
1 

 

Liquidity and Exchange Rates: An Empirical Investigation 
Charles Engel and Steve Pak Yeung Wu 

February 25, 2022 

 

Supplementary Appendix B 

 
1. The Model................................................................................................................................ 1 

2. Derivation of solution for tq
 ................................................................................................... 4 

3. Derivation of solution for 1t ts s −−  ........................................................................................... 7 

4. Structural interpretation ......................................................................................................... 13 

5. The serial correlation of the residual ..................................................................................... 14 

6. Less Restrictive Formulations and “Internally Consistent” Regressions .............................. 17 

7. Accounting for default risk in exchange rate determination ................................................. 26 

 

 

1. The Model 
 

We begin with a derivation of the home relative to foreign Phillips curve. We modify the 

standard Calvo-pricing equation in two ways. First, we assume that nominal prices must be set one 

period in advance. We make this assumption because, in practice, the response of nominal prices 

to current period shocks is so small relative to the response of nominal exchange rates, that a model 

with predetermined prices better represents reality in an open-economy framework. A fraction of 

firms,  , are allowed to change their prices optimally each period, but the price they set at time 

1t −  is for the time t period. Let ,r H

tp be the price for firms that reset their prices (which is identical 

for all such firms, because as in the standard New Keynesian framework, they face identical costs 

and demand functions.)  

The remaining firms do not change their price optimally, but we assume that these firms 

build in an automatic price adjustment. We do not specify the trend term but impose a particular 

consistency restriction below. We let H

t  be the trend adjustment for home prices in the home 

country (set at time 1t − .)  The firms that adjust their price optimally consider any current 
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disequilibrium in prices in planning their price increase, while the other firms simply adjust the 

price at the trend rate. 

 We have: 

  

(1) ( ) ( ),

1 1 1H H r H H H

t t t t tp p p p  − −− = − + − .1 

 

The foreign currency price of home goods is set in a similar way: 

 

  ( ) ( )* * * , * *

1 1 1H H r H H H

t t t t tp p p p  − −− = − + −  

 

We now make two simplifying assumptions about the price setting process. The first is that firms, 

when they reset their price, set prices in such a way that there is no expected pricing to market: 

* , ,

1

r H r H

t t t tp p E s−= − . We can justify that assumption on the grounds that it is too costly for firms 

to calculate reset prices for each market they serve. As in the producer currency pricing model, we 

assume that firms calculate a single reset price, but then translate that price into the currency of 

each market they service. The local-currency price then remains unchanged until the next 

opportunity for price resetting. The second assumption is that, while we are agnostic about the 

process by which firms set the trend adjustment of their prices, we impose the following 

consistency requirement: *

1 1

H H

t t t t tE s s  − −= + − . That is, firms form a forecast of the exchange 

rate change, and then align their trend adjustments so that they are expected to be consistent, when 

expressed in a common currency, in the home and foreign market. These assumptions imply: 

 

(2) ( ) ( ) ( )( )* * , *

1 1 1 1 11H H r H H H

t t t t t t t t t tp p p E s p E s s  − − − − −− = − − + − − − . 

 

Subtracting (2) from (1), we find: 

 

(3) ( ) ( )* * *

1 1 1 1 1 1 1

H H H H H H

t t t t t t t t t tE s s p p p p p s p− − − − − − −− + − − − = − − . 

 
1 See Engel (2019) for a study of the relationship of the price setting behavior in this model compared to the more 

standard Calvo pricing framework. 



3 

 

 

The expected change in the pricing to market arises from the adjustments of the fraction   of firms 

that reset their prices each period. 

 An analogous equation can be derived for the prices set by the foreign firm: *F

tp  in foreign 

currency for sale in the foreign country, and F

tp  in home currency for sale in the home country: 

 

(4) ( ) ( )* * *

1 1 1 1 1 1 1

F F F F F F

t t t t t t t t t tE s s p p p p p s p− − − − − − −− + − − − = − − . 

  

 We assume that consumption preferences over the two goods are identical so that the real 

exchange rate is driven entirely by the deviations from the law of one price that arise from pricing 

to market. The log of the consumer price basket in each country is a weighted average of the logs 

of the prices of foreign-produced and home-produced goods. Taking the weighted average of 

equations (3) and (4), we arrive at: 

 

(5) *

1 1 1t t t t t tq E s s   − − −− = + − . 

 

The equations of the model are then given by: 

 

(6) *

1

m m

t t t t t ti E s s i r++ − − = , 

 

 

(7) ( ) ( ) ( ) ( )* * * * *m m m m

t t t t t t t t t t ti i i ii i i i  = − = − − − = − − − . 

 

 

(8)  *

1t t t t t t ti E s s i r++ − − = + . 

 

 

(9) ( )*

t t t ti i v = − + ,   0  . 
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(10) *

1 1 1t t t t t tq E s s   − − −− = + − . 

 

 

(11) ( )* * *

t t t t t t ti i u u   − = − − + − . 

 

 

(12) ( )* *

1 1t t t t tu u u u − −− = − + ,    0 1    

 

 

(13) 1t t tv v −= + , 

 

 

(14) 1t t tr r −= + ,     0 1  .  

 

2. Derivation of solution for tq
 

 As a first step, using (11) and (9), we have 

 

 ( ) ( )( )* * * *

t t t t t t t t ti i i i v u u    − = − − − + + − , so 

 

(15) ( ) ( )* * *1

1 1 1
t t t t t t ti i v u u

 
 

  
− = − − + −

+ + +
 

 

We can solve the model by the method of undetermined coefficients. We guess a solution 

of the form: 

 

(16) ( ) ( )* *

t t t t t t tq a b u u c frv = − + − + + , 
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where a, b, c and f are undetermined coefficients to be solved for. 

