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Abstract

This paper presents new expressions for the exact finite sample distribution of the

White (1980) heteroskedasticity-robust t-ratio under the assumption of normal heteroskedas-

tic errors. The first expression shows that the distribution function equals the expecta-

tion of a nonlinear function of a weighted sum of chi-square random variables, with the

weights an explicit function of the regressor matrix and error variances. The second ex-

pression shows that the distribution function equals a mixture of student t distribution

functions. These are the first expressions for the exact distribution of the White t-ratio

allowing for heteroskedastic error variances, other than expressions based on the nu-

merical inversion of the characteristic function.

Our exact distribution function is inconvenient to evaluate in practice, so we recom-

mend a simple approximation with excellent computational and approximation prop-

erties. The motivation is the first result described above that the distribution function

is completely determined by a specific weighted sum of chi-squares. Using results from

the recent literature on approximation of the distribution function of weighted sums

of chi-squares, we obtain a practical approximation to the distribution function of the

White t-ratio which is computationally fast in small to moderate samples and is exceed-

ingly accurate.

*Research support from the NSF and the Phipps Chair are gratefully acknowledged. My thanks to Grant
Hillier for helpful discussions and for sharing preliminary drafts of his related research.
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1 Introduction

The most important discovery in the history of econometrics may be Gosset’s deriva-

tion of the exact distribution of the studentized sample mean under normal sampling

(Gosset, 1908). This result is elegant. It is also practical, as it readily extends to the

homoskedastic regression model and provides a simple computational method to eval-

uate the sampling distribution. Gosset’s result provides the foundation for most finite-

sample inference in practical applied econometrics – the comparison of empirical t-

ratios with the student t distribution function.

Unfortunately, the distributional result (that t-ratios are distributed student t) is in-

correct when applied to modern “heteroskedasticity-robust” and “cluster-robust” t-ratios.

This is because “robust” t-ratios do not have student t distributions in finite samples.

Regardless, the student t distribution is still routinely applied to these t-ratios, based on

the powerful heuristic of Gosset’s result, conventional software implementations, and

ingrained statistical thinking. The problem, fundamentally, is that there is no good alter-

native, as there is no known computable form of the exact distribution function. While it

is possible to simulate the exact distribution and/or calculate it numerically by inverting

the characteristic function, such techniques are not practical defaults due to computa-

tion cost. The lack of an explicit computable exact distribution has preclude routine use

of exact distribution methods.

This paper, at least partially, solves this impasse. We present new expressions for

the exact finite sample distribution of the White (1980) heteroskedasiticity-robust t-ratio

under the assumption of normal heteroskedastic errors. First, we show that the exact

distribution equals the expectation of a nonlinear function of a specific weighted sum

of independent chi-square random variables, where the weights are known computable

functions of the regressor matrix and error variances. Second, we show that the exact

distribution equals a weighted average of student t distribution functions, where the

weights are explicit functions of the regressor matrix and error variances.

For practical application we recommend approximating the exact distribution func-

tion by a simpler version obtained by recent developments in the literature on approxi-

mating the distribution of weighted sums of chi-squares. Our approximations are near-

exact, resulting in no loss of practical applicability, and are computationally fast, with

p-value calculation taking less than 0.02 seconds on a personal computer for sample

sizes under 500. For larger sample sizes, however, computation may require program-
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ming improvements.

This exact distribution function just described depends on the unknown variances,

so is infeasible, but replacement of the unknown variances by estimates provides a sim-

ple and reasonably accurate estimate of the distribution function.

The heteroskedasticity-robust covariance matrix estimator known as HC0 was intro-

duced by Eicker (1963) and subsequently popularized in econometrics by White (1980).

Alternative versions known as HC1, HC2, and HC3 were introduced by Hinkley (1977),

Horn, Horn, and Duncan (1975), and MacKinnon and White (1985). All are programmed

in packages such as Stata. The HC1 version is obtained by the popular “, r” covariance

matrix option, and is thereby the de-facto default in contemporary applied economet-

rics.

The recognition that the finite-sample distribution of the White t-ratio can be severely

distorted from the student t distribution has been long recognized. Early investigations

include MacKinnon and White (1985), Chesher and Jewitt (1987), Chesher (1989), and

Phillips (1993). Chesher and Austin (1991) proposed calculation of the exact distribu-

tion of the White t-ratio based on inversion of the characteristic function as in Imhof

(1961); this proposal has been expanded recently by Chu, Lee, Ullah, and Xu (2021) to

regression F statistics. While promising, the Imhof-based method has not gained trac-

tion in applied econometrics due to computation costs.

Our paper is closely related to the work of Bell and McCaffrey (2002), Imbens and

Kolesár (2016), and Hillier and O’Brien (2019). Bell and McCaffrey (2002) and Imbens

and Kolesár (2016) proposed approximating the distribution of the White t-ratio with

a student t distribution whose scale and degree of freedom parameter are selected to

match the first two moments of the distribution of the variance estimator under the

assumption of homoskedastic normal errors. This “two-parameter” method works re-

markably well in many applications, but has a few deficiencies. First, the approximation

assumes homoskedastic errors, and is sensitive to its violation. Second, the approxima-

tion is imprecise in many cases because it is insufficiently flexible. Third, these authors

did not explain the sense in which the two-parameter method is an approximation to

the exact distribution. Hillier and O’Brien (2019) extend this approach1 by suggesting

a “four-parameter” approximation to the distribution of the variance estimator which

is a two-component weighted sum of chi-squares. They clarify the role of the approxi-

mation, showing that the degree of approximation is controlled by the number of chi-

1Based in part on a preliminary draft of the present paper.
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square components. As in Bell-McCaffrey and Imbens-Kolesár, however, they maintain

the assumption of homoskedastic error variances.

Another closely related paper is Pötscher and Preinerstorfer (2021) who demonstrate

that there exists a lower bound for the critical level of the White t test which uniformly

controls its size across all possible error variance combinations. They show by example

that this bound can be exceedingly high; their Table 1 indicates that the 5% bound for

the HC1 t-ratio in one example is 1711, meaning that t-ratios would need to exceed 1711

in order to be deemed “significant”. Empirical implementation of such critical values

does not appear practical.

