (X_{i}, \chi_{i}, G_{iT}, J_{iT}, E_{iT} (a_{i}), W_{k_{iT}}),$$

which depends on the teenager’s characteristics (X_{i}, χ_{i}), outcomes by time T (grade level G_{iT} and criminal records J_{iT}), his up-to-date belief about his own ability and the characteristics of the school he was last enrolled in.

3.3 Information on one’s Endowment

Table 1: Information on one’s Endowment

<table>
<thead>
<tr>
<th>Obs. to both</th>
<th>Obs. to neither</th>
<th>Obs. to teenager</th>
<th>Obs. to researcher</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_{i}, k_{i0}, {GPA_{it}}_{t=-3}$</td>
<td>a_{i}</td>
<td>χ_{i}</td>
<td>s_{i}</td>
</tr>
</tbody>
</table>

Table 1 shows the information structure of the teenager’s endowment. Besides X_{i} and one’s primary school ID k_{i0}, both the researcher and the teenager also observe the teenager’s GPA ($\{GPA_{it}\}_{t=-3}$) from Grade 1 to Grade 4, before the model starts. Neither the teenager nor the researcher observes a_{i}. The teenager knows his χ_{i}, which is not known to the researcher. However, as mentioned in Section 2.2, the Grade-4 SIMCE score s_{i} is observed by
the researcher but not by the teenager. We make further empirical specifications as follows.

Beliefs \((EA_{i0}, VA_{i0})\): By \(t = 1\), the teenager’s should have already used \(\{GPA_{it}\}_{t=-3}^0\) to update his initial belief. Therefore, we model \((EA_{i0}, VA_{i0})\) as the Bayes output starting from \(a_i \sim N(\pi_a, \sigma_a^2)\) and updated with \(\{GPA_{it}\}_{t=-3}^0\) following (3).

The unobservable \((\chi_i, a_i)\) may be correlated with the observables and follow the distribution

\[
f(\chi_i, a_i|X_i, W_{k_{i0}}) = \Pr(\chi_i|X_i, W_{k_{i0}}) \phi \left(\frac{a_i - \pi_{\chi_i}}{\sigma_a} \right),
\]

with \(\Pr(\chi_i = 1|X_i, W_{k_{i0}}) = \Psi(X_i, W_{k_{i0}})\).

We assume that one’s type is drawn from a Type-1 extreme value distribution, which may shift with both \(X_i\) and \(W_{k_{i0}}\). The latter is introduced to capture potential non-random matching between students and primary schools. The second component in (9) follows the assumption that \(a_i \sim N(\pi_a, \sigma_a^2)\).

Score \(s_i\) is modeled as being governed by

\[
s_i = \delta_0 + X_i \gamma_1 + W_{k_{i0}} \gamma_2 + \delta_1 a_i + \xi_i,
\]

where \(\xi_i \sim N(0, \sigma_{\xi}^2)\) is a random noise. Equations (1) and (10) share the same \(\gamma_1\) and \(\gamma_2\), i.e., the effects of family and school characteristics on GPA and on SIMCE are assumed to the same, which will be useful for identification.\(^{27}\)

4 Estimation and Identification

We assume that the sentencing length \(\tau\) is drawn from an ordered probit distribution that may shift with one’s age and criminal records (arrests and jail time), and estimate this distribution outside of the model (details are in the appendix). We also pre-set the annual discount factor \(\beta\) at 0.9.\(^{28}\) We estimate all the other model parameters using the maximum

\(^{27}\)As long as there are no new parameters associated with \(X\) and \(W\) in the production of \(s\), the information on \(s\) will greatly facilitate identification of the GPA production function (e.g., we could have assumed that \(s_i = \delta_0 + \delta_1 a_i + \xi_i\)). We choose to use Equation (10) because SIMCE is taken at Grade 4 and hence may have been affected by one’s school quality.

\(^{28}\)The monthly discount factor is estimated to be 0.99 in Imai and Krishna (2004).
likelihood method. The vector Θ to be estimated includes parameters governing preferences, the production of GPA and SIMCE, grade progression, the distribution of type and ability, and primary-to-secondary school transition probabilities. Teenager i's contribution to the likelihood is the sum of his type-specific likelihood, weighted by his type probabilities, i.e.,

$$ L_i(\Theta) = \sum_{m=1}^{2} \Pr(\chi_i = m|X_i, W_{k,\alpha}; \Theta) L_{im}(\Theta), $$

where L_{im} is the likelihood conditional on i being type m (see the appendix for details). The overall log likelihood is $\ell(\Theta) = \sum_{i=1}^{N} \ln L_i(\Theta)$.

4.1 Identification

Our discussion of identification focuses on the complications arising from the two major components in our model that are absent in a bare-bone dynamic discrete choice model: unobserved types and learning about one’s own ability.

4.1.1 The GPA Production Function

The identification of the GPA production function (1) involves two complications: C1: GPA is observed conditional on enrollment, a classical selection problem; and C2: the unobservable a_i is correlated with observable inputs in the production of GPA via one’s type χ_i.

Without C2, the researcher would have all the information the teenager has about a_i, and hence would know his beliefs. In this case, the GPA production function would be identified since C1 can be dealt with given that the enrollment decision is based on beliefs about a_i rather than a_i directly. In particular, without C2, $E_i(a_i)$, which is a weighted sum of all the past GPAs, can serve as a control function in GPA production.\(^{29}\)

With C2, $E_i(a_i)$ contains information known to the teenager through his type; and the control function approach becomes insufficient. However, the identification is facilitated by the additional information of one’s Grade 1 to Grade 4 GPAs and s_i, which we observe for all teenagers since all of them were enrolled during those years. In particular,

\(^{29}\)See, for example, Arcidiacono et al. (2016) for this control function approach.
\[E[GPA_{it}|X_i, W_{ki}, W_{kio}, \{GPA_{it}\}_{t=-3}] \]

\[= \gamma_{0G_i} + X_i \gamma_1 + W_{ik_1} \gamma_2 + \gamma_3 (1 - g_t) + E[a_i|X_i, W_{kio}, \{GPA_{it}\}_{t=-3}] \]

\[= \left(\gamma_{0G_i} - \delta_0 \right) + (1 - \frac{1}{\delta_1}) X_i \gamma_1 + \left(W_{ik_1} - \frac{1}{\delta_1} W_{ik_0} \right) \gamma_2 + \gamma_3 (1 - g_t) + \frac{1}{\delta_1} E[s|X_i, W_{kio}, \{GPA_{it}\}_{t=-3}], \]

where the last equality holds because

\[E[s|X, W_{kio}, \{GPA_{it}\}_{t=-3}] = \delta_0 + X_i \gamma_1 + W_{ik_0} \gamma_2 + \delta_1 E[a_i|X_i, W_{kio}, \{GPA_{it}\}_{t=-3}]. \] (12)

Given that \(s_i \) is observed by the researcher, the second row in Equation (11) implies that we can identify \(\delta_1, \gamma_1, \gamma_2 \) and \(\gamma_3 \), as long as \(\delta_1 \neq 1 \).\(^\text{30}\) The constants \(\{\gamma_{0G_i}\} \) and \(\delta_0 \) are not all identified, we therefore normalize \(\gamma_{0G_i} \) in one grade to 0.

4.1.2 Type Distribution

One major source for identifying the distribution of unobserved types is one’s academic outcomes. First, since ability distributions are type-specific, conditional on \((X, W_k)\), the distributions of ability measures \((s \text{ and GPAs})\) will shift as the ability distribution shifts with one’s type, exhibiting different modes. Given the assumption that type-specific ability distributions and the mean-zero score noise distributions are all uni-modal and symmetric, the observed modes as well as the distribution of \((X, W_k)\) surrounding each mode are informative about type-specific mean ability \(\bar{a}_x \) and the correlation between type and \((X, W_k)\).