 We have: 

(17) 
( ) ( )

( ) ( )

* *

1 1 1 1 1 1 1

* *

1 1

t t t t t t t t t t t t

t t t t t t t

E q aE bE u u cE fE r

aE b u u c v f

v

r

 

    

+ + + + + + +

+ +

= − + − + +

= − + − + +
 

 Now, 

(18) 

( ) ( )

( )( )
( )

( ) ( )

*

1 1 1 1 1

* *

* *

1

1 1 1

1 1 1

t t t t t t t t t t t t t

t t t t t t t t t t

t t t t t t t

E E s s E q q E s s q

i i r q i i v r q

q u u v r

  

   

   
  

  

+ + + + +− = − − − = − +

= − + + + = + − + + +

+ + −
= + − + − + +

+ + +

 

 

where we have used, from (10) that 1t t t tE q q q+ − = − . 

 

Substituting from (18) into (17), we get: 

(19)

( )
( ) ( ) ( )

( )
( )

( ) ( )
( )

( ) ( )
 

( ) ( )

( )

* * *

1

* *

* *

1 1 1

1 1 1

1 1 1 1 1

1 1 1

1

1

t t t t t t t t t t t t t

t t t t t t t

t t t t t t

t

E q a q u u v r b u u c v f r

a a b a c
a q u u v a f r

a a b u u c fr

a

v

   
     

  

       
   

  

  

 




+

+ + −
= + − + − + + + − + + 

+ + + 

+ + + + − + +   
= + − + − + + +   

+ + +   

 = − + − + + +
 

+

+
( )

( ) ( )
( )

( ) ( )
 

( ) ( )
( )

( ) ( )( )
( )

( ) ( )( )
 

* *

* *

1 1 1 1

1 1

1 1 1 1

1 1

1 1

1

t t t t t

t t t t

t t

a b a c
u u v a f r

a a a b a
u u

a c a
v a f fa r

     
 

 

       
 

 

   
 



+ + + − + +   
− + − + + +   

+ +   

+ + + + + + +      = − + −
+ +

− + + +  + + + +
+

 

 

But, also, using from (10) that ( )1 1t t tE q q+ = − , we have from (16): 

(20) ( )( ) ( )( ) ( ) ( )* *

1 1 1 1 1t t t t t t t tE q a b u u c f rv     + = − − + − − + − + − . 
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 Now, equating the right-hand sides of (19) and (20), we get: 

 
( ) ( )

( )
1 1

1
1

a a
a

   




+ + +   = −
+

 

from which we derive: 

 

 
( ) ( )( )

( )

1 1 1

1
a

   

 

− + − − +  =
+

. 

 

 Then, from (19) and (20), we get: 

 

 ( ) ( )( ) ( )( )1 1 1 1a b b a     + = − + − + + .  

 

Substituting in the solution for a, we get: 

 

( ) ( ) ( )( )

( ) ( ) ( )( )

1 1 1 1

1 1 1
b

    

     

− + + − − +  =
+ + − +

. 

 

 From (19) and (20), we also get: 

 
( ) ( )( )

( )
1 1

1
1

a c a
c

   




− + + +   = −
+

, from which we derive 

 

 
( ) ( ) ( )( )

( ) ( ) ( )

1 1 1 1

1 1 1
c

    

     

− − + − − +  =
+ + − +  

 

 

 And, finally, from (19) and (20), we get: 

 ( )1a f fa f  + + = − , which gives us: 

 

 
( ) ( )( )

( ) ( )

1 1 1

1 1
f

   

    

− + − − +  =
+ − +  
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We can therefore write solution for the real exchange rate as: 

 

(21)

 

( ) ( )( )

( )
( )

( ) ( ) ( )( )

( ) ( ) ( )( )
( )

( ) ( ) ( )( )

( ) ( ) ( )

( ) ( )( )

( ) ( )

* *
1 1 1 11 1 1

1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1

t t t t t

t t

q u u

v r

       
 

       

        

          

 + + − − +  + − − +  = − − − −     + + + − +   

   − + − − +  + − − + − −   
   + + − + + − +         

. 

 

3. Derivation of solution for 1t ts s −−  

 

 Use (15) to write ( )( ) ( )* * *1t t t t t t tu u i i v    − = + − − − + , and substitute this into (21)

: 

 

 

( ) ( )( )

( )
( )

( ) ( ) ( )( )

( ) ( ) ( )( )
( )( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )

( ) ( )( )

( ) ( )

*

* *

1 1 1

1

1 1 1 1
1

1 1 1

1 1 1 1 1 1 1

1 1 1 1 1

t t t

t t t t t

t t

q

i i v

rv

   
 

 

    
    

     

        

          

 + − − +
= − −  + 

 + + − − +  − + − − − + 
 + + − + 

   − + − − +  + − − + − −   
   + + − + + − +         

 

 

The coefficients on *

t t −  are  

( ) ( )( )

( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )( )

( ) ( )( )

1 1 1 11 1 1

1 1 1 1

1 1 1

1 1

       


       

    

    

 + + − − +  + − − +  − +      + + + − +   

+ − − +  =
+ − +

. 
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The coefficients on tv  are 

 

 

( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 1 1 1 1 1 1 1

1 1 11 1 1

1 1 1 1 1 1

1 1 1 1

         


          

         

        

   − + − − + + + − − +      − −   
   + + − ++ + − +     

 − + − − + + − − + +    =
+ − + + − +

. 

 

We have: 

 

( ) ( )( )

( ) ( )( )
( )

( ) ( ) ( )( )

( ) ( )( )
( )

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( )

( ) ( )

* *
1 1 1 1 1 1 1

1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1 1

1 1

t t t t t

t

t

q i

v

i

r

         
 

         

         

        

   

    

 + − − + + + − − +      = − − − 
 + − + + − + 

  + − − + + − − + +     −
 + − + + − +
 

 + − − +
− 
 + − +   

. 

 

 Now we can use the fact that *

1 1t t t t t ts s q q  − −− = − + −   and the equation above to write: 

 

(22)

( ) ( ) ( )

( ) ( )( )
( )

( ) ( ) ( )( )

( ) ( )( )
( )

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( )

( ) ( )

* *

1

1

1 1 1 11 1

1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1 1

1 1

t t t t t t

t

t t

s s

v

i i

r q

         
 

         

         

        

   

    

−

−

 + + − − + + + − +  − = − − − 
 + − + + − + 

  + − − + + − − + +     −
 + − + + − +
 

 + − − +
− − 
 + − +   

. 

