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Abstract

The generalized method of moments (GMM) estimator of the reduced rank regression model is

derived under the assumption of conditional homoskedasticity. We show that this GMM estimator is

algebraically identical to the maximum likelihood estimator under normality developed by Johansen

(1988). This includes the vector error correction model (VECM) of Engle and Granger. We also

show that GMM tests for reduced rank (cointegration) are algebraically similar to the Gaussian

likelihood ratio tests. This shows that normality is not necessary to motivate these estimators and

tests.
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1 Introduction

The vector error correction model (VECM) of Engle and Granger (1987) is one of the most

widely used time-series models in empirical practice. The predominant estimation method for

the VECM is the reduced rank regression method introduced by Johansen (1988, 1991, 1995).

Johansen’s estimation method is widely used because it is straightforward, a natural extension of

the VAR model of Sims (1980), and is computationally tractable.

Johansen motivated his estimator as the maximum likelihood estimator (MLE) of the VECM

under the assumption that the errors are i.i.d. normal. To this date there it is unclear if the

estimator has a broader justification. In contrast, it is well known that least-squares estimation is

both maximum likelihood under normality and method of moments under uncorrelatedness.

This paper provides the missing link. We show that Johansen’s reduced rank estimator is

algebraically identical to the generalized method of moments (GMM) estimator of the VECM, under

the imposition of conditional homoskedasticity. This GMM estimator only uses uncorrelatedness

and homoskedasticity. Thus Johansen’s reduced rank estimator can be motivated under much

broader conditions than normality.

The asymptotic effi ciency of the estimator in the GMM class relies on the assumption of ho-

moskedasticity (but not normality). When homoskedasticity fails the reduced rank estimator losses

asymptotic effi ciency, but retains its interpretation as a GMM estimator.

We also show that the GMM tests for reduced (cointegration) rank are nearly identical to

Johansen’s likelihood ratio tests. Thus the standard likelihood ratio tests for cointegration can be

interpreted more broadly as GMM tests.

This paper does not introduce new estimation nor inference methods. It merely points out that

the currently used methods have a broader interpretation than may have been understood. The

results leave open the possibility that new GMM methods which do not impose homoskedasticity

could be developed.

This paper is organized as follows. Section 2 introduces reduced rank regression models and

Johansen’s estimator. Section 3 presents the generalized method of moments and states the main

theorems demonstrating equivalence of GMM and MLE. Section 4 presents the derivation of the

GMM estimator. Section 5 contains two technical results relating generalized eigenvalue problems

and the extrema of quadratic forms.

2 Reduced Rank Regression Models

The vector error correction model (VECM) for p variables of cointegrating rank r with k lags is

∆Xt = αβ′Xt−1 +
k−1∑
i=1

Γi∆Xt−i + ΦDt + et (1)
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where Dt are the deterministic components. Observations are t = 1, ..., T . The matrices α and β

are p × r with r ≤ p. This is a famous workhorse model in applied time series, largely due to the

seminal work of Engle and Granger (1987).

The primary estimation method for the VECM is known as reduced rank regression, and was

developed Johansen (1988, 1991, 1995). Algebraically, the VECM (1) is a special case of the reduced

rank regression model

Yt = αβ′Xt + ΨZt + et (2)

where Yt is p × 1, Xt is m × 1 and Zt is q × 1. The coeffi cient matrix α is p × r and β is m × r

with r ≤ min(m, p). Johansen derived the maximum likelihood estimator for model (2) under the

assumption that et is i.i.d. N (0,Ω). This immediately applies to the VECM (1) and is the primary

application of reduced rank regression in econometrics.

Reduced rank regression was first proposed by Anderson and Rubin (1949, 1950) and Anderson

(1951). Indeed, these authors develop the maximum likelihood estimator for the model

Yt = ΠXt + et (3)

Γ′Π = 0 (4)

where Γ is p × (p− r) and unknown. This is an alternative parameterization of (2) without the
covariates Zt. Anderson and Rubin (1949, 1950) considered the case p− r = 1 and primarly focus

on estimation of the vector Γ. Anderson (1951) considered the case p− r ≥ 1.