Second, conditional on \((X, W_k)\), cross-individual dispersion of test scores arise from both their differential ability and test score noises. Using within-individual comparison of multiple measures of his ability \((s \text{ and GPAs})\), we learn about the dispersion of test score noises. A comparison of cross-individual and within-individual test score dispersions informs us of the dispersion of abilities. The two dispersions are key parameters governing the speed of learning, as in (3). Third, like ability distribution, the probability of being retained also varies with types. As such, some students will be retained more often than others with the same GPA and school type, which gives information about their types.

As in all dynamic-choice models, another major source of information is one’s choices

\(^{30}\)Our estimated \(\delta_1 \) is 0.95.
over time. Relative to dynamic models without criminal behaviors, our model is subject to one additional identification complication: except for studies that use survey data with self-reported criminal activities, uncaught crimes are unobservable at the individual level. This data limitation makes a model with criminal choices non-identifiable if arrest rates are allowed to differ across individuals and/or to change with one’s criminal experience. As such, we have to follow the crime literature and impose the strong assumption that individuals within the same municipality faced the same arrest rate ρ_l, which is calculated using aggregate crimes and arrests. With this assumption, individual-level data on (non)arrests gives direct information on the probability that one is involved in crime. As such, the joint distribution of dynamic choices and characteristics (e, d, X, W) becomes available, as is the case in other dynamic models, and hence the usual identification argument applies.

5 Data

Our data cover a cohort of teenagers from the 34 largest Chilean municipalities, whom we follow from the year they entered primary schools (2002) until 2014. These 34 municipalities include all the big cities in Chile, accommodating about 50% of the Chilean population. Of all juvenile crimes recorded annually in Chile, over 60% occur in these 34 municipalities. Each of these 34 municipalities is treated as a location l in our model. We construct our sample by linking four data sets at the individual level and one at the school level, supplemented with aggregate information at the municipality level.

Three of our data sets are administrative records from the Ministry of Education of Chile. The first data set contains each student’s Grade 1 to Grade 12 annual records of attendance, GPA, and grade retention, as well as the ID of one’s school and some basic demographic information (e.g., gender). The second data set contains individual-level records of standardized test (SIMCE) scores in Grade 4 and Grade 10. One’s Grade 4 SIMCE score is used as s_i in our model, i.e., the noisy measure of one’s ability that is observed by the researcher but not the teenager. We also use Grade 4 (Grade 10) SIMCE scores to standardize student GPAs for primary schools (high schools). The standardized individual GPAs are then used as GPA_{it} in our model. The third data set is at the school level, which provides information on school characteristics, including tuition and fees.

The fourth data set is from the Defensoria Penal Publica (DPP), which contains ad-
administrative criminal records of almost all arrested youths between 2006 and 2014.31 For each arrest, we observe the time of the accusation and the sentence received. We merge the schooling records and the criminal records by individual ID. Focusing on those whose primary schools were either public or voucher-private, we obtain a sample of 47,665 teenage boys.32

We supplement administrative data with rich information on these teenagers’ family backgrounds, coming from a survey conducted on parents at the time of the SIMCE tests. Of the 47,665 teenagers in our sample, the parents of 45,130 teenagers filled out the survey. Excluding observations missing critical information, such as parental education and family income, our final sample contains 34,784 teenage boys, whose trajectories between age 10 and age 18 are the focus of our study.

For municipality characteristics, we obtain information on the average household income from the National Socio-Economic Characterization Survey (CASEN), and information on aggregate crime rates and arrest rates from the Ministry of the Interior and Public Security.

5.1 Summary Statistics

The upper panel of Table 2 shows school-level statistics for each of the two types of primary schools (cross-school standard deviations within each type are in parentheses). Relative to voucher-private schools, public schools have lower average student test scores.33 Throughout the paper, tuition refers to the out-of-pocket cost for households, i.e., the sum of tuition and fees net of vouchers that schools receive directly from the government. Public schools are basically free, with an average annual tuition of 600 pesos, but the average tuition is over 105,800 pesos in voucher-private schools.34 Based on the school-level social economic status (SES) classification by the Ministry of Education, most public schools are low-SES and only 5% are high-SES; in contrast, only 19% of voucher-private schools are low-SES and 44% are high-SES.35 The lower panel of Table 2 shows student characteristics by the type of their primary schools. The difference in family backgrounds is clear between the two groups:

31Fewer than 2\% of cases were handled by private attorneys, on which we do not have information.

32We focus on boys because of the rare incidence of female crimes. Boys account for about 53.6\% of the sample.

33Within-school average scores are taken over all students, including girls and boys.

341,000 Chilean pesos are about 1.3 USD.

35The classification by the Ministry is based on a composite score, where each component measures a certain aspect of the distribution of enrollees’ family backgrounds.
those attending voucher-private primary schools have much higher family income and better educated parents.36

<table>
<thead>
<tr>
<th>Table 2: School and Individual Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary School Characteristics</td>
</tr>
<tr>
<td>Within-School Average SIMCE Scores</td>
</tr>
<tr>
<td>Annual Tuition (1,000 Pesos)</td>
</tr>
<tr>
<td>School SES: Low</td>
</tr>
<tr>
<td>School SES: High</td>
</tr>
<tr>
<td>Number of Schools</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Individual Characteristics By Primary School Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monthly Family Income (per person, 1,000 Pesos)</td>
</tr>
<tr>
<td>Parental Education: Low</td>
</tr>
<tr>
<td>Parental Education: High</td>
</tr>
<tr>
<td>Enrolled in some Social Welfare Program(s)</td>
</tr>
<tr>
<td>Family Size</td>
</tr>
<tr>
<td>Number of Individuals</td>
</tr>
</tbody>
</table>

*Standard deviations are in parentheses.

Panel A of Table 3 shows outcomes among teenagers grouped by their parental education, and by the quality of their primary schools as proxied by the school-level average SIMCE scores. There is a clear correlation between teenagers’ enrollment/arrest status and academic performance with their backgrounds. For example, the fraction of teenagers ever arrested by age 18 is 1.3% among those with highly-educated parents, versus 5.6% among those whose parents have low education. Panel B shows outcomes over time, where with normal grade progression, \(t = 1 \) to 4 corresponds to the age when one should be enrolled in Grade 5 to 8, and \(t = 5 \) to 8 corresponds to high-school age. Both non-enrollment and arrests are low frequency events, but grow over time. In particular, arrests happen almost only in high school age.