 

But  
( ) ( )*

1 1 1 1 1 1

*

1 1 1 1 1

t t t t t t t t t t t t

t t t t t

s s q q E s s E q q

i i r q

 

 

− − − − − −

− − − − −

− = − − − = − − −

= − + + +
. 
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Also, we have ( )*

t t t tv i i = − − . Substituting these into (22), we get 

(23)

( ) ( ) ( )

( ) ( )( )
( )

( ) ( ) ( )( )

( ) ( )( )
( )

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( )( )

( ) ( )( )

( )

*

1 1 1 1 1 1

*

*

1 1

1 1

1 1 1 1

1 1

1 1 1 1 1 1

1 1 1 1

1 1 1

1 1

t t t t t t t

t t

t t t

s s i i r q

i i

i i

     
 

    

    

    

         
 

        

   

   

− − − − − −

+ + − +
− = − + + +

+ − +

 + + − − +  − − 
 + − + 

  + − − + + − − + +     − − −
 + − + + − +
 

+ − − +
−

+ − +( )
1t tr q


−

 
− 

    

. 

 

 Rearrange terms. The coefficient on 1tq −  is given by: 

 
( ) ( ) ( )

( ) ( )

( )( )

( ) ( )

1 1 1 1
1

1 1 1 1

         

       

 + + − + + − −
− = −  + − + + − + 

 

 

 The coefficient on *

t ti i−  is: 

 

( ) ( ) ( )( )

( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( )

1 1 1 1 1 11 1 1 1

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1

             


             

        

        

    + − − + + − − + + + + − − +       − + 
   + − + + − + + − +   

 + − − + + − + −      = − 
 + − + + − + 

 

 

 So we can write: 
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( )( )

( ) ( )

( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( )
( )

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( ) ( )

( ) ( )( )

1 1

*

1 1

1 1

1 1 1 1 1

1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1

1 1

t t t

t t

t

s s q

i i

   

   

        

        

         


        

     

    

− −

 + − −
− = −  + − + 

 + − − + + − + −      − − 
 + − + + − + 

  + − − + + − − + +     −
 + − + + − +
 

+ + − +
+

+ − +
( )

( ) ( )( )

( ) ( )
*

1 1 1 1

1 1 1

1 1
t t t t ti i r r

   


    
− − − −

 + − − +
− + + −  

 + − +   

 

 

 Now, we get the equation in the form that is used for estimating, which involves 

( )* *

1 1t t t ti i i i− −− − −  and 1t t  −− . Also, use the fact that 1t t tr r −= +  from equation (14). 

 

 

( )( )

( ) ( )

( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( )
( )( )

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( )

( ) ( )

1 1

* *

1 1

1

1 1

1 1

1 1 1 1 1

1 1 1 1

1 1 1 1 1 1

1 1 1 1

1

t t t

t t t t

t t

s s q

i i i i

   

   

        

        

         
 

        

   

− −

− −

−

 + − −
− = −  + − + 

 + − − + + − + −      − − − − 
 + − + + − + 

  + − − + + − − + +     − − +
 + − + + − +
 

+ + − ( )

( ) ( )( )

( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( )

( )

( ) ( ) ( )

( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

*

1 1

1

1 1

1 1 1 1 1

1 1 1 1

1 1

1 1

1 1 1 1 1 1

1 1 1 1

t ti i

 

    

        

        

     

    

         

        

− −

+ 
− 

+ − + 
− 

 + − − + + − + −        
  + − + + − +  

+ + − +
−

+ − +
+ 

  + − − + + − − + +      
 + − + + − +
 

( ) ( )( )

( ) ( )

( ) ( ) ( )

( ) ( )( )
( ) ( )( )

( ) ( )

1

1

1 1 11 1 1 1 1

1 11 1 1 1

t

t tr



             


             

−

−









   + − − + + − − + + + − +  − + −   
  + − ++ − + + − +          
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We can rewrite the term on *

1 1t ti i− −−  as: 

 

( ) ( ) ( )

( ) ( )( )
( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 1 1 1 11 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1

             

             

                

        

 + − − + + − + −   + + − +    −  
 + − + + − + + − + 

+ − + − + + − + + − − + − − +          =
+ − + + − +

 

 

The term on 1t −  can be written as: 

 

( ) ( ) ( )

( ) ( )( )

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 1 1 1 1 11 1

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1

              

             

               

        

  + − − + + − − + + + + − +     − =
 + − + + − + + − +
 

+ − + − + + − + − − − + − − +          

+ − + + − +

 

 

 To simplify the term on 1tr − , we can write: 

( ) ( ) ( )

( ) ( )( )

( ) ( )( ) 

( ) ( ) 

( ) ( )  ( ) ( ) ( ) ( )( )  ( )( ) ( )( )( ) 

( ) ( )  ( ) ( ) 

1 1 11 1

1 1 1 1

1 1 1 1 1 1 1 ) 1 1

1 1 1 1

         

         

                    

        

+ − − ++ + − +
− =

+ − + + − +

+ − + + − + − + − − + − + + − − +

+ − + + − +

 

 

  

 With these simplifications, we can arrive at the equation in the text: 

(24) ( ) ( )( ) ( )1

* * *

1 1 1 1 1 11 2 3 4 1 5 ,t tt t t t t jttt t tts s q i i i i i i z      − − −−− −− −− = + − + − − − + + − +  

 

where 

  

 

(25) 
( ) ( )

( ) ( )
1

1 1

1 1


   

  

 + − −
= −  + − + 

 ,  
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(26) 
( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )2

1 1 1 1 1 1

1 1 1 1

         


        

  + − − + + − − + +     = −
 + − + + − +
 

 ,  

 

(27) 
( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( )3

1 1 1 1 1

1 1 1 1

        