We extend this literature by introducing “three-parameter” and “four-parameter” ap-

proximations to the heteroskedastic normal regression model. The extension to het-

eroskedastic variances is important, as the goal of heteroskedasticity-robust t-ratios is

to allow for unknown heteroskedasticity. We demonstrate that our four-parameter ap-

proximation is near-perfect, even in highly leveraged regression designs. The three-

parameter approach is nearly as accurate, and has the advantage that it is computa-

tionally robust to extremely leveraged designs. Consequently we recommend a hybrid

implementation which makes use of both the three-parameter and four-parameter ap-

proximations.

The organization of the paper is as follows. Section 2 introduces the heteroskedas-

tic normal regression model, the HC1 covariance matrix estimator, and the White t-

ratio. Section 3 introduces the numerical examples which are used throughout the pa-

per to illustrate the proposed methods. Simulation results show that the finite sample

size of conventional inference methods for the White t-ratio – based on the student t,

wild bootstrap, and Bell-McCaffrey distributions – can be highly distorted. Section 4

presents the main theoretical result of the paper – the exact finite sample distribution

of the White t-ratio. Section 5 proposes approximations. Section 6 discusses compu-

tational implementation. Section 7 discusses feasible implementation using estimated

error variances. Section 8 presents an extension of the methods to the HC0, HC2, and

HC3 covariance matrix estimators. Appendix A presents the formula used to match the

moments of the approximating models. Appendix B contains the mathematical proofs

of the three theorems in the paper.

All numerical results presented in the paper were computed in Matlab. The code is

posted on the author’s website. The paper contains a subset of the results focusing on

the HC1 covariance matrix estimator. A Supplemental Appendix contains the full set
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of numerical results, including the HC2 and HC3 covariance matrix estimators and an

extensive set of figures.

2 Model

Take the heteroskedastic normal regression model

Y = X ′β+e (1)

e | X ∼ N
(
0,σ2 (X )

)
(2)

where X andβ are k×1. Let (Yi , Xi ), i = 1, ...,n be a random sample of observations from

(Y , X ). Write the observations in standard matrix notation as Y = Xβ+e. Assume that

X ′X > 0. (3)

The standard estimator for β is least squares β̂ = (
X ′X

)−1 (
X ′Y

)
with residuals êi =

Yi − X ′
i β̂. Covariance matrix estimation is most commonly performed with the HC1 es-

timator:

V̂ HC1 =
( n

n −k

)(
X ′X

)−1

(
n∑

i=1
Xi X ′

i ê2
i

)(
X ′X

)−1 .

HC1, first proposed by Hinkley (1977), is a degree-of-freedom-adjusted version of the

HC0 covariance matrix estimator popularized in econometrics by White (1980). HC1 has

become the de-facto default in applied econometrics as it is the method implemented

by the “, r” covariance matrix option in Stata. We will focus on the HC1 estimator in this

manuscript. All results extend to a variety of other estimators, including HC0, HC2 and

HC3, as described in Section 8. The numerical analysis presented in the paper is for the

HC1 estimator; analogous analysis for the HC2 and HC3 estimators are presented in the

Supplemental Appendix.

We are interested in a scalar parameter R ′β for some non-zero k ×1 vector R. This

includes individual coefficients and linear combinations. Its estimator is R ′β̂, variance

estimator R ′V̂ R, and t-ratio

T = R ′ (β̂−β)√
R ′V̂ HC1R

.

This is the most commonly reported t-ratio in applied econometric practice. We call T
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the “White t-ratio”, or the “HC1 t-ratio” when we want to be specific about the covariance

matrix estimation method.

While the asymptotic distribution of T is standard normal under broad conditions,

it is conventional to calculate confidence intervals and p-values using the student t dis-

tributon with n −k degrees of freedom. This approximation is heuristically motivated

by the fact that the classical (non-homoskedastic) t-ratio has the tn−k distribution. This

heuristic motivation, however, is far from exact in finite samples.

3 Numerical Illustration

To illustrate the magnitude of the distortions we calculate the actual size of nominal

5% tests using student t critical values. The model is the simple normal regression

Y =α+Xβ+e

e | X ∼ N
(
0,σ2 (X )

)
with X ∈ R fixed. We consider five regressor specifications. The first is the dummy vari-

able specification X = {2,2,2,1,1, ...,1}. This is a treatment setting with 3 treated ob-

servations and the remaining observations untreated. This is the model examined, for

example, in Angrist and Pinchke (2009), Imbens and Kolesar (2016), and others. The

other four models are based on probability distributions, spacing out the regressor val-

ues evenly on the quantiles2 of a specified distribution. The four probability models are

Pareto(2), Gamma(1/4,1), logNormal(0,1) and logNormal(0,4). Each model generates

outlier-like regressor patterns, and have similar distributions to many economic vari-

ables. These models are commonly used in econometric studies of the impact of high

leverage on heteroskedastic covariance matrix estimation.

We consider two specifications for the error variance: (1) Homoskedastic: σ2 (X ) = 1;

and (2) Heteroskedastic: σ2 (X ) = 1+X 2. We consider four sample sizes: n = {30,60,120,500}.

We contruct the t-ratio T for the coefficient β and calculate the actual size of a two-

sided test based on the tn−2 critical value using 20,000 simulation replications. The re-

sults are reported in Table 1.

The results are striking, but will not be surprising to specialists. Under both ho-

moskedasticity and heteroskedasticity, for all five regressor specifications, and regard-

2Specifically, on the quantiles j /(n +1) for j = 1, ...,n.
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Table 1: Actual size using 5% tn−k critical values

Homoskedastic Error Heteroskedastic Error
n = 30 n = 60 n = 120 n = 500 n = 30 n = 60 n = 120 n = 500

Dummy 0.17 0.20 0.22 0.25 0.19 0.22 0.23 0.25
Pareto(2) 0.13 0.12 0.11 0.08 0.24 0.21 0.19 0.15

Gamma(1/4,1) 0.13 0.10 0.08 0.06 0.21 0.17 0.12 0.08
logNormal(0,1) 0.10 0.09 0.08 0.06 0.20 0.17 0.13 0.09
logNormal(0,4) 0.20 0.19 0.16 0.12 0.49 0.41 0.34 0.24

less of the sample size, the tests are over-sized. The rejection rates are particularly over-

sized under heteroskedasticity, with the rejection rates reaching as high as 49%. The

rejection rates improve as n increases for most specifications (though not the dummy

variable specification) but remain unacceptably high even for n = 500. This table illus-

trates that the student t distribution is not a good approximation to the finite sample

distribution of the White t-ratio T .