36For parental education, we use the mother’s education whenever possible, if the mother is not present, we use the father’s education. Parental education is defined as high for those with some college education or more, as low for those without any secondary education, as middle otherwise.
Table 3: Outcomes

A. By Background

<table>
<thead>
<tr>
<th>Parental Education</th>
<th>Primary School-Average SIMCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>Ever arrested %</td>
<td>5.6</td>
</tr>
<tr>
<td>Dropout/stopout, 0 arrest %</td>
<td>22.2</td>
</tr>
<tr>
<td>Always enrolled, 0 arrest %</td>
<td>72.2</td>
</tr>
<tr>
<td>GPA (standardized)</td>
<td>-0.39</td>
</tr>
<tr>
<td>Grade Retention %</td>
<td>7.3</td>
</tr>
<tr>
<td>Grade Completed by T</td>
<td>11.1</td>
</tr>
</tbody>
</table>

B. Over Time

<table>
<thead>
<tr>
<th>t</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not enrolled nor arrested %</td>
<td>0.5</td>
<td>0.7</td>
<td>0.8</td>
<td>0.5</td>
<td>1.9</td>
<td>6.0</td>
<td>5.1</td>
<td>9.2</td>
</tr>
<tr>
<td>Arrested %</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.4</td>
<td>1.0</td>
<td>1.4</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Relative to the standard Becker (1968) framework, one additional feature of our model is information friction, which is partly motivated by findings from the following exercise. First, we regress GPA_{it} on individual dummies (d_{i1}) and grade dummies (d_{G_it}):

$$GPA_{it} = d_{i1} + d_{G_it} + \varepsilon_{it}.$$ \hspace{1cm} (13)

Net of individual heterogeneity and grade-specific factors, the residual from this regression (ε_{it}) arguably captures the deviation of one’s GPA’s from the expected level. Then, we regress enrollment status (e_{it}) on individual dummies (d_{i2}) and the lagged GPA residuals $\{\varepsilon_{it'}\}_{t'<t}$.

$$e_{it} = d_{i2} + \sum_{n>0} b_n \varepsilon_{it-n} + \iota_{it},$$ \hspace{1cm} (14)

where ι_{it} is an error term. Table 4 shows the results from (14), in three specifications with increasing numbers of lagged GPA residuals. Without excluding other explanations, the positive and significant coefficients on residual scores are consistent with information friction and learning: better GPA shocks in the past improve one’s belief about his prospect of schooling and hence increase his enrollment probabilities.
Table 4: Regression of Current Enrollment on Lagged GPA Residuals

<table>
<thead>
<tr>
<th>Spec 1</th>
<th>Spec 2</th>
<th>Spec 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε_{it-1}</td>
<td>0.018 (0.001)</td>
<td>0.017 (0.001)</td>
</tr>
<tr>
<td>ε_{it-2}</td>
<td>0.004 (0.001)</td>
<td>0.003 (0.001)</td>
</tr>
<tr>
<td>ε_{it-3}</td>
<td>0.008 (0.001)</td>
<td></td>
</tr>
</tbody>
</table>

*Enrollment regressed on individual dummies and lagged GPA residuals.

*Standard errors are in parentheses.

6 Results

6.1 Parameter Estimates

Table 5: GPA, Ability and Grade Progression

A. GPA Production: $GPA_{it} = \gamma_0G_{it} + X_i\gamma_1 + W_{kit}\gamma_2 + \gamma_3 (1 - g_{it}) + a_i + \varepsilon_{gpa}^{it}$

X_i: Parent Edu = Low	-0.15 (0.002)	(1 - g_{it}): Retained	-0.15 (0.01)
Parent Edu = High	0.11 (0.002)	W_{kit} : Public	-0.02 (0.001)
Welfare Enrollee	-0.04 (0.001)	School SES = low	0.07 (0.003)
Income = Lowa	-0.20 (0.002)	School SES = Middle	0.03 (0.002)
Income = Middle	-0.10 (0.002)	Average SIMCEb	0.38 (0.001)
Attended Pre-school	0.09 (0.002)	$\sigma_{\varepsilon_{gpa}}$	0.63 (0.01)

B. Ability Distribution $a_i \sim N(\bar{a}_i, \sigma^2_a)$

| \bar{a}_1: Mean ability (Type1) | 0.56 (0.01) | σ_a | 0.25 (0.02) |
| \bar{a}_2: Mean ability (Type2) | -0.50 (0.01) |

C. Grade Progression $\Pr (g_{it+1} = 1 | \cdot) = \Phi \left(\frac{GPA_{it} + \theta_0X_i + W_{kit}\theta_1}{\sigma_{\varepsilon_{g}}^{it}} \right)$

θ_1: Type 1	0.40 (0.01)	W_{kit} : High school	0.02 (0.01)
θ_2: Type 2	0.50 (0.01)	Public primary	0.04 (0.01)
$\sigma_{\varepsilon_{g}}$	0.59 (0.003)	Public High School	-0.29 (0.01)

aFamily income levels (low, middle, high) are defined by income terciles.

bSchool average SIMCE score in the 4th (10th) grade for primary school (high school).

We report a selected set of parameter estimates in this section and the others in the appendix (standard errors are in parentheses).37 Panel A of Table 5 shows the estimated

37To obtain standard errors, we numerically calculate the Hessian of the log likelihood.
parameters governing the (standardized) GPA production function, where one’s unobservable ability \((a_i)\) enters with a normalized coefficient of 1. GPA increases with parental education, family income, and enrollment in pre-schools, decreases with welfare enrollment status and grade retention from the previous year.\(^{38}\) Individual GPA also increases with school quality as measured by school average SIMCE scores.

Panel B of Table 5 shows the distribution of ability. The mean ability among Type 1 individuals is much higher than that among Type 2 individuals. Panel C shows that compared to Type 1 individuals enrolled in the same type of schools, Type 2 individuals are slightly more likely to progress to the next grade if they achieve the same GPA.

Panel A of Table 6 shows teenagers’ in-school utility parameters. A teenager does care about his performance in school: schools are more enjoyable if one obtains a higher GPA, although insignificantly so; moreover, schooling utility drops significantly if one has a low GPA (below the 25\(^{th}\) percentile) and/or one is repeating a grade. Everything else being equal, Type 2 individuals, who have lower ability on average, enjoy schools slightly more than their Type 1 counterpart. That is, if Type 2’s enjoy schools less, it is due to their lower ability and hence poorer GPA, rather than pure tastes. The same tuition imposes a larger burden on the lowest-income group, relative to the other income groups. We also find that private schools, high-SES schools and higher-quality schools are more enjoyable to attend.\(^{39}\) The bottom part of Panel A shows that past activities can directly affect one’s current choice: schools become less enjoyable if one has a criminal record, and returning to school is costly if one was not enrolled in the previous period. This is one of channels via which a temporary bad shock that led one off the track in the past can leave persistent effect.

\(^{38}\)Throughout the paper, family income levels (low, middle, high) are defined by income terciles.

\(^{39}\)We have estimated other versions with finer categories of school SES and SIMCE scores, which do not improve upon the more parsimonious specification reported in Table 6.
Table 6: Preference Parameters

<table>
<thead>
<tr>
<th></th>
<th>A. Schooling Utility ((e_t = 1))</th>
<th>B. Crime Utility ((d_t = 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPA</td>
<td>0.06 (0.06)</td>
<td>I(type=1) 0.68 (0.42)</td>
</tr>
<tr>
<td>I(GPA = low)</td>
<td>-1.52 (0.13)</td>
<td>I(type=2) 1.34 (0.43)</td>
</tr>
<tr>
<td>((1 - g_{it}) : \text{Retained})</td>
<td>-0.96 (0.03)</td>
<td>(e_t \times d_t : \text{primary school}) -3.76 (0.14)</td>
</tr>
<tr>
<td>I(type=2)</td>
<td>0.18 (0.05)</td>
<td>(e_t \times d_t : \text{high school}) -1.57 (0.08)</td>
</tr>
<tr>
<td>tuition * I(inc=low)(^a)</td>
<td>-1 (normalized)</td>
<td>I(high school age) 2.08 (0.20)</td>
</tr>
<tr>
<td>tuition * I(inc=middle)</td>
<td>-0.55 (0.03)</td>
<td>Payoff if not caught: (R(l_i, X_i))</td>
</tr>
<tr>
<td>tuition * I(inc=high)</td>
<td>-0.67 (0.03)</td>
<td>Local crime rate 0.03 (0.01)</td>
</tr>
<tr>
<td>I(private school)</td>
<td>0.48 (0.02)</td>
<td>Local mean inc -0.39 (0.07)</td>
</tr>
<tr>
<td>I(high school)</td>
<td>-0.80 (0.07)</td>
<td>Local mean inc*I(inc =low) 0.48 (0.05)</td>
</tr>
<tr>
<td>I(school SES< high)</td>
<td>-0.81 (0.05)</td>
<td>Local mean inc*I(inc =middle) 0.31 (0.05)</td>
</tr>
<tr>
<td>I(school ave. SIMCE low)</td>
<td>-0.14 (0.06)</td>
<td>Utility if arrested: (u^j (J_{it-1}))</td>
</tr>
<tr>
<td>I(criminal record>0)</td>
<td>-0.11 (0.09)</td>
<td>I(arrest) -0.10 (2.22)</td>
</tr>
<tr>
<td>Back to School Cost (\varphi)</td>
<td>1.31 (0.04)</td>
<td>I(first time arrest) -28.5 (1.07)</td>
</tr>
<tr>
<td>Constant</td>
<td>4.69 (0.09)</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Annual tuition in 2,000 pesos. Family income levels are defined by income terciles.