        

 + − − + + − + −      = − 
 + − + + − + 

  

 

(28) 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )4

1 1 1 1 1 1 1 1 1

1 1 1 1

               


        

+ − + − + + − + − − − + − − +          =
+ − + + − +

 

 (29) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )5

1 1 1 1 1 1 1 1 1

1 1 1 1

                


        

+ − + − + + − + + − − + − − +          =
+ − + + − +

 

and, 

 

( ) ( )( )

( ) ( )
1 1

1 1 1

1 1
t t tz z r

   


    
−

 + − − +
= − + 

 + − +   

, where 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( )( )
( ) ( ) ( ) ( )

1

1 1 1 1 1 1 1 ) 1 1

1 1 1 1
z

                    

        

   + − + + − + − + − − + − + + − − +      =
+ − + + − +      

 

 

 Recall the restrictions we have assumed: 0 1  , 0 1  , 0 1  , 0 1  , 1  , 

0  , 1  −  and 1  − .. 

 Under these conditions, first one can see that 1 0  . The denominator of 1  must be 

positive since 1  . The numerator is positive since 1  − . 

 We must have 2 0  . From 1  , we can see that the terms ( ) ( )( )1 1 1   + − − + , 

( ) ( )1 1   + − + , and ( ) ( )1 1   + − +  are all positive. Also from 1  , 

( ) ( ) ( )( ) ( )( ) ( )1 1 1 1 0            + − − + + = − − + + −  . 

 It is also immediate that 3 0  .  

The coefficients on *

1 1t ti i− −−  and 1t −  are, under these assumptions, ambiguous in sign. 

Note also that the coefficients on ( )* *

1 1t t t ti i i i− −− − −  and 1t t  −−  would be much larger than the 

coefficients on *

1 1t ti i− −− , and 1t −  when   is small. In our baseline regression, as we have 
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emphasized, the coefficients on 1tq − , ( )* *

1 1t t t ti i i i− −− − −  and 1t t  −−  are all negative, and almost 

uniformly highly statistically significant. We note here that also almost all of the coefficients on 

*

1 1t ti i− −− , and 1t −  are estimated to be negative, and they are smaller in magnitude then the 

coefficients on ( )* *

1 1t t t ti i i i− −− − −  and 1t t  −− . 

4. Structural interpretation 

We describe in more detail the structural moment matching exercise in section 3.2. The 

purpose of the exercise is to illustrate that the coefficients estimated from the empirical regressions 

are reasonable numbers that can be reproduced from our model with fairly plausible structural 

parameter values. For example, the model would predict coefficient of 𝛽2 and 𝛽3 are numerically 

similar. 

There are six structural parameters in the model,  ,  ,  , ,   and  . We can make 

use of the five coefficients estimated from the empirical regression (𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5) and price 

adjustment equation to discipline the parameters. Throughout the exercise, we use the average of 

the G10 coefficient estimate to infer the parameter values. 

According to the pricing adjustment equation, 𝜃 governs the persistence of real exchange rate with 

a persistent parameter of  1 − 𝜃. We first estimate the persistence of real exchange rate using a 

panel regression of 𝑞𝑖,𝑡 = 𝜌𝑞𝑖,𝑡 + 𝑢𝑖,𝑡 and the take the average of G10 currencies. The average of 

estimated 𝜌 is 0.965. We conduct a simple correction to account for the small sample issue in 

estimating a persistent process. The Rudebusch (1993) bias adjustment is 𝜌𝑎𝑑𝑗 =
𝑇×𝜌+1

𝑇−3
 and the 

biased adjusted 𝜌 is 0.983. Therefore, the unbiased estimate of 𝜃 is 0.017.  

We use the five coefficients from the empirical regression to infer  ,  , ,   and  . 

The G10 average of the coefficient estimates are -0.02315, -4.5835, -5.07993, 0.37851 and -

0.19015. We look for the parameter value of  ,  , ,   and   that minimizes the following 

objective function of the weighted average of the absolute value of % deviation from the empirical 

estimate. 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑊1 |
−0.02315−RHS eq(25)

−0.02315
| + 𝑊2 |

 −4.5835×12−RHS eq(26)

 −4.5835×12
| +

𝑊3 |
−5.07993×12−RHS eq(27)

−5.07993×12
| + 𝑊4 |

0.37851×12−RHS eq(28)

0.37851×12
| + 𝑊5|

−0.19015×12−RHS eq(29)

−0.19015×12
|  
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Each absolute value deviation is weighted by the inverse of the standard deviation of the 

coefficient estimate to the inverse of standard deviation all five coefficient estimates. i.e. 𝑊𝑖 =

[𝑆𝐷(𝛽𝑖̂)]
−1

/ ∑ [𝑆𝐷(𝛽𝑖̂)]
−15

𝑖=1 . Note that coefficient estimate of 𝛽2 to 𝛽5 is scaled by 12 to convert 

the annualized rates to monthly rates. 

The minimized value of the objective function is 0.0135. The implied parameters are { ,

 , ,  , }={4.69, 0.241, 0.211, 0.276, 0.964}. The model implied coefficient estimates of the 

regression are -0.02315, -4.3269, -4.8956, 0.37851 and -0.19015. As discussed in the main text, 

these implied parameters are within the plausible range that is commonly used or estimated in the 

literature. These reasonable parameter values generate model implied regression coefficient 

estimates that are all very close to the empirical estimates. 

5. The serial correlation of the residual 
  

 From equation (24), the regression residual implied by our model is given by 

0 1 1t t tz z z r −= + ,  

where, dividing numerator and denominator by 1 + , and letting 
1

1
x





+
=

+
, we have 

 

( )

 0

1x
z

x

 

  

 − −
= −  − 

 

( ) ( )( ) ( ) ( )
1

1 1x x x
z

x x

             

    

          

      

− + − − − − + − − −
=

− −
 

 

 The serial correlation of this error term is given by 
( )

( )
0 1 1 0 1 1

0 1

cov ,

var

t t t t

t t

z z r z z r

z br

 



− +

−

+ +

+
. 