These distortions are well-known and alternative inference procedures have been

proposed. The most popular is the bootstrap, for which there are several implementa-

tions. For the regression model a popular method is the wild bootstrap, which treats the

regressors as fixed and resamples the errors from e∗
i = êiξi where ξi ∼ (0,1) is an auxil-

iary random variable. Following Davidson and Flachaire (2008) we use the Rademacher3

distribution. For each simulation replication we generate 1000 bootstrap samples to cal-

culate the bootstrap p-value of the two-sided test based on the t-ratio T . The percentage

of bootstrap p-values less that the nominal level of 0.05 is the simulation estimate of the

actual size of the bootstrap test. The results are reported in Table 2. We see that the per-

formance of the bootstrap is actually worse than the t-distribution in some designs. In

general, the bootstrap tests are severely over-sized, with rejection rates as high as 35%.

An alternative proposal was made by Bell and McCaffrey (2002) and endorsed by Im-

bens and Kolesar (2016). They suggest basing inference on a scaled student t distribution

atη, where the scale parameter a and degree of freedom parameter η are selected based

on a two-moment chi-square approximation to the variance estimator, the approxima-

tion calculated under the assumption of homoskedastic normality. We implemented

their procedure and calculated by simulation the actual size of the test. The results are

reported in Table 3.

3ξ=±1 each with probability 0.5.
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Table 2: Actual size using 5% wild bootstrap critical values

Homoskedastic Error Heteroskedastic Error
n = 30 n = 60 n = 120 n = 500 n = 30 n = 60 n = 120 n = 500

Dummy 0.10 0.10 0.11 0.10 0.10 0.10 0.10 0.19
Pareto(2) 0.15 0.12 0.10 0.08 0.19 0.14 0.11 0.07

Gamma(1/4,1) 0.14 0.10 0.07 0.05 0.17 0.11 0.07 0.05
logNormal(0,1) 0.11 0.09 0.07 0.05 0.14 0.09 0.07 0.05
logNormal(0,4) 0.24 0.21 0.17 0.11 0.35 0.25 0.19 0.11

When the errors are homoskedastic the Bell-McCaffrey rejection rates are uniformly

below the nominal level of 5%. Instead of over-rejection there is under-rejection, with

rejection rates as low as 2%. In the heteroskedastic design, however, the Bell-McCaffrey

rejection rates are over-sized, with rejection rates as high as 18%.

From this simple investigation we can see that the finite sample distribution of the

White t-ratio is not well approximated by the student t distribution, the wild bootstrap

distribution, nor the Bell-McCaffrey distribution.

Table 3: Actual size using 5% Bell-McCaffrey critical values

Homoskedastic Error Heteroskedastic Error
n = 30 n = 60 n = 120 n = 500 n = 30 n = 60 n = 120 n = 500

Dummy 0.03 0.03 0.04 0.05 0.04 0.05 0.05 0.05
Pareto(2) 0.03 0.04 0.04 0.04 0.10 0.10 0.09 0.09

Gamma(1/4,1) 0.03 0.04 0.04 0.05 0.09 0.08 0.07 0.06
logNormal(0,1) 0.04 0.04 0.04 0.05 0.11 0.09 0.08 0.07
logNormal(0,4) 0.02 0.03 0.03 0.04 0.18 0.15 0.13 0.11

One limitation of Tables 1-3 is that their focus on 5% size leaves open the possibil-

ity that the distributional approximations may differ at other quantiles. To investigate

this we display in Figure 1 plots of the exact CDF of the t-ratio T , calculated from one

million simulation draws, along with the student t and Bell-McCaffrey distributions4,

for the logNormal(0,4) regressor design with n = 30 observations. Panel (a) is for case

of homoskedastic errors and panel (b) for the case of heteroskedastic errors. Panel (a)

is displayed for x ∈ [0,4] and panel (b) for x ∈ [0,8]. We can see that in these plots, the

distributions are strictly ranked for all values of x, so that the sign of the distortions

from Tables 1-3 are invariant to the nominal significance level. In these plots we can see

4We do not display the bootstrap distribution as it is random and depends on the realized values of Y .
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that the student t distribution lies above the exact distribution and thus produces over-

sized tests, while the Bell-McCaffrey distribution lies under the exact distribution in the

homoskedastic case, and the reverse in the heteroskedastic case. The Bell-McCaffrey

p-value therefore produces under-sized and over-sized tests in the homoskedastic and

heteroskedastic designs, respectively. We constructed similar plots for the other sam-

ple sizes and designs, and are displayed in the Supplemental Appendix. The qualitative

nature of Figure 1 generally holds for all cases, with the exception that with the HC3 co-

variance matrix estimator the exact and Bell-McCaffrey distribution functions cross in

some cases.
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(a) Homoskedastic Error
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Figure 1: Student t, Bell-McCaffrey, and Exact Distribution of t-ratio. logNormal(0,4)
Regressor Design, n = 30

4 Exact Distribution

In this section we derive the exact finite sample distribution of the White t-ratio T ,

conditional on X :

G (x | X ) =P [T ≤ x | X ] .

Our analysis is for a fixed value of x.

Define the annihilator matrix M = I n − X
(

X ′X
)−1 X ′, the scalar transformed regres-
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sor Zi = R ′ (X ′X
)−1 Xi , its stacked vector Z , the matrix

B 1 =
( n

n −k

)
diag

(
Z 2

1 , ..., Z 2
n

)
, (4)

the covariance matrix

Σ= diag
(
σ2(X1), ...,σ2(Xn)

)
,

and the matrix

C =Σ1/2Z Z ′Σ1/2 −x2Σ1/2MB 1MΣ1/2. (5)

Set N = n − k. Let λ0 ≥ λ1 ≥ ·· · ≥ λN be the non-zero eigenvalues of C . These satisfy

λ0 > 0 and λ j < 0 for j = 1, ..., N . Set w j = −λ j /λ0 for j = 1, ..., N . They satisfy 0 < w1 ≤
·· · ≤ wN .

Theorem 1 In model (1)-(3) the conditional distribution of T given X equals

G (x | X ) = E
[
Φ

(√
Q(w)

) ∣∣∣ X
]

(6)

where

Q(w) =
N∑

j=1
w j Q j , (7)

and Q j ∼χ2
1 are mutually independent. The cumulative distribution function (6) equals

G (x | X ) =
∞∑

m=0
cmFN+2m

(√
w1 (N +2m)

)
(8)

where the coefficients cm equal

c0 =
N∏

j=1

(
w1

w j

)1/2

(9)

cm = 1

m

m−1∑
j=0

c j dm− j (10)

dm = 1

2

N∑
j=1

(
1− w1

w j

)m

, (11)

and Fr (x) is the student t cumulative distribution function with r degrees of freedom.

