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Abstract

This paper presents a new weak law of large numbers (WLLN) for heterogenous dependent

processes and arrays. The dependence requirements are notably weaker than the best available

current results (due to Andrews (1988)). Specifically, we show that the WLLN holds when the

process is weak mixing, only requiring that the mixing coeffi cients Cesàro sum to zero. This is

weaker than the conventional assumption of strong mixing.
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1 Introduction

One of the foundations for asymptotic inference is the weak law of large numbers (WLLN). For

dependent and strictly stationary time series, the most flexible and powerful result is the Ergodic

Theorem, which states that sample means converge almost surely to the population mean under

the minimal condition that the process is ergodic. The latter only requires that separated events

are on average asymptotically independent. For many applications, however, the assumption of

strict stationarity is too restrictive. It does not allow for heterogeneous time series, nor allow for

random array structures. In such settings the best available dependence conditions for the WLLN

are due to Andrews (1988), who showed that uniform integrability plus strong mixing are suffi cient

for the WLLN. His result is particularly powerful as it does not require any rate of convergence for

the mixing coeffi cients.

A limitation with Andrews’WLLN is that strong mixing may be unnecessarily restrictive. In

classical ergodic theory, distinctions are made between ergodic processes, weak mixing processes,

and strong mixing processes. Ergodicity is the weakest requirement (and broadest class), strong

mixing the strongest requirement (and most narrow class). The distinction between weak mixing

and strong mixing is that the former requires that the Cesàro sum of mixing coeffi cients is zero,

while strong mixing requires the coeffi cients to limit to zero. The Cesàro limit requirement is

weaker, as it can hold even when the mixing coeffi cients do not converge to zero.

This may seem like a minor difference in practice, but classical ergodic theory has argued that

it is a major difference. Specifically, the view is that weak mixing processes are relatively generic,

while strong mixing processes are relatively special. For example, the textbook of Petersen (1983,

p. 71-72) states that “there is a sense in which almost every measure preserving transformation is

weakly mixing but not strong mixing.... Halmos (1944) proved that with respect to the weak topology,

the set of weakly mixing measure preserving transformation systems is residual (i.e. the complement

of a first category set); while Rokhlin (1948) showed that with respect to the weak topology the set

of all strongly mixing transformations is of the first category. Thus, in this particular sense, the

‘generic’measure preserving transformation is weakly mixing but not strongly mixing.” (emphasis

as quoted).

For examples of processes which are weak mixing but not strong mixing, see Section 4.5 of

Petersen (1983), which describes the examples of Kakutani (1973) and Chacon (1969). Other

examples are provided by Maruyama (1949) and Katok and Stepin (1967).

By showing that the WLLN holds for heterogenous weak mixing processes and arrays, our result

brings the theory for heterogeneous dependent processes closer to the classical Ergodic Theorem.

One of the interesting features of our result is that the proof is elementary. It uses the standard

representation of the variance of the trimmed mean as the weighted Cesàro sum of the covariances,

and bounds the latter using the mixing inequality for bounded random variables. The deviation

of the mean from the trimmed mean is bounded conventionally. This proof method is notably

different from that of Andrews (1988) who approximated the sample mean by the sum of M

martingale difference means, bounded the latter using moment bounds for martingale difference
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sequences, and bounded the deviation by a mixingale inequality.

In the econometrics literature, Andrews’WLLN has been generalized to allow for trending

moments by Davidson (1993) and De Jong (1995, 1998). These papers do not weaken, however,

the dependence conditions. For strong laws of large numbers for dependent heterogenous processes,

see Hansen (1991, 1992), De Jong (1995, 1996), and Davidson and De Jong (1997). For a textbook

treatment see Davidson (1994).

In Section 2 we review the concepts of ergodicity and mixing for stationary processes. In Section

3 we discuss mixing for heterogeneous arrays. Section 4 presents our WLLN. Section 5 presents

the proof of the result.

2 Ergodicity and Mixing

Let (Ω,F , P ) denote a probability space. A stochastic process {Xt ∈ R : −∞ < t < ∞} is a
measurable mapping from Ω to R∞. Letting ω ∈ Ω, we can write Xt(ω) to indicate that the process

depends on the element ω. We can then define the shift transformation T by Xt+1(ω) = Xt(Tω).

An event E ∈ F is invariant if E = T−1E. The process Xt is called ergodic if all invariant
events have probability either 0 or 1. Intuitively, an ergodic process visits all parts of the probability

space, and never gets stuck in a subspace.

There are several equivalent ways to characterize an ergodic process. One is that Xt is ergodic

if and only if for all A,B ∈ F ,

lim
n→∞

1

n

n∑
m=1

(
P (T−mA ∩B)− P (A)P (B)

)
= 0.

See, for example, Theorem 1.4 of Billingsley (1965) or Corollary 1.14.2 of Walters (1982). This

means, intuitively, that the translation T−mA becomes independent of B on average.

For some purposes it is desirable to work with somewhat stronger characterizations of asymp-

totic independence. The process Xt is called weakly mixing if for all A,B ∈ F ,

lim
n→∞

1

n

n∑
m=1

∣∣P (T−mA ∩B)− P (A)P (B)
∣∣ = 0

and is called strongly mixing if

lim
m→∞

∣∣P (T−mA ∩B)− P (A)P (B)
∣∣ = 0.

Weak mixing also can be interpreted as stating that T−mA becomes independent of B provided we

neglect a few instances. Strong mixing can be interpreted as stating that T−mA is asymptotically

independent of B.