 

 For the numerator of this expression, we have: 
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( ) ( )

( )( )

( ) ( ) ( )

( )
( )

0 1 1 0 1 1 0 1 1 1

0 1 1 1 1

2

0 1 1 1

2

1

0 1 2

cov , cov ,

cov ,

var var

var
1

t t t t t t t

t t t t

t t

t

z z r z z r z z r z r

z z r z r
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var 1
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 

− +

−
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=

+ − +
. 

 

 We can calibrate this expression for the serial correlation of the error term as follows: Engel 

(2019) measures the monthly serial correlation of the real exchange rate for the six non-U.S. 

countries in the G7 relative to the U.S., equal on average to 0.98. In our model, the serial correlation 

of the real exchange rate is given by 1 − , so we set 0.98 = . Engel (2019) also estimates simple 

Taylor rules for these countries and finds the monthly serial correlation of the error term to be 

0.96, so we set 0.96 = . The serial correlation of the ex ante risk premium is more problematic 

to calibrate because we need a measure of the serial correlation of the expected excess return on 

the market (LIBOR) investments. A natural measure is to equilibrate this serial correlation to the 

serial correlation of the nominal interest rate differential, which is also equal to 0.96 for the same 

set of countries, because the literature has generally found that the excess return is correlated with 

the interest rate differential and little else. 

 Note that the serial correlation of the residual does not depend on  , and it only depends 

on   as it influences x . Our stability condition is 1x  . With that restriction in place, the 

serial correlation of the residual is practically independent of the value of x  as this table shows. 
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Appendix Table 

x         

Serial Correlation 

of Residual 

1 0.02 0.96 0.96  -0.020 

2 0.02 0.96 0.96  -0.015 

4 0.02 0.96 0.96  -0.015 

100 0.02 0.96 0.96  -0.015 

      

2 0.02 0.90 0.96  -0.044 

2 0.02 0.95 0.96  -0.024 

2 0.02 0.98 0.96  0.027 

4 0.02 0.90 0.96  -0.050 

4 0.02 0.95 0.96  -0.022 

4 0.02 0.98 0.96  0.007 

      

2 0.01 0.96 0.96  -0.009 

2 0.03 0.96 0.96  -0.019 

2 0.04 0.96 0.96  -0.020 

2 0.05 0.96 0.96  -0.019 

2 0.06 0.96 0.96  -0.016 
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6.  Less Restrictive Formulations and “Internally Consistent” Regressions 

 

We estimate a model for the exchange rate of a given currency, such as the Australian dollar 

or the Swiss franc. Our results in Tables 1A – 1G present strong support for this model for each of 

the G10 currencies. But, as in all the empirical exchange rate literature of which we are aware, our 

estimates allow the parameters to be different for different base currencies. If our estimating 

equation, (24), were the “true” model of exchange rates, the coefficients should be invariant across 

exchange rates. In fact, if the parameters were invariant, there would be no need to estimate a 

separate panel for each currency. We could, for example, take the panel estimates with the Swiss 

franc as the base currency, and from the equations for the Swiss franc/Australian dollar and Swiss 

franc/Norwegian krone, infer the model for the Australian dollar/Norwegian krone.  

Even if equation (24) were the true model, the parameter estimates for the Australian 

dollar/Norwegian krone derived from the panel with the Swiss franc as the base currency almost 

certainly would be different than the model for that exchange rate when the Australian dollar is 

the base currency in finite samples because of estimation error. But even if the parameter estimates 

were the same, it is still interesting to ask whether the model can explain non-dollar exchange 

rates. That is, even if the model has explanatory power for one currency, it may not for others. 

 We can consider each of the panel estimates we present as restricted versions of a general 

unrestricted model in which each nominal exchange rate change depends on all lagged nine real 

exchange rates, all nine relative convenience yields (and lags), and all ten interest rates (and lags). 

That unrestricted panel requires estimation of 432 parameters, but such an unrestricted model is 

the only way to have an equation for each exchange rate that is the same irrespective of which 

currency is used as the base currency. Each of our panels, which estimate 14 parameters (nine 

intercepts and five slope coefficients) is a restricted version of the general panel. We show here 

that we can strongly reject our restricted panels in favor of the general panel. 

 However, we have followed the practice of all the empirical exchange rate literature, which 

might be described as regularization – the process of selecting the level of complexity of the model 

to avoid overfitting and to advance the interpretation of the economic forces at work. The model 

of a bilateral exchange rate that depends on 47 variables (and an intercept) has obviously been 

overfit, and theory does not motivate such a model. Yet, the “true” model is still not the unrestricted 

model – if it were, the fit of the unrestricted model would be perfect. 
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The key lesson from our estimates is that the relative convenience yield matters for 

exchange rates, and this set of results provides evidence that government bond liquidity at the 

individual country level plays an important role in exchange rate determination. The relative 

liquidity yield matters for non-U.S. dollar exchange rates, as well as for the dollar.    

Consider our panel regression for currency i. A typical equation for the exchange rate 

relative to currency j, 1,2, ,10j = , j i , is 

 

(1)  
( ) ( )( )

( )

, 1 2 , 3

4 , 1

1

5

, , 1 ,0 1 , , , , 1 , 1

, 1 , 1 ,

ij t ij t ij i ij t i t

t

j t i t j t

i t jt

ij t i ij t i

i ij i jt i

s s q i i i i

i i z

   











−

−

− − − −

− −

− = + + − + − − −

+ + − +
 

 

In some specifications we replace ,ij t  with , , ,i t j tij t  = − . 

 

 This formulation places three different types of restrictions on a more general panel 

specification: 

1. There are cross-equation restrictions. That is, more generally, the coefficients in the 

panel could be different for each bilateral exchange rate of currency i. We could have, 

for example, a different coefficient on each real exchange rate, so we have ,1ij , 

1,2, ,10j = , j i , but we have imposed ,1 ,1ij ik =  for all 1,2, ,10j = , j i k   

2. There are exclusion restrictions. The explanatory variables for , , 1ij t ij ts s −−  only include 

country i and j variables. 