Panel B shows that Type 2’s have a higher taste for criminal activities relative to Type 1’s, which, combined with their lower learning ability and hence poorer perspective in schools, makes Type 2 teenagers more prone to crimes. Attending schools and committing crimes at the same time is costly, especially during primary school stage. Moreover, consistent with previous studies, as reviewed by Levitt and Lochner (2000), we also find a significant age effect on the tendency to commit crimes. The middle part of Panel B shows that the payoff of uncaught crimes does not vary much with local crime rate among the entire population (not just teenage crimes), but decreases with local average income except for those from low-income families.\(^40\) Finally, a teenager incurs disutility if caught doing crime, but this deterrence effect is concentrated on first-time arrests.

Panel A of Table 7 shows the estimated parameters governing the type distribution.

\(^40\) Our model is silent about why criminal payoffs may vary with aggregate conditions such as crime and income, which does not affect our ability to study individual choices and how an individual would respond to counterfactual policies. See Fu and Wolpin (2018) as a recent example of studies on crime in an equilibrium setting.
Teenagers with better family backgrounds are more likely to be Type 1’s.\(^{41}\) Moreover, those enrolled in higher quality primary schools are more likely to be Type 1’s, which reflects the initial sorting between households and schools. Using these estimates, Panel B reports the percentage of Type 1 teenagers in our sample. Overall, there are 46% Type 1 teenagers. This fraction is about 10 percentage points higher among teenagers with high-education parents than among those with low-education parents. The disparity is even larger across teenagers attending different groups of primary schools by school SES and by school-level SIMCE scores.

Table 7 Type Distribution

A. Pr (\(X_i = 1\)	·) = \(\Psi (X_i, W_{k,i})\)	B. % Type 1 in the Sample (Model Predicted)	
Constant	-0.21 (0.06)	Overall	45.6
Welfare Enrollee	-0.08 (0.03)	Parent Edu=low	40.9
Income (1,000 peso/person-month)	0.02 (0.02)	Parent Edu=high	50.7
Private Insurance	0.04 (0.03)	Family Income = low	41.3
Job contract = low	-0.09 (0.04)	Family Income = high	50.7
Job contract = middle	0.06 (0.04)	Primary Sch SES= low	38.7
Attended Preschool	-0.02 (0.05)	Primary Sch SES= high	52.5
Big Family	-0.07 (0.02)	Sch Ave. Score: 1st quartile	37.1
Primary School Ave. SIMCE	0.31 (0.02)	Sch Ave. Score: above median	51.2

6.2 Model Fit

Overall, the model fits the data well. Table 8 shows the model fit for the age-status profile. Table 9 shows the fit for outcomes separately for teenagers with different parental education levels, and different initial primary schools as grouped by school-level average SIMCE scores. The model captures the heterogeneous outcomes across these groups reasonably well, although the model underpredicts the cross-group difference in the fraction of the ever arrested. Using model-simulated data, we run the same regressions (13) and (14) as we did in Section 5.1. Table 10 shows that the model is able to replicate the correlation between enrollment and past GPA residuals. Finally, Table 11 shows the fit for primary-to-secondary

\(^{41}\)The likelihood does not improve if we add other variables in the type distribution (e.g., parental education) and the associated parameters are close to zero. We therefore choose the simpler specification.
school transition matrix. In both the data and the model, transitions between the top tier and the bottom tier are rare.

Table 8: Model Fit: Status Over Time

<table>
<thead>
<tr>
<th></th>
<th>%</th>
<th>t</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not enrolled nor Arrested</td>
<td>Data</td>
<td>0.5</td>
<td>0.7</td>
<td>0.8</td>
<td>0.5</td>
<td>1.9</td>
<td>6.0</td>
<td>5.1</td>
<td>9.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model</td>
<td>0.7</td>
<td>0.6</td>
<td>0.8</td>
<td>1.3</td>
<td>3.0</td>
<td>4.9</td>
<td>5.3</td>
<td>7.6</td>
<td></td>
</tr>
<tr>
<td>Arrested</td>
<td>Data</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.4</td>
<td>1.0</td>
<td>1.4</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.8</td>
<td>1.0</td>
<td>1.1</td>
<td>1.1</td>
<td></td>
</tr>
</tbody>
</table>

Table 9: Model Fit: Outcomes by Background

<table>
<thead>
<tr>
<th>Parental Education:</th>
<th>Data</th>
<th>Model</th>
<th>Data</th>
<th>Model</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>Middle</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ever arrested %</td>
<td>5.6</td>
<td>5.1</td>
<td>3.2</td>
<td>3.4</td>
<td>1.3</td>
<td>1.6</td>
</tr>
<tr>
<td>Always enrolled, 0 arrest %</td>
<td>72.2</td>
<td>71.1</td>
<td>81.9</td>
<td>81.2</td>
<td>87.1</td>
<td>88.2</td>
</tr>
<tr>
<td>GPA (standardized)</td>
<td>-0.39</td>
<td>-0.43</td>
<td>-0.01</td>
<td>-0.00</td>
<td>0.43</td>
<td>0.45</td>
</tr>
<tr>
<td>Retention %</td>
<td>7.3</td>
<td>8.0</td>
<td>5.2</td>
<td>5.2</td>
<td>3.8</td>
<td>3.9</td>
</tr>
<tr>
<td>Grade Completed by T</td>
<td>11.1</td>
<td>11.2</td>
<td>11.4</td>
<td>11.5</td>
<td>11.5</td>
<td>11.7</td>
</tr>
<tr>
<td>Primary School-Level Ave. SIMCE Score:</td>
<td>1st quartile</td>
<td>2nd quartile</td>
<td>above median</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ever arrested %</td>
<td>5.6</td>
<td>4.3</td>
<td>3.4</td>
<td>3.5</td>
<td>1.9</td>
<td>2.7</td>
</tr>
<tr>
<td>Always enrolled, 0 arrest %</td>
<td>72.5</td>
<td>73.4</td>
<td>79.4</td>
<td>79.0</td>
<td>86.4</td>
<td>85.5</td>
</tr>
<tr>
<td>GPA (standardized)</td>
<td>-0.45</td>
<td>-0.48</td>
<td>-0.16</td>
<td>-0.16</td>
<td>0.34</td>
<td>0.36</td>
</tr>
<tr>
<td>Retention %</td>
<td>6.9</td>
<td>7.3</td>
<td>5.8</td>
<td>5.8</td>
<td>4.2</td>
<td>4.4</td>
</tr>
<tr>
<td>Grade Completed by T</td>
<td>11.3</td>
<td>11.1</td>
<td>11.5</td>
<td>11.3</td>
<td>11.6</td>
<td>11.5</td>
</tr>
</tbody>
</table>