From these expressions it is evident that ergodicity implies weak mixing, and weak mixing

implies strong mixing. It is known that this nesting is strict, as there are examples of ergodic
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transformations which are not weak mixing, and weak mixing transformations which are not strong

mixing. Strong mixing requires that the probabilities P (T−mA ∩ B) − P (A)P (B) limit to zero,

but this is not required by the Cesàro summability of weak mixing. For concrete examples of

transformations which are weak but not strong mixing see the references in the introduction.

3 Mixing for Heterogenous Arrays

In econometrics we are frequently interested in heterogenous stochastic processes and arrays

(indexed by sample size n). For this purpose the most commonly used dependence tool are mixing

coeffi cients. For a random array {Xnt : t = 1, ..., n} the mixing coeffi cents are defined as

αn(m) = sup
−∞<t<∞

sup
A∈Fn−∞,t,B∈Fn

t+m,∞

|P (A ∩B)− P (A)P (B)|

where F n−∞,t = σ (..., Xn,t−1,Xn,t) and F nt+m,∞ = σ (Xn,t+m, Xn,t+m+1, ...). The latter are σ-fields

generated by the past and future values of the stochastic process, respectively, separated by m time

periods. The mixing coeffi cients αn(m) measure the serial dependence as the degree of separation

is increased. For stationary stochastic processes the coeffi cients do not depend on n.

It is standard to say that the stochastic process Xnt is strong mixing if

sup
n≥1

αn(m)→ 0

as m→∞. This is an analog of the ergodic theory concept of strong mixing.
We now introduce an analog of the ergodic theory concept of weak mixing.

Definition 1. Xnt is weak mixing if

lim
n→∞

1

n

n∑
m=1

αn(m) = 0. (1)

The expression (1) states that the Cesàro sum of the mixing coeffi cients is zero.

Since convergence implies Cesàro convergence, weak mixing implies strong mixing. Thus weak

mixing is a strictly broader class of stochastic processes than strong mixing. For example, consider

the mixing coeffi cient sequence αn(m) = 1 (
√
m = [

√
m]) = {1, 0, 0, 1, 0, 0, 0, 0, 1, ...}. This does not

have a limit, but its Cesàro sum limits to zero. Hence it is weak mixing but not strong mixing.

For another example using arrays, take the process Xnt = et+ et−q(n) with et i.i.d. If q(n)→∞
yet q(n)/n→ 0 as n→∞ then this process is weak mixing but not strong mixing.
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4 Weak Law of Large Numbers

Define the sample mean

Xn =
1

n

n∑
t=1

Xnt.

Theorem 1. If Xnt is weak mixing and

lim
B→∞

sup
n

1

n

n∑
t=1

E |Xnt1 (|Xnt| > B)| = 0 (2)

then

E
∣∣Xn − E

(
Xn

)∣∣→ 0 (3)

and

Xn − E
(
Xn

)
→p 0 (4)

as n→∞.

Theorem 1 shows that the sample mean converges in L1 and converges in probability. The con-

dition (2) is an average uniform integrability condition. It is implied if Xnt is uniformly integrable:

lim
B→∞

sup
n

sup
1≤t≤n

E |Xnt1 (|Xnt| > B)| = 0

or if Xnt has a uniformly bounded moment:

lim
B→∞

sup
n

sup
1≤t≤n

E |Xnt|r <∞

for some r > 1.

Theorem 1 generalizes the WLLN for strong mixing processes of Andrews (1988) (his Theorem

2, example 4). Primarily, Theorem 1 relaxes the assumption of strong mixing to that of weak

mixing. Theorem 1 shows that weak mixing is suffi cient for consistent estimation.

5 Proof

We show (3). (4) follows by Markov’s inequality.

Without loss of generality assume E(Xnt) = 0. Fix ε > 0. Pick B large enough such that

sup
n

1

n

n∑
t=1

E |Xnt1 (|Xnt| > B)| ≤ ε

4
(5)
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which is feasible under (2). Define

Wnt = Xnt1 (|Xnt| ≤ B)− E (Xnt1 (|Xnt| ≤ B))

Znt = Xnt1 (|Xnt| > B)− E (Xnt1 (|Xnt| > B))

so that

E
∣∣Xn

∣∣ = E
∣∣Wn + Zn

∣∣ ≤ E ∣∣Wn

∣∣+ E
∣∣Zn∣∣ . (6)

By the triangle inequality and (5)

E
∣∣Zn∣∣ ≤ 1

n

n∑
t=1

E |Znt|

≤ 2

n

n∑
t=1

E |Xni1 (|Xnt| > B)|

≤ ε

2
. (7)

It is useful to observe that Wnt satisfies the bound |Wnt| ≤ 2B and has the same mixing

coeffi cients as Xnt. By the mixing inequality for bounded random variables (e.g. Theorem A.5 of

Hall and Heyde (1980)), and the fact that Wnt are mean zero,

|E (WntWnj)| ≤ 16B2αn (|t− j|) . (8)

By Jensen’s inequality, (8) and αn(0) ≤ 1/4,

(
E
∣∣Wn

∣∣)2 ≤ E ∣∣Wn

∣∣2
=

1

n2

n∑
t=1

n∑
j=1

E (WntWnj)

≤ 1

n2

n∑
t=1

n∑
j=1

|E (WntWnj)|

≤ 16B2

n2

n∑
t=1

n∑
j=1

αn (|t− j|)

= 16B2

(
αn(0)

n
+

2

n

n−1∑
m=1

(
1− m

n

)
αn(m)

)

≤ 16B2

(
1

4n
+

2

n

n−1∑
m=1

αn(m)

)

≤ ε2

4
.

The final inequality holds for n large enough since Xnt is weak mixing. Thus

5



E
∣∣Wn

∣∣ ≤ ε

2
. (9)

Together, (6), (7) and (9) show that E
∣∣Xn

∣∣ ≤ ε which establishes (3) as claimed.
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