3. The explanatory variables in the baseline regression are all expressed in terms of 

country i relative to country j. In some cases, that is the only way it is possible to 

express the variables (such as with ,ij tq , or when we use the t  measure for t ). In 

other cases, we can separate out country i and country j variables, and not impose that 

the coefficient on one be equal and of opposite sign to the coefficient on the other 

(such as with , , , ,
ˆ
ij t it j t j t i tIRS IRS i i = − + − , which can be separated into , ,i t i tIRS i−  

and , ,j t j tIRS i− , or ( ), , , 1 , 1i t j t i t j ti i i i− −− − −  can be separated into , , 1i t i ti i −−  and 

, , 1j t j ti i −− .) 

 

 The object of the note is twofold. First, it is to display the form of the more general panel 

regressions, and to test the restricted panels against the more general panels. Second, is to find 

whether the model for , , 1ij t ij ts s −−  is “internally consistent” – that is the model for , , 1ij t ij ts s −−  is 

consistent with the model we would get by taking the equation of , , 1ik t ik ts s −−  and subtracting off 

the equation for , , 1kj t kj ts s −− , for i j k  . In checking for internal consistency, we will ask if the 

model is “internally consistent if the restrictions are true”. The most unrestricted model is 

internally consistent, as we will show. 
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 All models we consider have fixed effects – that is, exchange-rate specific intercepts. 

 

 

Relative Variables only 

 

 First take the case where all variables are expressed in terms of country i relative to 

country j. In this section, assume that this is not a restriction – that the data do not allow for 

country-specific terms, only relative terms, so that the “unrestricted” Model C can be understood 

to be unrestricted when the data are only in relative form. It is clearer to consider this case first, 

before allowing country-specific variables. 

 

Model A 

 

 The most restricted case is the baseline model in equation (1). Our findings for this model 

are reported in Table 2A for the t  measure, and in Table 2F for the t̂  measure. If the 

restrictions are true, the model is internally consistent. To see this, we can write the model for 

, , 1ik t ik ts s −−  

 

(2) 
( ) ( )( )

( )

, 1 2 , 3

4 , 1

1

5

, , 1 ,0 1 , , , , 1 , 1

, 1 , 1 ,

ik t ik t ik i ik t i t

t

k t i t k t

i t kt

ik t i ik t i

i ik i kt i

s s q i i i i

i i z

   











−

−

− − − −

− −

− = + + − + − − −

+ + − +
 

 

 Then, if both (1) and (2) are true, subtracting the former from the latter, we get a model 

for , , 1jk t jk ts s −− , where we use the fact that , , 1 , 1jk t ik t ij tq q q− −= − , , , ,jk t ik t ij t  = − , and 

( ), , , , , ,j t k t i t k t i t j ti i i i i i− = − − − : 

 

(3) 
( ) ( )( )

( )

, 1 2 , 3

4 , 1

1

5

, , 1 ,0 1 , , , , 1 , 1

, 1 , 1 ,

jk t jk t jk i jk t j t

t

k t j t k t

j t kt

jk t i jk t i

i jk i kt j

s s q i i i i

i i z

   











−

−

− − − −

− −

− = + + − + − − −

+ + − +
 

 

where ,0 ,0 ,0jk ik ij  = − , and , , ,jk t ik t ij tz z z= − . Clearly this equation is of the same form as (1) 

and (2). The exchange rate for jk depends only on relative jk variables.  

 

In fact, we can see that the slope coefficients, 1i , 2i , 3i , 4i , and 5i , are the same as 

in equations (1) and (2). Since equation (3) is for currency j, not currency i, but the slope 

coefficients are the same, we can drop the i subscript on them. We can call them 1 , 2 , 3 , 4

, and 5 . 
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That is, if the cross-equation restrictions for the , , 1ij t ij ts s −−  and , , 1ik t ik ts s −−  equations are 

true, then the model is internally consistent. And, if we estimated the model as a panel for 

currency j instead of for currency i, we would get the same slope coefficients. 

 

Concretely, if currency i is the AUD, currency j is CAD, and currency k is EUR, then we 

can estimate 1 , 2 , 3 , 4 , and 5  for the panel in which AUD is the base currency. But if 

CAD or EUR were the base currency, we would find the same parameters 1 , 2 , 3 , 4 , and 

5 .  

We clearly do not find that to be true in the data, because we report different values for 

these slope parameters for the panels with each currency as the base. However, the fact that the 

estimated 1 , 2 , 3 , 4 , and 5  are not the same across the different panel estimates does not 

invalidate the hypothesis that the cross-equation restrictions are valid, because there is estimation 

error in finite samples. Below we test the restriction (Model A vs. Model B.) 

Model A is internally consistent if the restrictions are true.  

 

There are 14 parameters to estimate: five slope parameters ( 1 , 2 , 3 , 4 , and 5 ), 

and nine intercept parameters in each panel. Even if the restrictions are true, we will find 

numerically different estimates for the slope parameters in each panel (and ,0 ,0 ,0jk ik ij  = −  

will not be true also), because of finite samples. 

 

Model B 

 

 Now we modify equations (1) and (2) so we do not impose the cross-equation restrictions 

(but still impose the exclusion restrictions.) 
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(5) 
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 This model is not internally consistent. If we take the model for , , 1jk t jk ts s −−  by 

subtracting (4) from (5) – so that the model for , , 1jk t jk ts s −−  is equal to the model for , , 1ik t ik ts s −−  

minus that for , , 1ik t ik ts s −−   – we do not get a model that depends only on jk variables. The 

exclusion restrictions would not hold for , , 1jk t jk ts s −− . 
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 If, for example, we estimate the model with AUD as a base, and ijs  is the AUD/CAD 

exchange rate and iks  is the AUD/EUR exchange rate, we can infer a model for jks , the CAD/EUR 

exchange rate by subtracting (4) from (5). But that model for the CAD/EUR exchange rate would 

depend separately on the AUD/CAD real exchange rate and the AUD/EUR real exchange rate, not 

just the CAD/EUR exchange rate. But if we estimated a panel with CAD as a base, and only used 

jk variables in the jk regression, the CAD/EUR exchange rate would depend only on the CAD/EUR 

real exchange rate (and other CAD/EUR variables.) 