Table 10: Model Fit: Regression of Enrollment on Lagged GPA Residuals

<table>
<thead>
<tr>
<th>Spec 1</th>
<th>Spec 2</th>
<th>Spec 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Model</td>
<td>Data</td>
</tr>
<tr>
<td>(\varepsilon_{it-1})</td>
<td>0.018</td>
<td>0.007</td>
</tr>
<tr>
<td>(\varepsilon_{it-2})</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>(\varepsilon_{it-3})</td>
<td></td>
<td>0.008</td>
</tr>
</tbody>
</table>

*Enroll_{it} regressed on individual dummies and lagged GPA residuals.
7 Counterfactual Experiments

We use the estimated model to conduct a set of relatively easy-to-implement counterfactual interventions targeted at disadvantaged teenagers, who are more likely to wander astray. Specifically, we target teenagers who are initially enrolled in low SES primary schools and whose parents have low education. These teenagers account for 10% of all teenagers in our sample. The average monthly family income per person among the targeted teenagers is 25,460 pesos, as compared to 63,114 pesos among all teenagers in the sample. The first two columns of Table 12 shows that in the baseline, the targeted teenagers are more likely to have some arrest records than others (5.24% versus 3.08%). They are also much less likely to be consistently enrolled than other teenagers (68.76% versus 82.22%).

7.1 Free Schools, Better Schools

Given our finding that low-income families are more sensitive to tuition costs than others (Table 6), our first intervention completely lifts the tuition burden for the targeted teenagers. Specifically, Policy 0v (v for voucher) gives additional vouchers to the targeted teenagers on top of the vouchers that already exist in the baseline (Section 2.2), so that high schools become totally free for them to attend. The purpose of this exercise is to examine the effect of tuition intervention without changing the primary-school environment for these teenagers. Therefore, additional vouchers are needed only at the high school stage, since these teenagers attend public primary schools that are already free.

42 As is true in any individual decision model, results from these experiments abstract from potential equilibrium impacts. Even though policies targeted at these teenagers may have limited equilibrium impact given that they are a small fraction of the population, the policy impact should still be interpreted only at the individual level.
As shown in Columns 3-4 in Table 12, Policy 0v has little impact on the fraction of ever-arrested teenagers; it increases, by 1.7 percentage points (ppts) or 2.5%, the fraction of those who stay on the right track, i.e., those who are consistently enrolled throughout primary and secondary education and have no criminal record. As shown in the last row of Table 12, Policy 0v would involve, an average (additional) voucher of 11,280 pesos (14 USD) per enrollee-year in high school years.\(^{43}\) That is, both the effect and the cost of Policy 0v are very small.

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Targeted Teens</th>
<th>Policy 0v</th>
<th>Policy 1</th>
<th>Policy 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Others</td>
<td>Targeted Teens</td>
<td>New</td>
<td>New</td>
<td>New</td>
</tr>
<tr>
<td>Ever arrested (%)</td>
<td>3.08</td>
<td>5.24</td>
<td>5.16</td>
<td>5.12</td>
<td>5.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.6%</td>
<td>-2.4%</td>
<td>-2.7%</td>
</tr>
<tr>
<td>Always enroll, No arrest (%)</td>
<td>82.22</td>
<td>68.76</td>
<td>70.47</td>
<td>72.87</td>
<td>72.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.5%</td>
<td>6.0%</td>
<td>5.6%</td>
</tr>
<tr>
<td>Grade finished by T</td>
<td>11.54</td>
<td>11.18</td>
<td>11.20</td>
<td>11.29</td>
<td>11.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.2%</td>
<td>1.0%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Added HS voucher per enrollee-year (pesos)</td>
<td></td>
<td></td>
<td>11,280</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Keeping tuition levels as they are in the baseline, the next two interventions aim at reducing institutional frictions that have led to poor schooling opportunities for the targeted teenagers. Specifically, Policy 1 improves the initial primary school environment for a targeted teenager \(i\) from that of his baseline primary school \((W_{k0})\) to that of a better primary school \((W_{km})\), starting from \(t = 1\) (Grade 5).\(^{44}\) Specifically, \(k_m\) refers to a public primary school with median school-average SIMCE scores, high SES and zero tuition.\(^{45}\) Policy 1 improves \(i\)'s learning environment, and hence one’s GPA and in-school utility, from Grade 5 to Grade 8. It also improves \(i\)'s primary-to-secondary school transfer opportunities, indirectly by improving one’s GPA, and directly via the role of \(W_k\) in the transfer process. Notice that free public schools similar to or better than \(k_m\) already exist, however, they may not

\(^{43}\)Specifically, for a given teenager \((X_i, \chi_i, a_i)\), the expected voucher is the average high school tuition weighted by his primary-to-secondary school transfer probabilities \(\int P_{tr}(X_i, \chi_i, GPA_i, W_{k0}, W_{k'})\, tuition_{k'}\, dF(GPA_i|X_i, \chi_i, a_i)\). The overall average is then taken over the distribution of \((X_i, \chi_i, a_i)\) among the targeted teenagers.

\(^{44}\)One way to implement Policy 1 would be to enroll \(i\) in \(k_m\) or a similar primary school starting from Grade 5.

\(^{45}\)Most public primary schools are free, especially those attended by the targeted teenagers in the baseline.
be easily accessible for the targeted teenagers due to frictions such as selective admissions, which also exist in other countries.46

Policy 2 enhances Policy 1: in addition to improving their primary school environment to W_{km}, Policy 2 further improves primary-to-secondary school transfer opportunities for a targeted teenager to those faced by their counterpart from middle-level family backgrounds. That is, a targeted teenager would be treated equally as someone who has the same GPA and type but whose family income, parental education, and family SES are all at the middle level.47 Notice that Policy 2 only requires a fairer school transfer process, rather than (unrealistically) change one’s family background.

The effects of Policies 1 and 2 are shown in the last 4 columns of Table 12. By improving one’s primary school environment from Grade 5 ($t = 1$), Policy 1 would lead to a 4 ppts or 6% increase in the fraction of the targeted teenagers who consistently stay on the right track. However, the fraction of the ever-arrested remains above 5%. Supplementing Policy 1 with better high-school transfer opportunities (Policy 2) leads to no further noticeable improvement in outcomes. Relative to the free high school treatment (Policy 0v), improving schooling opportunities is more effective, but the effect is still quite limited.

\textbf{Remark 3} To make our counterfactual experiments more realistic and policy relevant, we have made three choices throughout. First, rather than imposing restrictions directly on behaviors, the interventions aim at inducing behavioral responses by changing one’s opportunities and/or incentives. For example, even with improved and/or free access to schools, a teenager can still choose not to enroll. Second, the interventions we consider are all relatively mild and easy to implement. For example, the targeted teenagers are given schooling opportunities faced by those from middle-level backgrounds, instead of those from rich families. Third, as our model is silent on the formation of a teenager’s initial endowment, we hold fixed a teenager’s ability, preference type and initial belief about himself and start the intervention at $t = 1$ (Grade 5). Therefore, the effects should be interpreted as those on the

46For example, in many countries, including the U.S., although public schools are all free to attend, their quality differs substantially across neighborhoods. With neighborhood-priority rules commonly used in allocating students to public schools, good public schools are difficult to get into for children from disadvantaged backgrounds.

47Specifically, let X_m denote a vector of middle-level family background. A targeted teenager i is now given the transfer probability vector \{$P_{tr} (X_m, X_i, GPA_i, W_{km}, W_{km}) \}_{k'}$, where i’s own characteristics (type and GPA) remain but family characteristics X_i is replaced by X_m (only in $P_{tr} (\cdot)$). Affirmative action, where admissions favor disadvantaged students, would be a more progressive treatment.