Theorem 1 provides two new and useful expressions. Expression (6) shows that the
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distribution function G(x) of the White t-ratio T equals the expectation of the nonlinear

functionΦ
(p

x
)

of a weighted sum of chi-square random variables with weights w j . The

distribution G(x) simplifies to the conventional student t distribution when the weights

are all equal: w j = 1/N . Otherwise, when the weights w j are heterogeneous the distri-

bution deviates from the student t distribution.

The second expression is (8). It shows that the distribution function G(x) of the White

t-ratio T equals a weighted average of student t distribution functions. The series (8) is

convergent, and is thus a valid representation for G(x).

Expression (8) is based on an representation for the distribution of a weighted sum of

chi-square variables due to Ruben (1962) and Farebrother (1984). Other representations

exist, including that of Davies (1980). However, the Farebrother algorithm is viewed as

computationally more efficient. Furthermore, it is unclear how the Davies algorithm, for

example, could be used in conjunction with the method of Theorem 1 to obtain a useful

expression for the distribution function.

5 Approximate Distribution

While (8) provides an explicit formula for computation of the distribution G(x), it

is not recommended for empirical practice. The formula is sensitive to the magnitude

of the weight ratio w1/wK which can be arbitrarily small in some empirical contexts.

Instead, we recommend an approximation obtained by replacing the weighted sum of

chi-squares Q(λ) in (7) with a smaller number of components. There is a substantial

statistical literature developing approximations to the distribution of a weighted sum of

chi-squares; for a recent review and evaluation see Bodenham and Adams (2015). We

focus on approximations to Q(λ) which are another weighted sum of chi-squares with

a smaller number of components. These turn out to provide excellent approximations

with greatly improved computational properties.

We consider three approximations. The simplest is the one-component model due

to Welch (1938) and Satterthwaite (1946):

Q(w) 'Q2 = aχ2
η

where we use the symbol “'” to denote “approximately distributed as”. This use of Q2

to approximate Q(w) is the basis of the Bell-McCaffrey distribution recommended by
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Imbens and Kolesar (2016).

Our second approximation is the shifted one-component model of Hall (1983) and

Buckley and Eagleson (1988):

Q(w) 'Q3 = a +bχ2
η.

Bodenham and Adams (2015) provide substantial numerical evidence that Q3 is a supe-

rior approximation to Q(w) than Q2.

Our third approximation is the two-component model of Hillier and O’Brien (2019):

Q(w) 'Q4 = a1χ
2
η1
+a2χ

2
η2

.

Hillier and O’Brien provide detailed numerical evidence that Q4 is a highly accurate ap-

proximation to Q(w) in a wide range of designs.

Let Qr denote Q2, Q3, or Q4. Replacing Q(w) in (6) with Qr we obtain the distribu-

tional approximation

G (x | X ) 'Gr (x | X ) = E
[
Φ

(√
Qr

) ∣∣∣ X
]

.

We call Gr the “r -parameter approximation” to G . As r increases the approximation

accuracy increases, with the approximation error eliminated for r = N .

The G2 distribution in the homoskedastic case equals the Bell-McCaffrey distribu-

tion, which we observed in Table 3 is undersized. Seeking an improved approximation

we do not pursue G2 further.

The three-parameter approximation G3 can be written as the integral

G3 (x | X ) =
∫ ∞

0
Φ

(p
a +bt

)
fη(t )d t (12)

where fη(t ) is the χ2
η density function. An algebraic solution to this integral is not avail-

able, but numerical evaluation is straightforward and computationally fast.

The distribution G3 is nested within G4. To see this, take the limit of Q4 as η1 →∞
with a1η1 → a. We find Q4 = a1χ

2
η1
+a2χ

2
η2

−→
p

a +a2χ
2
η2

=Q3. Thus G3 is a limiting case

of G4.

The parameters of G3 can be selected by matching the first three moments of Q3 to

those of Q(w), as recommended by Hall (1983) and Buckley and Eagleson (1988). Simi-
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Table 4: Actual size using 5% critical values from infeasible three-parameter and four-
parameter distributions

n = 30 n = 60 n = 120 n = 250 n = 500
Three-Parameter Distribution, Homoskedastic Case

Dummy 0.05 0.05 0.05 0.05 0.05
Pareto(2) 0.05 0.05 0.05 0.05 0.05

Gamma(1/4,1) 0.05 0.05 0.05 0.05 0.05
logNormal(0,1) 0.05 0.05 0.05 0.05 0.05
logNormal(0,4) 0.05 0.06 0.05 0.05 0.05

Four-Parameter Distribution, Homoskedastic Case
Dummy 0.05 0.05 0.05 0.05 0.05
Pareto(2) 0.05 0.05 0.05 0.05 0.05

Gamma(1/4,1) 0.05 0.05 0.05 0.05 0.05
logNormal(0,1) 0.05 0.05 0.05 0.05 0.05
logNormal(0,4) 0.05 0.05 0.05 0.05 0.05

Three-Parameter Distribution, Heteroskedastic Case
Dummy 0.05 0.05 0.05 0.05 0.05
Pareto(2) 0.06 0.06 0.06 0.06 0.06

Gamma(1/4,1) 0.06 0.06 0.06 0.05 0.05
logNormal(0,1) 0.06 0.06 0.06 0.05 0.06
logNormal(0,4) 0.07 0.07 0.07 0.06 0.06

Four-Parameter Distribution, Heteroskedastic Case
Dummy 0.05 0.05 0.05 0.05 0.05
Pareto(2) 0.05 0.05 0.05 0.05 0.05

Gamma(1/4,1) 0.05 0.05 0.05 0.05 0.05
logNormal(0,1) 0.05 0.05 0.05 0.05 0.05
logNormal(0,4) 0.05 0.04 0.05 0.04 0.05

larly, the parameters of G4 can be selected by matching the first four moments of Q4 to

those of Q(w), as recommended by Hillier and O’Brien (2019). Details are provided in

Appendix A.

The four-parameter approximation G4 has an explicit solution which we now present.

Theorem 2 The exact four-moment cumulative distribution function is

G4 (x | X ) =
∞∑

m=0
bmFη1+η2+2m

(√
a1

(
η1 +η2 +2m

))
(13)
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where the coefficients bm equal

bm =
(

a1

a2

)η2/2 (
1− a1

a2

)m Γ
(
m + η2

2

)
Γ

(η2
2

)
m!