While the models (2) and (3)-(4) are equivalent and thus have the same MLE, the different

parameterizations led the authors to different derivations. Anderson and Rubin derived the esti-

mator of (3)-(4) by a tedious application of constrained optimization. (Specifically, the maximize

the likelihood of model (3) imposing the constraint (4) using Lagrange multipler methods. The

solution turns out to be tedious because (4) is a nonlinear function of the parameters Γ and Π.)

The derivation is so cumbersome that it is excluded from nearly all statistics and econometrics

textbooks, despite the fact that it is the source of the famous LIML estimator.

The elegant derivation used by Johansen (1988) is algebraically unrelated to that of Anderson-

Rubin, and is based on applying a concentration argument to the product structure in (2). It is

similar to the the derivation in Tso (1981) though the latter did not include the covariates Zt.

Johansen’s derivation is algebraically straightforward and thus is widely taught to students.

Johansen’s MLE for (2) is well known, but is stated here for completeness. Define the projection

matrix MZ = IT − Z (Z ′Z)−1 Z ′, and the residual matrices Ỹ = MZY and X̃ = MZX. Consider

the generalized eigenvalue problem∣∣∣∣X̃ ′Ỹ (Ỹ ′Ỹ )−1 Ỹ ′X̃ − X̃ ′X̃λ
∣∣∣∣ = 0. (5)
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Its solutions 1 > λ̂1 > · · · > λ̂p > 0 satisfy

X̃ ′Ỹ
(
Ỹ ′Ỹ

)−1
Ỹ ′X̃νi = X̃ ′X̃ν̂iλ̂i.

(λ̂i, ν̂i) are known as the generalized eigenvalues and eigenvectors of X̃ ′Ỹ
(
Ỹ ′Ỹ

)−1
Ỹ ′X̃ with respect

to X̃ ′X̃. We impose the normalization ν̂ ′iX̃
′X̃ν̂i = 1.

Given the normalization β′X̃ ′X̃β = Ir, Johansen’s reduced rank estimator for β is

β̂mle = [ν̂1, ..., ν̂r] .

The MLE α̂mle and Ψ̂mle are found by least-squares regression of Yt on β̂′mleXt and Zt.

3 Generalized Method of Moments

Define Wt = (X ′t, Z
′
t). We derive the generalized method of moments (GMM) estimator of the

reduced rank regression model (2) under the standard orthogonality restriction

E
(
Wte

′
t

)
= 0

plus the homoskedasticity condition

E
(
ete
′
t ⊗WtW

′
t

)
= Ω⊗Q

where Ω = E (ete
′
t) and Q = E (WtW

′
t).

The effi cient GMM criterion (see L. Hansen (1982)) takes the form

Jr(α, β,Ψ) = Tgr (α, β,Ψ)′ V̂ −1gr (α, β,Ψ)

where

gr (α, β,Ψ) =
1

T

n∑
t=1

((
Yt − αβ′Xt −ΨZt

)
⊗Wt

)
(6)

V̂ = Ω̂⊗ Q̂

Ω̂ =
1

T

n∑
t=1

êtê
′
t (7)

Q̂ =
1

T

n∑
t=1

WtW
′
t

and êt are the least-squares residuals of the unconstrained model

êt = Yt − Π̂Xt − Ψ̂Zt.
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The GMM estimator are the parameters which jointly minimize the criterion Jr (α, β,Ψ) subject

to a normalization for β. We use β′X̃ ′X̃β = Ir.(
α̂gmm, β̂gmm, Ψ̂gmm

)
= argmin

β′X̃′X̃β=Ir

Jr (α, β,Ψ) .

The main contribution of the paper is the following surprising result.

Theorem 1.
(
α̂gmm, β̂gmm, Ψ̂gmm

)
=
(
α̂mle, β̂mle, Ψ̂mle

)
Theorem 2. Jr(α̂gmm, β̂gmm, Ψ̂gmm) = tr

(
Ω̂−1

(
Ỹ ′Ỹ

))
−Tp−T

∑r
i=1

λ̂i
1−λ̂i

where λ̂i are the eigen-

values from (5).

Theorem 1 states that the GMM estimator is algebrically identical to the Gaussian maximum

likelihood estimator.