7.2 Free and Better Schools

As shown in Table 12, neither lowering financial cost alone nor improving schooling opportunities alone would be very helpful for the targeted teenagers. We now examine a combination of the two types of measures. The next two policies, labeled as Policy 1v and Policy 2v, improve schooling opportunities and make schools free. Specifically, Policy 1v (Policy 2v) is the counterpart of Policy 1 (Policy 2) with the additional feature that high school tuition is fully covered for the targeted teenagers via extra vouchers. Table 13 shows that Policies 1v and 2v are about three times as effective as their counterpart. Under Policy 2v, which is more effective than Policy 1v, the fraction of the ever-arrested decreases by 0.6 ppts or 11%; and the fraction of the consistently-enrolled increases by 12 ppts or 17%. Both policies would involve an additional voucher of about 17 thousand pesos (22 USD) per enrollee-year on average. This is a small cost, especially considering the fact that Policy 1v and Policy 2v are three times as effective as their counterpart in keeping these teenagers on the right track.

Table 13. Intervention: Free and Better Schools

<table>
<thead>
<tr>
<th>Targeted Teenagers</th>
<th>Baseline</th>
<th>Policy 1v</th>
<th>Policy 2v</th>
<th>Policy 3v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ever arrested (%)</td>
<td>5.24</td>
<td>4.83</td>
<td>4.69</td>
<td>4.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(-7.8%)</td>
<td>(-10.5%)</td>
<td>(-19.5%)</td>
</tr>
<tr>
<td>Always enroll,</td>
<td>68.76</td>
<td>79.15</td>
<td>80.43</td>
<td>87.35</td>
</tr>
<tr>
<td>No arrest (%)</td>
<td></td>
<td>15.1%</td>
<td>17.0%</td>
<td>27.0%</td>
</tr>
<tr>
<td>Grade finished by T</td>
<td>11.18</td>
<td>11.36</td>
<td>11.35</td>
<td>11.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.6%</td>
<td>1.5%</td>
<td>1.7%</td>
</tr>
<tr>
<td>Added HS voucher per enrollee-year (pesos)</td>
<td>17,120</td>
<td>17,550</td>
<td>221,720</td>
<td></td>
</tr>
</tbody>
</table>

Finally, our parameter estimates imply that relative to their public-school counterpart, private schools are more enjoyable to attend and more effective in producing knowledge (GPA). We therefore implement Policy 3v, which enhances Policy 2v by guaranteeing the

48The effect on later cohorts can be larger/smaller, depending on whether households’ investment in early childhood responds to these teenage-year interventions in a complementary/substitutable manner. In addition, early childhood interventions may also change one’s initial conditions by teenage years (e.g., Garcia et al. (2016)).
targeted teenager a seat in a mediocre private high school (with full tuition vouchers).\footnote{This mediocre private high school is categorized as middle SES, and its school level SIMCE score is 0.08, which is higher than the average among all high schools (0.04), but lower than the average among voucher-private high schools (0.31).}

As shown in the last two columns of Table 13, Policy 3v would lead to a 20% reduction in the fraction of ever-arrested teenagers, doubling the effect of Policy 2v in this dimension. It would also lead to a 27% increase in the fraction of consistently-enrolled teenagers. The additional voucher in this case is over 221 thousand pesos (280 USD) per enrollee-year, which is a significantly larger voucher than that under Policy 2v and yet is still arguably a small cost.

8 Conclusion

We have developed a model of teenagers’ dynamic choices of schooling and crime, incorporating four groups of factors underlying the routes taken by different teenagers, namely endowment, institutional friction, information friction and transitory shocks. We have estimated the model using a rare administrative data set from Chile that links school records and teenage-year criminal records. The estimated model well captures the patterns in the data.

We use the estimated model to study a set of realistic counterfactual policy interventions, targeted at teenagers with disadvantaged backgrounds. We find that neither making schools free alone nor improving schooling opportunities alone would be very helpful for the targeted teenagers. Interventions that combine these two types of measures would be three times as effective as either type of measures on their own. The cost of these interventions are relatively low, both financially and in terms of the degree to which the schooling opportunities are improved. Given that frictions featured in the Chilean setting exist in many other countries in the same or similar formats, e.g., the unequal access to good schools, lessons learned from this exercise can be useful elsewhere.

There are several dimensions along which our framework can be extended. First, we have taken teenagers’ ability and unobserved types as pre-determined endowments that are correlated with their family backgrounds. An important extension is to bring into our framework early childhood investment that shapes one’s initial conditions by teenage years.\footnote{See, for example, Cunha and Heckman (2007), Cunha et al. (2010) and Del Boca et al. (2013) for studies on parental investment on children.}
This extension would allow for an investigation of how interventions in childhood interact with those in teenage years, but would require additional information on parental investment such as time inputs. A second extension is to open the black box of the “terminal value” function by modeling one’s post-high-school choices and outcomes. When these additional data become available, this extension will allow for a broader view on how pre-job-market intervention and intervention targeted at low-skilled workers may interact in helping those from disadvantaged backgrounds to move up the ladder.

References

Appendix

A1. Functional Forms

A1.1 Utility of Schooling

\[U^{sch}(G_{it}, GPA_{it}, X_i, \chi_i, W_k, g_{it}, J_{it-1}) = \]

\[\alpha_0 + \alpha_1 GPA_{it} + \alpha_2 I(GPA_{it} < GPA^*) + \alpha_3 (1 - g_{it}) \]

\[+ \alpha_4 I(G_{it} > 8) + \alpha_5 I(k \text{ is private}) + \alpha_6 I(S_k=\text{low}) + \alpha_7 I(SES_k<3) \]

\[+ p_k (1 + \alpha_8 I(inc_i = \text{mid}) + \alpha_9 I(inc_i = \text{high})) + \alpha_{10} I(\chi_i = 2) \]

\[+ \alpha_{11} I(J_{it-1,1} > 0) + d_{it} (\alpha_{12} I(G_{it} \leq 8) + \alpha_{13} I(G_{it} > 8)) , \]
where GPA^* is the 25th percentile of GPA over all students, so $I(GPA_i < GPA^*)$ indicates low GPA. α_3 is disutility for being retained. The second line specifies the utility associated with different school characteristics: high school ($G_i > 8$) or primary school, private or not, whether or not the school quality (average score) is low (i.e., below the 25th percentile), and the school’s SES status (1 being low and 3 being high). In the third row, $p_k \in W_k$ is the tuition charged for attending school k, $inc_i \in X_i$ is i’s family income level. We introduce α_8 and α_9 to capture the idea that the trade-off between education attainment and tuition costs may depend on family resources. α_{10} is a type-2 specific constant term. In the last row, α_{11} is the disutility of attending school for someone with a criminal record. α_{12} (α_{13}) is the disutility of attending primary school (high school) while committing crimes.