(14)

and Fr (x) is the student t cumulative distribution function with r degrees of freedom.

In contrast to the recursion (10) for cm , (14) provides an explicit formula for the co-

efficients bm . Consequently, they are computationally quick to calculate and the distri-

bution function (13) is numerically fast to evaluate in most cases. Computational issues

are discussed in the next section.

It may be useful to observe that the coefficients bm equal the probability density

function of the Negative Binomial distribution with parameters η2/2 and a1/a2. One

implication is
∑∞

m=0 bm = 1. Another is that (13) is convergent, and thus a valid repre-

sentation for G4(x).

We investigate by simulation the accuracy of the approximations G3 and G4 to the

exact distribution. We used the same design as in Tables 1-3 with the addition of n = 250.

The results are reported in Table 4. For the homoskedastic designs the three and four-

parameter approximations G3 and G4 are excellent, with size equal to 5% for G3 for all

but one case, and for G4 for every case. For heteroskedastic designs the performance is

more varied. We can see that the three-parameter distribution G3 has 5%-6% size for all

designs except logNormal(0,4), where size equals 7% for n ≤ 120. The four-parameter

distribution G4 has excellent performance, with 5% size for all but two cases and no

over-rejections.

To illustrate the approximations see Figure 2. Here we plot the exact distribution of

the t-ratio, along with the approximations G3 and G4, for the logNormal(0,4) regressor

design with n = 120. Panel (a) is the homoskedastic case and panel (b) the heteroskedas-

tic case. We can see in both panels that the three-parameter distribution G3 lies strictly

above (but is close to) the exact distribution, and the four-parameter distribution G4 lies

very close to the exact distribution. This means that p-values based on G3 slightly over-

reject, and those based on G4 are essentially correct. Plots for the other regressor designs

are qualitatively similar, though in most cases with considerably reduced differences be-

tween the distribution functions.
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Figure 2: Three-Parameter and Four-Parameter Distributions. logNormal(0,4) Regressor
Design, n = 120

6 Computation

In practice, the four-moment distribution G4(x) defined in (13) is evaluated with a

finite number of terms

G M
4 (x | X ) =

M∑
m=0

bmFη1+η2+2m

(√
a1

(
η1 +η2 +2m

))
. (15)

The difference is the truncation error TM = ∣∣G M
4 (x | X )−G4 (x | X )

∣∣. By selecting the

number of series terms M sufficiently large this truncation error can be made arbitrarily

small.

Theorem 3 For any τ> 0 the truncation error satisfies Tm ≤ τ if

M ≥ 1

2c

(
qη2

(
1−

((
1

δ
−1

)
c

)η2/2 τ

1−δ

)
− cη2

)
(16)

where δ= a1/a2, c = log(1/(1−δ)), and qη
(
p

)
is the quantile function of the χ2

η distribu-

tion.

The right-side of (16) is a function of a1, a2, η2, and τ. Thus in any application, M

can be selected so that the truncation error is smaller than a specified tolerance τ. In
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our numerical work we set τ= 0.0001.

Table 5: Computation Cost

n = 30 n = 60 n = 120 n = 250 n = 500 n = 1000 n = 2000
Three-Parameter Distribution, Computation Time (Seconds)

Dummy 0.001 0.002 0.002 0.002 0.012 0.067 0.352
Pareto(2) 0.001 0.001 0.003 0.003 0.011 0.061 0.356

Gamma(1/4,1) 0.001 0.001 0.002 0.003 0.011 0.060 0.357
logNormal(0,1) 0.001 0.001 0.003 0.004 0.010 0.063 0.362
logNormal(0,4) 0.001 0.003 0.002 0.003 0.012 0.061 0.365

Four-Parameter Distribution, Computation Time (Seconds)
Dummy 0.001 0.003 0.004 0.010 0.056 0.267 1.067
Pareto(2) 0.001 0.002 0.002 0.003 0.013 0.044 0.249

Gamma(1/4,1) 0.001 0.001 0.001 0.002 0.010 0.045 0.247
logNormal(0,1) 0.001 0.002 0.002 0.002 0.010 0.050 0.246
logNormal(0,4) 0.001 0.002 0.001 0.003 0.012 0.046 0.244

Four-Parameter Distribution, Number of series terms (M)
Dummy 740 3319 14,003 62,429 252,776 1,017,415 4,076,592
Pareto(2) 65 65 64 66 71 77 85

Gamma(1/4,1) 63 57 57 61 69 81 98
logNormal(0,1) 55 61 65 71 79 90 104
logNormal(0,4) 90 69 58 55 56 59 63

When η1 +η2 +2m is large, the student t distribution function in (15) is close to the

standard normal, and this substitution can be made with little added error. As the stan-

dard normal distribution is considerably faster to evaluate this can greatly reduce com-

putation time in contexts with large M . A numerical investigation shows that the student

t and normal distributions satisfy the inequality supx |Fr (x)−Φ(x)| ≤ τ if r ≥ 0.158/τ.

Thus for a given error tolerance τ the normal distribution can be substituted into (15)

for η1 +η2 +2m ≥ 0.158/τ. In our numerical work we set τ= 0.0001.

Our formula for computation of any of the approximate distributions G2, G3, or G4

require the weights w1, ..., wK , which are based on the eigenvalues of the matrix C in

(5). When n is small this is a reasonable calculation but as n increases this is compu-

tationally costly. It is not strictly necessary, however, to actually compute all the eigen-

values. As shown in Appendix A, the coefficients of the approximations are functions

only of the averages µr = ∑K
j=1 w r

j , which can be calculated more efficiently as follows.

First, calculate the largest eigenpair (λ0,h0) of the matrix C . In Matlab, for example,

this can be accomplished using the eigs command with the largestreal option. Set
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C 1 = (
h0h′

0λ0 −C
)

/λ0. This is identical to C , but stripped of its largest eigenvalue λ0,

normalized by λ0, and multiplied by −1. The non-zero eigenvalues of C 1 equal the

weights (w1, ..., wK ). The averages µr are then found as µr = tr
(
C r

1

)
. These matrix oper-

ations are computationally more efficient than eigenvalue calculation, especially when

the sample size is large.