 The panel regression for currency i as represented in equations (4) from (5) has 54 

parameters to estimate – an intercept and five slope coefficients for each ij exchange rate, and there 

are 9 exchange rates, so 9 6 54 = . Each panel should give us 54 different parameter estimates. 

 Since there are no cross-equation restrictions, this model is essentially identical to the 

equation-by-equation estimates reported in Table 5B. 

 

Model C 

 

 In this model, we have no exclusion restrictions. The ij exchange rate depends on all 

variables, including all ik variables: 
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 In this equation, there are 45 explanatory variables, plus an intercept variable, for the 

exchange rate , , 1ij t ij ts s −− . 

 

 For exchange rate , , 1im t im ts s −− , we have: 

 

  

(7)     
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 
 

 

This equation has another 46 parameters. The entire panel for currency i has 9 46 414 =

parameters. 
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This formulation is internally consistent. We can take the equation for , , 1jm t jm ts s −−  from 

this panel by subtracting (6) from (7), or we could estimate an equation for , , 1jm t jm ts s −−  from a 

panel for currency j, and they would both involve the same 45 explanatory variables with no 

cross-equation restrictions. 

 

Country-Specific Variables 

 

 We can allow country-specific, rather than relative variables, to replace 

, , , ,
ˆ
ij t it j t j t i tIRS IRS i i = − + −  with , ,i t i tIRS i−  and , ,j t j tIRS i− , or ( ), , , 1 , 1i t j t i t j ti i i i− −− − −  with 

, , 1i t i ti i −−  and , , 1j t j ti i −− . We are most interested in whether the individual convenience yields 

matter, rather than their relative values, as we have already allowed in some specifications. To 

keep the analysis a bit simpler, we will only consider ( ), , , 1 , 1i t j t i t j ti i i i− −− − −  in relative form, 

instead of splitting it into , , 1i t i ti i −−  and , , 1j t j ti i −− . Define , , ,i t i t i tIRS i  −  

 

Model D 

 

 This is the most restricted form of this class of models. We report estimates from this 

model in Table 5A. We only include variables for country i and country j in the regression for 

, , 1ij t ij ts s −− , and for the panel for currency i, we impose cross-equation restrictions on the 

parameters. We have: 
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The equation for , , 1ik t ik ts s −−  is 
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 Unlike the simplest case (Model A) when only relative variables are present, this model 

is not internally consistent. If we subtract equation (8) from equation (9) to get a model for 

, , 1jk t jk ts s −− , the equation would become: 
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but the internally consistent equation, which we would get from a panel in which j is the base 

currency, is: 
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The structures of these last two equations are different, so Model D is not internally consistent. 

For each currency used as the base currency, the panel involves estimating 7 slope parameters, 

and 9 intercepts, for a total of 16 parameters.  

 

 

Model E 

 

 This model imposes cross-equation restrictions on the parameters of the relative 

variables, but not on the country-specific variables for country j in the regression for the ij 

exchange rate. It continues to assume the zero restrictions that only variables for country i and 

country j in the regression for , , 1ij t ij ts s −− . It is internally consistent, if the restrictions are true. 
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Then for , , 1ik t ik ts s −− , we have: 
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If we subtract equation (10) from equation (11) to get a model for , , 1jk t jk ts s −− , the equation 

would become: 
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where 
,0 ,0 ,0jk ik ij  = − , 

1 1j i = . 
2 3j j = − , 

3 3k k = , 
4 4j i = , 

5 6j j = − , 
6 6k k = , and 

7 7j i = . 

 

 If the restricted Model E was true, then if equation (12) were estimated from a panel with 

currency j as the base currency, the estimated parameters would satisfy the parameter 

relationships from the panel with i as a base currency in an infinitely large sample (but not in a 

finite sample.) 

 

 That is, Model E is internally consistent if the restrictions are true. For each panel, there 

are 32 parameters to estimate. There are 9 intercept terms, 3 coefficients on the relative variables 

( , 1ij tq − , ( ), , , 1 , 1i t j t i t j ti i i i− −− − − , and , 1 , 1i t j ti i− −− , 10 coefficients on the , 1,j t j t −− , and 10 

coefficients on the , 1j t −  variables. 

 

Model F 

 

 This model puts on no cross-equation restrictions, but it imposes the zero restrictions 

(that only variables for country i and country j in the regression for , , 1ij t ij ts s −− ). It is not 

internally consistent, for the same reasons that Model B is not: 

 

    
( ) ( ) ( )( )

( )

, , 1 ,

,

0 ,1 , 1 , 1 , , , 1 , 1, 1 ,2 , ,3 , ,4
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ij t ij i t ij j t ij

ij i t ij j t i t

ij t ij t ij ij i t j t i t j t i

i

t j t

i t jtj j

s s q i i i i

i i z

       

   

−

− −

− − − − −

− −

− = + + − + − + − − −

+ + + − +
 

 

 This equation has 8 parameters to estimate (1 intercept and 7 slope coefficients.) The 

panel has 9 exchange rates, so the panel entails estimation of 9 8 72 = parameters. 

 

Model G 

 

 Model G has no cross-equation constraints, and no zero constraints, and is therefore 

internally consistent: 
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

−
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 
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This equation has 1 intercept, 9 coefficients on each of the three relative variables ( , 1ik tq − , 

( ), , , 1 , 1i t k t i t k ti i i i− −− − − , and , 1 , 1i t k ti i− −− ), and 10 coefficients each on , 1,k t k t −−  and , 1k t − , for a 

total of 48. Since there are 9 exchange rates in each panel, there are 9 48 432 = parameters. 