A1.2 Grade Progression

Assuming a normally distributed shock to grade progression $\epsilon^g \sim N(0, \sigma_{\epsilon^g}^2)$, the probability of grade progression differs by school type (public or private, primary or high school), and by one’s type, such that

$$\Pr (g_{it+1} = 1 | \cdot) = \Phi \left(\frac{GPA_{it} + \theta_0 x_i + \theta_{11} I(\text{Public primary}) + \theta_{12} I(\text{Public HS}) + \theta_{13} I(HS)}{\sigma_{\epsilon^g}} \right).$$

A1.3 School Transition:

The probability of student i in primary school k transferring to high school k' is given by:

$$P^{tr}(X_i, x_i, GPA_i, W_k, W_{k'}) = \begin{cases} \frac{\exp(f(X_i, x_i, GPA_i, W_k, W_{k'}))}{\sum_{k'' \in K(l_i)} \exp(f(X_i, x_i, GPA_i, W_k, W_{k''}))} & \text{if } k' \in K'(l_i) \\ 0 & \text{otherwise} \end{cases} \quad (16)$$

where $K'(l_i)$ is the set of high schools that are *feasible* for a student living in location l_i (l_i is one element of X_i). Empirically, we define $K'(l_i)$ as the collection of all high schools with at least one attendee from location l_i, which includes all high schools in l_i and some high schools in other, mostly nearby, locations. The function $f(\cdot)$ in (16) is given by
\[f(X_i, \chi_i, GPA_i, W_k, W_{k'}) = \]
\[(S_k' - S_S^*) \begin{bmatrix} \psi_1(S_k - S_P^*)_+ + \psi_2(S_k - S_P^*)_- + \\ \psi_3(GPA_i - M_G^*)_+ + (\psi_4 + \psi_5 I(\chi_i = 2)) (GPA_i - M_G^*)_- \end{bmatrix} \]
\[+ I(k' \text{ private})(\psi_6 + \psi_7 I(k \text{ private})) \]
\[+ \sum_{n=1}^3 I(SES_k = n)(\psi_{8n} I(SES_{k'} = 1) + \psi_{9n} I(SES_{k'} = 3)) \]
\[+ \sum_{n=1,3} I(SES_i = n)(\psi_{8'n} I(SES_{k'} = 1) + \psi_{9'n} I(SES_{k'} = 3)) \]

\(S_k \) is the average SIMCE score in school \(k \), \(S_S^* \) (\(S_P^* \)) is the median of \(S_k \) within secondary (primary) schools, \(M_G^* \) is the median (standardized) GPA among all students. \((S_k - S_P^*)_+ = (S_k > S_P^*) I(S_k > S_P^*), (S_k - S_P^*)_- = (S_k - S_P^*) I(S_k \leq S_P^*); \) and the other terms are similarly defined. The first row of (17) captures the transition likelihood associated with quality differences between a secondary school and one’s primary school as well as one’s own GPA. In particular, \((S_k' - S_S^*) \) measures the quality of a given secondary school \(k' \) relative to a median secondary school. This term is interacted with the quality of one’s primary school relative to a median primary school as well as one’s own GPA relative to a median student. The coefficients are allowed to differ depending on whether or not the primary school or the student is above the median, and on student unobserved type (\(\chi_i \)). The second row captures the ease/difficulty to transfer to a private secondary school for all and for those enrolled in private primary schools. The third row captures the transition likelihood associated with the interaction of the SES status of the secondary school and the origin primary school. The last row interacts the SES status of a high school and a student’s own SES.

A1.4 Crime Payoff and Utility upon Arrests

The payoff from crime when one is not caught varies with local crime rate (\(cr_i \)), local average income (\(INC_i \)), and one’s family income (\(inc_i \)), such that

\[R(l, X_i) = \omega_1 cr_i + INC_i (\omega_2 + \omega_3 I(inc_i = low) + \omega_4 I(inc_i = middle)) . \]

If arrested, one’s utility is given by

\[u^i (J_{it-1}) = \mu_1 + \mu_2 I(J_{it-1} = 0) , \]
where μ_2 is the additional disutility for first-time arrests.

A1.5 Terminal Value

$$V_{T+1}(X_i, \chi_i, G_{iT}, J_{iT}, E_{iT}(a_i), W_{k,iT}) =$$

$$G_{iT} (\lambda_0 + \lambda_1 S_{k,T}) + \lambda_2 I (J_{iT1} > 0) +$$

$$I (G_{iT} = 12) \left[\lambda_3 + \lambda_4 I (\chi_i = 2) + \lambda_5 \exp (E_{iT}(a_i)) + \lambda_6 S_{k,T} + \lambda_7 I (\text{parent edu=mid}) + \lambda_8 I (\text{parent edu=high}) \right].$$

The first row represents the value of grade level and whether or not one is ever arrested, where the former may vary with the quality (average SIMCE score) of the school one last attended. The second row specifies the value of finishing high school, which may differ by type, one’s belief about his ability, the quality of one’s school, and one’s parental education. We take the exponential $\exp (E_{iT}(a_i))$ because $E_{iT}(a_i)$ can be negative, which arises from the fact that test scores are standardized to have a mean of 0 and that a_i and test scores are on the same scale.

A1.6 Distribution of Sentencing Length

We measure τ in units of 6 months, with $\tau \in \{0, 1, 2, \ldots, 11\}$. We assume that τ is drawn from an ordered probit distribution, with the continuous latent variable (τ^*) given by

$$\tau^*_i = \varrho_0 + \varrho_1 \text{age}_{it} + \varrho_2 \text{J}_{i,t-1,1} + \varrho_3 \text{J}_{i,t-1,2} + \varepsilon_{\tau it},$$

where $\text{J}_{i,t-1,1}$ ($\text{J}_{i,t-1,2}$) is the total arrests (total sentences) in the past. To estimate ϱ and the cutoff parameters from our DPP data, we assign $\tau = 0$ if no jail time was prescribed, $\tau = 1$ if the observed sentence was positive but no greater than 6 months,..., $\tau = 10$ if it was longer than 54 months but no greater than 60, and $\tau = 11$ if it was 60 months or longer.

B. Standardization of GPA

For a primary school k, we estimate its grading parameters ($a_{k \text{raw}}^\text{raw}, b_{k \text{raw}}^\text{raw}$) using its students’ Grade 4 raw GPAs and Grade 4 SIMCE scores in the following regression

$$GPA_{k\text{raw}} = a_{k \text{raw}} + b_{k \text{raw}}^\text{raw} \text{SIMCE}_{k\text{raw}} + \varepsilon_{k\text{raw}}^\text{raw}.$$

The standardized GPA in primary school k is then given by $GPA_{k\text{it}} = \frac{GPA_{k\text{raw}} - a_{k \text{raw}}^\text{raw}}{b_{k \text{raw}}^\text{raw}}$. To stan-
standardize secondary school GPAs, we follow the same procedure but school grading parameters are estimated by comparing Grade 10 raw GPAs with Grade 10 SIMCE scores.

C. The Likelihood Function

Model parameters to be estimated (Θ) include 1) preference parameters Θ_u, 2) GPA production and grade progression parameters Θ_G, 3) type distribution parameters Θ_χ, 4) type-specific ability distribution parameters Θ_a, 5) school transition probability parameters Θ_tr, and 6) the parameter that relates standardized test score (unknown to student) and ability (σ_ξ). Given observables (X_i, k_i0), the estimated Θ should maximize the probability of observing each teen’s school enrollment, GPA’s, grade progress and arrests over time, i.e.,

\[O_{it} = \{e_{it}, GPA_{it}, g_{it+1}, arrest_{it}\}_t \text{, his school transition (} k'_i \text{) and his performances before Grade } G_0 \left(\{GPA_{it}, g_{it}\}^{G_0}_{t=-t_0}, s_i \right). \]

Teenager i’s contribution is given by

\[L_i (Θ) = \sum_m \Pr (X_i = m|X_i, k_{i0}; Θ_χ) L_{im} (Θ\backslash Θ_χ), \]

\[L_{im} (Θ\backslash Θ_χ) = \prod_{t=1}^TL_{imt}(Θ\backslash Θ_χ) \times L_{im0}(Θ_G, Θ_a, σ_ξ) \times p^{tr} (\cdot, X_i = m|Θ_tr). \]

\(L_{im} \) is the likelihood conditional on \(i \) being type \(m \), which is the product of period-specific likelihoods \(L_{imt}(Θ\backslash Θ_χ) \), complemented by the additional information provided by one’s pre-G_0 performance \(L_{im0} (\cdot) \), and the school transition probability as specified in (4).