To illustrate computation cost, in Table 5 we display the computation time to calcu-

late the distribution functions G3 (x | X ) and G4 (x | X ) at x = 3 for the five regressor de-

signs under homoskedasticity and a range of values of n. Computation time is displayed

in seconds, and was calculated using the timeit function in Matlab. Computation was

done in Matlab R2020b on a personal computer with an i7-4790 3.60GHz processor run-

ning Windows 10 Pro. Examine the first panel of Table 5, which displays the computa-

tion time for the G3 distribution. We can see that computation time is roughly invariant

across the regressor designs, but is strongly increasing in n for n > 250. Computation

time is about 0.002 seconds for n = 100, increases to 0.01 seconds for n = 500, and to

0.06 seconds for n = 1000. This computation cost is mostly due to the matrix manipu-

lations needed to calculate the parameters of the approximation; very little is due to the

numerical integral (12).

Now examine the second panel of Table 5, which displays the computation time for

the G4 distribution. If we ignore the first row (the Dummy design), we see that the com-

putation cost is essentially identical to the G3 distribution. This is because most of the

computation time is due to the same matrix manipulations. However, the computation

time required to compute G4 for the Dummy design is considerably different from the

others. The computation time is small for small n, but greatly increases as n increases.

For large n the computation time becomes unreasonable for conventional application.

The reason why the Dummy design has a high computation time for G4 can be seen

from the third panel of Table 5, which displays the number of series terms M needed to

obtain a small approximation error (we used the tolerance τ= 0.0001). We can see that

for all designs excepting the Dummy design, only a smaller number (less than 100) of

series terms are required, but for the Dummy design the number of series terms is large

and increasing in n. The reason is because in the approximating model Q4 = a1χ
2
η1

+
a2χ

2
η2

the ratio a1/a2 is extremely small, leading to slow convergence of (13).

This evidence suggests the practical rule: Use the G4 approximation if the num-

ber of required series terms M from (16) is not too large; otherwise use the G3 ap-

proximation. From Table 5 we see that computation time is less than 0.02 seconds if
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M ≤ 100,000, which we propose as a practical maximum. Implementation of this rule

(use G4 if M ≤ 100,000, and otherwise use G3) implies in our examples that G4 will be

used for all designs except for the Dummy design with n > 250 under homoskedasticity

and n > 120 under heteroskedasticity (Table 5 in the heteroskedastic case is presented

in the Supplemental Appendix). From Table 4 we can see that this leads to nominal 5%

rejection rates essentially equal to 5% for all cases.

Overall, we deduce that the combined G3/G4 implementation is near-exact, with

minimal computation time (less than 0.01 second) for sample sizes up to 500. While

computation time is higher for larger n, more efficient programming may be able to

reduce these costs.

7 Estimation of Approximate Distribution

The G3 and G4 distributions depend on the unknown error variances σ2
i = σ2(Xi )

and are thus infeasible. One feasible implementation replaces the unknown variances

by estimates. In principle any nonparametric estimator σ̂2
i = σ̂2(Xi ) can be used. For

illustration we use the following estimator.

Take the leave-one-out prediction errors ẽi = Yi − X ′
i β̃−i and their squares ẽ2

i . Take

sample mean estimator σ̃2 = n−1 ∑n
i=1 ẽ2

i and the regression prediction estimator σ̃2
i =

γ̃0+γ̃1X 2
i where (γ̃0, γ̃1) are obtained by least-squares of ẽ2

i on X 2
i . Take the weighted av-

erage σ2
i = φ1σ̃

2 +φ2σ̃
2
i for non-negative weights whose sum is bounded by one. Pick

the weights to minimize the Mallows criterion of Hansen (2007). The resulting esti-

mator is a shrinkage-type averaging estimator which shrinks the regression estimator

towards the sample mean and towards zero. Finally, trim the estimator using the rule

σ̂2
i = max[σ2

i , σ̃2/100], to bound the estimated variances away from zero.

We investigate the accuracy of this feasible distribution rule by simulation using the

same designs as in the previous sections. The actual size of nominal 5% tests are calcu-

lated using the recommended G3/G4 implementation (as described in the previous sec-

tion) and the Mallows variance estimator as described in the previous paragraph. This

is a fully data-dependent feasible implementation. The results are reported in Table 6.

We can see that under homoskedastic errors the size of the White t-ratio T is near-exact,

equalling 5% for most cases. Under heteroskedastic errors the test is over-sized for the

smallest samples but has excellent size for n ≥ 120.

The performance of the feasible distribution for the smallest samples in Table 6 is
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Table 6: Actual size using HC1 covariance matrix and 5% critical values from feasible
G3/G4 distribution

n = 30 n = 60 n = 120 n = 250 n = 500
Homoskedastic Error

Dummy 0.05 0.05 0.05 0.05 0.05
Pareto(2) 0.05 0.05 0.05 0.05 0.05

Gamma(1/4,1) 0.05 0.05 0.05 0.05 0.05
logNormal(0,1) 0.05 0.05 0.05 0.05 0.05
logNormal(0,4) 0.05 0.05 0.05 0.05 0.05

Heteroskedastic Error
Dummy 0.07 0.06 0.06 0.05 0.05
Pareto(2) 0.10 0.08 0.06 0.05 0.05

Gamma(1/4,1) 0.09 0.07 0.06 0.05 0.05
logNormal(0,1) 0.09 0.06 0.05 0.05 0.05
logNormal(0,4) 0.11 0.07 0.05 0.05 0.05

disappointing, as nominal 5% rejection rates are as high as 11%. To improve these re-

jection rates we recommend using the HC3 covariance matrix along with our proposed

feasible finite sample distribution. The HC3 estimator and modification to the distri-

butional calculations are described in the following section. The actual size of nominal

5% tests calculated using the HC3 covariance matrix estimator and our recommended

feasible G3/G4 implementation are reported in table 7. The performance of the test is

greatly improved relative to Table 6 and other feasible methods. Under homoskedastic

errors the size is exactly 5% for all cases. For heteroskedastic errors the tests have size

5% for n ≥ 250 but are over-sized for n ≤ 120. For n = 120 the actual size is 5%-6%. For

n = 60 the size is 6%-7%. For n = 30 the size is 6%-8%. Hence for small samples (and

extremely leveraged regressor designs) the test remains over-sized, but not dramatically

so, and greatly reduced relative to the excessive size distortions of the existing feasible

methods (Tables 1-3).