 

 

The possible nested tests (with number of parameters in each model in parentheses) are:  

 Model A (14) is nested in Models B (54), C (414), D (16), E (32), F (72), G (432) 

 Model B (54) is nested in Models C (414), F (72) and G (432). 

 Model C (414) is nested in Model G (432). 

 Model D (16) is nested in Models E (32), F (72). G (432) 

 Model E (32) is nested in Models F (72), G (432) 

 Model F (72) is nested in Model G (432). 

 

So there are 16 possible F-tests, with each of the ten currencies serving as a base currency.  

 

These are the p-values for those tests: 

 
P value of the F tests 

Test constraints AUD CAD EUR JPY NZD NOK SEK CHF GBP USD 

A vs B 40 0.000 0.004 0.000 0.000 0.071 0.138 0.000 0.018 0.139 0.059 

A vs C 400 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

A vs D 2 0.014 0.156 0.006 0.045 0.000 0.000 0.169 0.122 0.100 0.000 

A vs E 18 0.003 0.006 0.005 0.011 0.000 0.001 0.022 0.011 0.017 0.000 

A vs F 58 0.000 0.014 0.000 0.000 0.000 0.005 0.000 0.008 0.108 0.004 

A vs G 418 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

B vs C 360 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

B vs F 18 0.027 0.526 0.069 0.562 0.000 0.003 0.173 0.102 0.238 0.007 

B vs G 378 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

C vs G 18 0.039 0.001 0.003 0.720 0.075 0.067 0.029 0.000 0.834 0.103 

D vs E 16 0.121 0.008 0.023 0.017 0.260 0.058 0.032 0.039 0.046 0.011 

D vs F 56 0.000 0.017 0.000 0.000 0.136 0.066 0.000 0.020 0.186 0.229 

D vs G 416 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

E vs F 40 0.000 0.177 0.000 0.001 0.167 0.206 0.001 0.088 0.526 0.809 

E vs G 400 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

F vs G 360 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

 We generally reject the more restrictive models in favor of the less restrictive models. In 

the text, we have reported estimation results only for models A (Tables 2A and 2F), B (Table 

5B), and D (Table 5A). There is a tradeoff. Our baseline model is more parsimonious; however, 

it is not internally consistent. There is always a tradeoff between the econometric gains in power 

by having a more parsimonious model, versus the distortions that arise when imposing 

restrictions that are not true. When we consider that we know we do not really have the “true” 
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model (for example, the ij exchange rate may not depend just on i and j variables, or they may be 

other left-out variables), than the consistency criterion might not be a good one in practice.  

 

 As the following table shows, the relative liquidity yields remain highly significant in the 

more highly parameterized models, B, E and F, even though there are many more parameters 

estimated in these models. (We did not test for individual significance of coefficients for Models 

C and G, which have 414 and 432 parameters in each panel.) 

 

 

 

Liquidity 

measure ( ,
ˆ

j t ) is  

significant at 

(cumulative): 

Model B 

 

Model E Model F 

 

 Total pair: 45 Home: 9 Foreign: 90 Total pair: 90 

10% 35 8 62 56 

5% 30 8 59 50 

1% 25 7 49 43 

 

 

7. Accounting for default risk in exchange rate determination 

 

This section focuses on the role of default risk with a slight extension of the baseline model. We 

can interpret the government interest rate in the baseline model as the risk-free government interest 

rate that investors can obtain by buying a government bond but subtracting the cost of buying 

default protection.  

 

From equation (3) in the main text, assuming risk premium is zero for simplicity, we have: 

 

(3)  *

1t t t t t ti E s s i ++ − − =  

 

As in the main text, we can define the decomposed liquidity measure by using CDS rate to 

measure the default risk of a government as in Du et al (2018a): 

 

(19) R

t t tl  −    where 
*

t

R

t tl CDS CDS= −  

 

This is the same as our definition of equation (19) in the main text but setting the deviation of 

CIP to zero to simplify the exposition. 

 

With these two equations, we can rewrite equation (3) as:  
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*

1

R

t t t t t t ti E s s i l++ − − = −  

 

Define * * *G

t t ti i CDS−  as the risk-free interest rate. It is the government promised interest rate 

minus the cost of the CDS rate. 

 

* *

1 1

* *

*

( ) ( )tt t t t t t t t t t
t t t t

GG
tt ii

CDS CDSE s s i i E s s ii CDS CDS + += − + − + − = − + −− −


 

Simply iterate forward this equation gives: 

 

( )( ) ( ) ( )

( )( )

* * * *

0 0 0
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t t t j t j t t j t t j t j
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 
  

+ + + + +

= = =

+ +
→

= − − − − − − + − − −

+ − −
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An increase in default risk, which is captured by an increase in CDS rate, has the opposite effect 

to an increase in the liquidity and interest rate. 

 

To solve the model, we know R

t t tl  −  so we know the coefficients on t  is 2 and R

tl  is 2−  

where  2  is solved earlier as: 

 

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )2

1 1 1 1 1 1

1 1 1 1

         


        

  + − − + + − − + +     = −
 + − + + − +
 

 

 

We can allow for differences in persistence parameter   for t  and R

tl (  and l ). We can also 

set  to zero for CDS differential R

tl  because the CDS does not respond to the interest rate 

differential as the Treasury liquidity yield does. With these assumptions, the response of change 

of nominal exchange rate to change of CDS rate becomes:  

 

( ) ( )( )
( )( )

1 1 l

CDS

l

     


    

  − − − − +     =
 − −
 

 

 

 

 

 

 

 

 

 



28 

 

References 

 

Du, Wenxin; Joanne Im; and Jesse Schreger. 2018a. “US Treasury Premium.” Journal of 

International Economics 112, 167-181.  

 

Engel, Charles. 2019. “Real Exchange Rate Convergence: The Roles of Price Stickiness and 

Monetary Policy.” Journal of Monetary Economics 103, 21-32. 

 

Rudebusch, D. Glenn. 1993. “The Uncertain Unit Root in Real GNP.” American Economic 

Review 83, 264-272 