\(L_{imt}(Θ\backslash Θ_χ) \) for \(t \geq 1 \): Let \(Ω_{imt} \) be the vector of state variables for \(i \) of Type-\(m \) at time \(t \), and \(\overline{Ω}_{imt} \) be the part net of payoff shocks. \(arrest_{it} = 1 \) implies \(d_{it} = 1 \). When \(arrest_{it} = 0 \), one may not have committed a crime or may have done so but failed to be arrested. Therefore,

\[\text{Notice that two outcomes in the model do not enter the likelihood directly: 1) crime, because it is observed only via arrest; 2) jail sentences, which, conditional on arrests, do not depend on } Θ \text{ and hence will not contribute to the likelihood.} \]

\[\text{The following state variables are directly observed in the data: } X_i, J_{it-1}, G_{it-1}, e_{it-1}, k_{it-1}, g_{it}. \text{ Given the observed history of GPA’s, one’s beliefs } EA_{it-1}, VA_{it-1} \text{ only depends on model parameters and one’s type.} \]

\[\text{The likelihood of observing a missing value of an outcome is 1 in non-applicable cases. For example, } O_{it} = \cdot \text{ if } i \text{ is in jail from previous sentence; } GPA_{it} = \cdot \text{ if } e_{it} = 0. \]
\[L_{imt}(\Theta|\Theta_X) = \Pr(O_{it}; \Theta|\Theta_X|\bar{\Omega}_{imt}) \]

\[
= \begin{cases}
\rho_i \Pr(e_{it}, d_{it} = 1; \Theta|\Theta_X) L_{imt}^G(d_{it} = 1; \Theta_G, \Theta_a) & \text{if } arrest_{it} = 1 \\
(1 - \rho_i) \Pr(e_{it}, d_{it} = 1; \Theta|\Theta_X) L_{imt}^G(d_{it} = 1; \Theta_G, \Theta_a) \\
+ \Pr(e_{it}, d_{it} = 0; \Theta|\Theta_X) L_{imt}^G(d_{it} = 0; \Theta_G, \Theta_a) & \text{if } arrest_{it} = 0 \end{cases} \tag{18}
\]

The two major ingredients in \(L_{imt}(\Theta|\Theta_X) \) are the choice probability \(\Pr(e_{it}, d_{it}|\cdot) \) and the academic outcome probability \(L_{imt}^G(d_{it};) \).

\[
\Pr(e_{it}, d_{it}; \Theta|\Theta_X|\cdot) = \frac{\exp \left(\overline{V}_{it}^{ed} \left(\bar{\Omega}_{imt} \right) \right)}{\sum_{e^d \in \{0,1\} \times \{0,1\}} \exp \left(\overline{V}_{it}^{ed} \left(\bar{\Omega}_{imt} \right) \right)}, \tag{19}
\]

where \(\overline{V}_{it}^{ed} \left(\bar{\Omega}_{imt} \right) \equiv V_{it}^{ed} \left(\bar{\Omega}_{imt} \right) - v^{ed}_{it} \) is the part of the value function net of the payoff shock. \(L_{imt}^G(d_{it}; \Theta_G, \Theta_a) = \)

\[
\phi \left(\frac{GPA_{it} - \overline{GPA}_{it} - \bar{a}_X}{\sqrt{\sigma_a^2 + \sigma_{gpa}^2}} \right) \times \left[g_{it} \Pr(g_{it} = 1|GPA_{it}, W_{kit}, \chi_i = m) + (1 - g_{it}) (1 - \Pr(g_{it} = 1|\cdot)) \right]. \tag{20}
\]

The first part specifies the likelihood of observing \(GPA_{it} \), with \(\overline{GPA}_{it} \) defined in (1). The second part is the probability of observing the grade progress result \((g_{it}) \) conditional on \(GPA_{it} \).

\(L_{im0}(\Theta_G; \Theta_a, \sigma_{\xi}) \) consists of the likelihood of one’s pre-\(G_0 \) performance:

\[
L_{im0}(\Theta_G; \sigma_{\xi}) = \prod_{t=-t_0}^0 L_{imt}^G(d_{it}; \Theta_G) \times \phi \left(\frac{s_i - \bar{a}_X}{\sqrt{\sigma_a^2 + \sigma_{\xi}^2}} \right). \tag{21}
\]

We assume that young children do not commit crimes before they enter our model, so \(L_{imt}^G(d_{it}; \Theta_G) \) is as specified in (20) with \(d_{it} = 0 \). The second part is the additional information that is available to the researcher but not to the student \((s_i) \).
Table A1. Parameter Estimates: Primary School k to Secondary School k' Transfer Probability

<table>
<thead>
<tr>
<th>School SIMCE Scoresa: S_k vs $S_{k'}$</th>
<th>Student SESi vs HS SES${k'}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(S_{k'} - S^_S)(S_k - S^P)+$</td>
<td>$I (SES_i = 1, SES_{k'} = 1)$</td>
</tr>
<tr>
<td>$(S_{k'} - S^_S)(S_k - S^P)-$</td>
<td>$I (SES_i = 1, SES_{k'} = 3)$</td>
</tr>
<tr>
<td>I (Type 2) $(S_{k'} - S^_S)(S_k - S^P)-$</td>
<td>$I (SES_i = 3, SES_{k'} = 1)$</td>
</tr>
</tbody>
</table>

a: $S^*_P(S^*_S)$: median SIMCE in primary (high) schools.

<table>
<thead>
<tr>
<th>Student GPA$_i$ vs HS SIMCEb</th>
<th>Primary School SESk vs HS SES${k'}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(S_{k'} - S^_S)(GPA_i - M^G)+$</td>
<td>$I (SES_k = 1, SES_{k'} = 1)$</td>
</tr>
<tr>
<td>$(S_{k'} - S^_S)(GPA_i - M^G)-$</td>
<td>$I (SES_k = 1, SES_{k'} = 3)$</td>
</tr>
</tbody>
</table>

b: M^*_G: median Grade 8 GPA across students.

Table A2. Other Parameter Estimates

<table>
<thead>
<tr>
<th>A. Initial SIMCE Score</th>
<th>C. Terminal Value Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant (δ_0)</td>
<td>Grade level G_{it}</td>
</tr>
<tr>
<td></td>
<td>0.07 (0.01)</td>
</tr>
<tr>
<td>Ability (δ_1)</td>
<td>G_{it} x school ave SIMCE</td>
</tr>
<tr>
<td></td>
<td>0.95 (0.01)</td>
</tr>
<tr>
<td>σ_{ξ}</td>
<td>$I (G_{it} = 12)$</td>
</tr>
<tr>
<td></td>
<td>0.76 (0.006)</td>
</tr>
<tr>
<td>B. Grade-specific GPA constant</td>
<td>$I (G_{it} = 12, parentEdu mid)$</td>
</tr>
<tr>
<td>γ_{05}</td>
<td>0.56 (0.005)</td>
</tr>
<tr>
<td>γ_{06}</td>
<td>0.26 (0.007)</td>
</tr>
<tr>
<td>γ_{07}</td>
<td>0.71 (0.23)</td>
</tr>
<tr>
<td>γ_{08}</td>
<td>0.02 (0.008)</td>
</tr>
<tr>
<td>γ_{09}</td>
<td>0.19 (0.29)</td>
</tr>
<tr>
<td>γ_{10}</td>
<td>0.05 (0.007)</td>
</tr>
<tr>
<td>γ_{11}</td>
<td>0.050004 (0.007)</td>
</tr>
<tr>
<td>γ_{12}</td>
<td>-1.90 (0.36)</td>
</tr>
</tbody>
</table>