Overall, Tables 6-7 show that feasible p-values can be implemented with generally

excellent accuracy except in the most extreme cases, especially if the HC3 covariance

matrix estimator is used. Accuracy is better than other existing methods, such as the

student t distribution, the wild bootstrap, and the Bell-McCaffrey distribution.
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Table 7: Actual size using HC3 covariance matrix and 5% critical values from feasible
G3/G4 distribution

n = 30 n = 60 n = 120 n = 250 n = 500
Homoskedastic Error

Dummy 0.05 0.05 0.05 0.05 0.05
Pareto(2) 0.05 0.05 0.05 0.05 0.05

Gamma(1/4,1) 0.05 0.05 0.05 0.05 0.05
logNormal(0,1) 0.05 0.05 0.05 0.05 0.05
logNormal(0,4) 0.05 0.05 0.05 0.05 0.05

Heteroskedastic Error
Dummy 0.06 0.06 0.05 0.05 0.05
Pareto(2) 0.08 0.07 0.06 0.05 0.05

Gamma(1/4,1) 0.08 0.07 0.06 0.05 0.05
logNormal(0,1) 0.07 0.06 0.05 0.05 0.05
logNormal(0,4) 0.08 0.06 0.05 0.05 0.05

8 Alternative Covariance Matrix Estimators

Theorems 1 and 2 are written for the White t-ratio T computed with the HC1 covari-

ance matrix estimator. The result immediately generalizes to several other covariance

matrix estimators. For the HC0, HC2, and HC3 estimators, the only difference is that the

matrix B 1 in (4) has an alternative scaling, as we now describe.

HC0. This is the estimator proposed by White (1980).

V̂ HC0 =
(

X ′X
)−1

(
n∑

i=1
Xi X ′

i ê2
i

)(
X ′X

)−1 .

For the HC0 estimator, replace B 1 in (4) with

B 0 = diag
(
Z 2

1 , ..., Z 2
n

)
.

HC2. This is the estimator proposed by Horn, Horn and Duncan (1975).

V̂ HC2 =
(

X ′X
)−1

(
n∑

i=1
Xi X ′

i

ê2
i

(1−hi i )

)(
X ′X

)−1

where hi i = X ′
i

(
X ′X

)−1 Xi are the leverage values. For the HC2 estimator, replace B 1 in
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(4) with

B 2 = diag

(
Z 2

1

(1−h11)
, ...,

, Z 2
n

(1−hnn)

)
.

HC3. This is the estimator derived by MacKinnon and White (1985) from the jack-

knife principle and by Andrews (1991) based on the principle of leave-one-out cross-

validation.

V̂ HC3 =
(

X ′X
)−1

(
n∑

i=1
Xi X ′

i

ê2
i

(1−hi i )2

)(
X ′X

)−1

For the HC3 estimator, replace B 1 in (4) with

B 3 = diag

(
Z 2

1

(1−h11)2 , ...,
, Z 2

n

(1−hnn)2

)
.

9 Appendix A: Moment Matching

The parameters of the three-parameter and four-parameter distributions are ob-

tained by selecting the parameters to match the moments of Q(w), which are deter-

mined by the scaled cumulants µr =∑K
j=1 w r

j . The solution are as follows.

Three-Parameter Distribution. (Hall (1983) and Buckley and Eagleson (1988))

Q3 = aχ2
η+b.

Set a =µ3/µ2, b =µ1 −µ2
2/µ3, and η=µ3

2/µ2
3.

Four-Parameter Distribution. (Hillier and O’Brien (2019)).

Q4 = a1χ
2
η1
+a2χ

2
η2

.
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The parameters are normalized as a1 ≤ a2. Set

a2 = 2

ρ−√
ρ2 −4ψ

a1 = µ3 −µ2a2

µ2 −µ1a2

η1 = µ1a2 −µ2

a1(a2 −a1)

η2 = µ1 −η1a1

a2

where

ρ = µ1µ4 −µ2µ3

µ2µ4 −µ2
3

, ψ= µ1µ3 −µ2
2

µ2µ4 −µ2
3

.

10 Appendix B: Proofs

Proof of Theorem 1: All probability calculations are conditional on the regressor

matrix X . To simplify the notation we will not make this conditioning explicit.

The t-ratio equals

T = R ′ (X ′X
)−1 (

X ′e
)√( n

n−k

)
R ′ (X ′X

)−1 (∑n
i=1 Xi X ′

i ê2
i

)(
X ′X

)−1 R

= Z ′e√√√√( n

n −k

)(
n∑

i=1
Z 2

i ê2
i

)

= Z ′e√
ê ′B 1ê

= Z ′Σ1/2ε√
ε′Σ1/2MB 1MΣ1/2ε

where ε=Σ−1/2e ∼ N(0, I n). This expression is an odd function of ε, so is symmetrically

distributed about zero. Thus for x > 0,

P [T ≤ x] = 1

2
(P [|T | ≤ x]+1) .
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We calculate that for x > 0,

P [|T | ≤ x] =P[
T 2 ≤ x2]

=P
[ (

Z ′Σ1/2ε
)2

ε′Σ1/2MB 1MΣ1/2ε
≤ x2

]
=P[

ε′Σ1/2Z Z ′Σ1/2ε≤ x2ε′Σ1/2MB 1MΣ1/2ε
]

=P[
ε′Cε≤ 0

]
where C is defined in (5). By the spectral decomposition, C = H ′ΛH , where H ′H = I n

and Λ = diag(λ0,λ1, ...,λn−1) are the eigenvalues of C . As described in the text, λ0 > 0,

λ j < 0 for j = 1, ..., N , and the remainder are zero. Set ζ = Hε ∼ N(0, I n) and partition ζ

in comformity withΛ. Then

ε′Cε= ζ′Λζ=λ0ζ
2
0 +

N∑
j=1

λ jζ
2
j =λ0ζ

2
0 +

N∑
j=1

λ j Q j

where Q j = ζ2
j ∼χ2

1 are mutually independent and independent of ζ0 ∼ N(0,1). Hence

P [|T | ≤ x] =P[
ε′Cε≤ 0

]
=P

[
λ0ζ

2
0 ≤−

N∑
j=1

λ j Q j

]

=P
[
ζ2

0 ≤
N∑

j=1
w j Q j

]
=P

[
|ζ0| ≤

√
Q(w)

]
= 2P

[
ζ0 ≤

√
Q(w)

]
−1.

The final equality uses the fact that the distribution is symmetric about zero.

Using this expression, the law of iterated expectations, and the definition Φ(t ) =
P [ζ0 ≤ t ] , we deduce that

P [T ≤ x] =P
[
ζ0 ≤

√
Q(w)

]
= E

(
P

[
ζ0 ≤

√
Q(w) |Q(w)

])
= E

[
Φ

(√
Q(w)

)]
. (17)
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This is (6).

As derived by Ruben (1962) and Farebrother (1984), the density function of Q =Q(w)

when Q2
j ∼χ2

η j
for general degrees of freedom η j is

gQ (t ) =
∞∑

m=0

cm

w1
gη+2m (t/w1) (18)

where gr (t ) is the chi-square density function with r degrees of freedom, η=
N∏

j=1
η j , and

the coefficients cm are defined as

c0 =
N∏

j=1

(
w1

w j

)η j /2

cm = 1

m

m−1∑
j=0

c j dm− j

dm =
N∑

j=1

η j

2

(
1− w1

w j

)m

,

This specializes to η= N and (9)-(11) when η j = 1 as for Q(w).

Using the law of iterated expectations and the definitionΦ(t ) =P [ζ≤ t ] , (17) equals

P
[
ζ≤

√
Q

]
= E

[
P

[
ζ≤

√
Q |Q

]]
= E

[
Φ

(√
Q

)]
.

Writing (17) using the density (18), integrating term-by-term, and making the change of

variables s = t/w1, we find

E
[
Φ

(√
Q

)]
=

∫ ∞

0
Φ

(p
t
) ∞∑

m=0

cm

w1
gN+2m (t/w1)d t

=
∞∑

m=0
cm

∫ ∞

0
Φ

(p
s
p

w1
)

gN+2m (s)d s

=
∞∑

m=0
cmFN+2m

(√
w1 (N +2m)

)
(19)

which is the stated result. The final equality is∫ ∞

0
Φ

(p
sa

)
gr (s)d s = Fr

(p
r a

)
(20)

which we now establish. Let φ(t ) and fr (t ) denote the standard normal and the student
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t density functions. SinceΦ(s) = ∫ s
−∞φ(t )d t ,∫ ∞

0
Φ

(p
sa

)
gr (s)d s =

∫ ∞

0

(∫ s

−∞
p

sφ
(p

st
)

d t

)
gr (s)d s

=
∫ s

−∞

(∫ ∞

0

exp
(−st 2/2

)
p

2π

p
s

sr /2−1 exp(−s/2)

2r /2Γ
( r

2

) d s

)
d t

=
∫ s

−∞

(∫ ∞

0

s(r+1)/2−1 exp
(−s(1+ t 2)/2

)
p
π2(r+1)/2Γ

( r
2

) d s

)
d t

=
∫ s

−∞

Γ
( r+1

2

)
p
πΓ

( r
2

)(
1+ t 2

)(r+1)/2
d t

=
∫ s

−∞
p

r fr
(p

r t
)

d t

= Fr
(p

r a
)

as claimed. ■

Proof of Theorem 2: The random variable Q4 = a1χ
2
η1
+a2χ

2
η2

is a special case of that

studied by Ruben (1962) and Farebrother (1984), which has density (18). Thus by the

argument of the proof of Theorem 1, the distribution G4 is equal to that as specified,

with the coefficients bm equal to

b0 =
(

a1

a2

)η2/2

bm = 1

m

m−1∑
j=0

b j
η2

2

(
1− a1

a2

)m− j

.

The derivation is completed by showing that bm satisfies (14). The proof is by induction.

Notice that b0 satisfies (14) for m = 0. Assume that bm satisfies (14) for j < m. Then

bm = 1

m

m−1∑
j=0

b j
η2

2

(
1− a1

a2

)m− j

= 1

m

m−1∑
j=0

(
a1
a2

)η2/2 (
1− a1

a2

) j
Γ

(
j + η2

2

)
Γ

(η2
2

)
j !

η2

2

(
1− a1

a2

)m− j

=
(

a1
a2

)η2/2 (
1− a1

a2

)m

Γ
(η2

2

) 1

m

m−1∑
j=0

Γ
(

j + η2
2

)
j !

η2

2
.
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The proof is completed by showing that

1

m

m−1∑
j=0

Γ
(

j + η2
2

)
j !

η2

2
= Γ

(
m + η2

2

)
m!

. (21)

Take the binomial identity (
a

n

)
=

n∑
j=0

(
j +a −n −1

j

)
(see, e.g., equation 26.3.8 of Olver, Lozier, Boisvert, and Clark (2010)). Set n = m −1 and

a = η2/2−m +1. This implies

m−1∑
j=0

(
j + η2

2 −1

j

)
=

(
η2
2 +m −1

m −1

)

and thus
m−1∑
j=0

Γ
(

j + η2
2

)
Γ(η2

2 ) j !
= Γ

(
m + η2

2

)
Γ(η2

2 +1)(m −1)!

which is (21) if we multiply both sides by Γ(η2
2 +1)/m. This completes the proof. ■

Proof of Theorem 3: Set δ= a1/a2. Expression (14) and the inequalityΓ (m + r )/m! ≤
(m + r −1)r−1 imply

bm = δη2/2 (1−δ)m Γ
(
m + η2

2

)
Γ

(η2
2

)
m!

≤ δη2/2 (1−δ)m

Γ
(η2

2

) (
m + η2

2
−1

)η2/2−1
. (22)

Using the triangle inequality, the fact
∣∣Fη(x)

∣∣ ≤ 1, expression (22), the change-of-

index s = m + η2/2 − 1, the equality (1−δ)s = exp(−cs), and the change-of-variables
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t = 2cs, we find that

TM =
∣∣∣∣∣ ∞∑
m=M+1

bmFη1+η2

(√
a1

(
η1 +η2 +2m

))∣∣∣∣∣
≤

∞∑
m=M+1

δη2/2 (1−δ)m

Γ
(η2

2

) (
m + η2

2
−1

)η2/2−1

=
∞∑

s=M+η2/2

δη2/2 (1−δ)s+1−η2/2

Γ
(η2

2

) sη2/2−1

≤ δη2/2

(1−δ)η2/2−1

∫ ∞

M+η2/2

exp(−cs) sη2/2−1

Γ
(η2

2

) d s

= δη2/2

(1−δ)η2/2−1 cη2/2

∫ ∞

2cM+cη2

exp(−t/2) tη2/2−1

2η2/2Γ
(η2

2

) d t

= δη2/2

(1−δ)η2/2−1 cη2/2

(
1−Hη2

(
2cM + cη2

))
≤ τ

where Hη (x) is the χ2
η distribution function, and the final inequality holds because con-

dition (16) implies

Hη2

(
2cM + cη2

)≥ 1− cη2/2 (1−δ)η2/2−1

δη2/2
τ.

■
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