This shows that Johansen’s reduced rank regression estimator is not tied to the normality

assumption. This is similar to the equivalence of least-squares as a method of moments estimator

and the Gaussian MLE in the regression context.

The key is the use of the homoskedastic weight matrix. This shows that the Johansen re-

duced rank estimator is an effi cient GMM estimator under conditional homoskedasticity. When

homoskedasticity fails the Johansen reduced rank estimator continues to be a GMM estimator, but

is no longer the effi cient GMM estimator.

GMM hypothesis tests can be constructed by the difference in the GMM criteria. Consider

tests for reduced rank, which in the context of VECM are tests for cointegration rank. Take the

model

Yt = ΠXt + ΨZt + et

and consider hypotheses on reduced rank

Hr : rank (Π) = r.

The GMM test statistic for Hr against Hr+1 is

Cr,r+1 = min
β′X̃′X̃β=Ir

Jr (α, β,Ψ)− min
β′X̃′X̃β=Ir+1

Jr+1 (α, β,Ψ) .

The GMM test statistic for Hr against Hp is

Cr,p = min
β′X̃′X̃β=Ir

Jr (α, β,Ψ)− min
β′X̃′X̃β=Ip

Jp (α, β,Ψ) .
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Theorem 3. The GMM test statistics for reduced rank are

Cr,r+1 = T

(
λ̂r+1

1− λ̂r+1

)

Cr,p = T

p∑
i=r+1

λ̂i

1− λ̂i

where λ̂i are the eigenvalues from (5).

Recall in contrast that the likelihood ratio test statistics derived by Johansen are

LRr,r+1 = −T log
(

1− λ̂r+1
)

LRr,p = −T
p∑

i=r+1

log
(

1− λ̂r+1
)
.

The GMM test statistic Cr,r+1 and the LR statistic LRr,r+1 yield equivalent tests since they are

monotonic functions of one another. (If the bootstrap is used to assess significance, the two sta-

tistic will yield numerically identical p-values.) They are asymptotically identical under standard

approximations, and in practice will be nearly identical since the eigenvalues λ̂i tend to be quite

small in value so − log (1− λ) ≈ λ/(1 − λ) ≈ λ. For p − (r + 1) > 1, the GMM test statistic Cr,p
and the LR statistic LRr,p are not equivalent tests (they cannot be written as monotonic functions

of one another) but they also are asymptotically equivalent and will be nearly identical in practice.

4 Derivation of the GMM Estimator

It will be convenient to rewrite the criterion in standard matrix notation. Define the matrices

Y , X, Z and W by stacking the observations. Model (2) is

Y = Xβα′ + ZΨ′ + e.

The moment (6) is

gr (α, β,Ψ) =
1

T
vec
(
W ′
(
Y −Xβα′ − ZΨ′

))
.

Using the relation

tr (ABCD) = vec
(
D′
)′ (

C ′ ⊗A
)

vec (A)

we obtain

Jr(α, β,G) = Tgr (α, β,Ψ)′
(

Ω̂−1 ⊗ Q̂−1
)
gr (α, β,Ψ)

= vec
(
W ′
(
Y −Xβα′ − ZΨ′

))′ (
Ω̂−1 ⊗

(
W ′W

)−1)
vec
(
W ′
(
Y −Xβα′ − ZΨ′

))
= tr

(
Ω̂−1

(
Y −Xβα′ − ZΨ′

)′
W
(
W ′W

)−1
W ′
(
Y −Xβα′ − ZΨ′

))
.
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Following the concentration strategy used by Johansen, we fix β and concentrate out α and

Ψ, obtaining a concentrated criterion which is a function of β only. The system is linear in the

regressors Xβ and Z. Given the homoskedastic weight matrix the GMM estimator of (α,Ψ) is

multivariate least-squares. Using the partialling out (residual regression) approach, we can write

the least-squares residual as the residual from the regression of Ỹ on X̃β, where Ỹ = MZY and

X̃ = MZX are the residuals from regressions on Z. That is, the least-squares residual is

ê(β) = Ỹ − X̃β
(
β′X̃ ′X̃β

)−1
β′X̃ ′Ỹ

= Ỹ − X̃ββ′X̃ ′Ỹ

where the second equality uses the normalization β′X̃ ′X̃β = Ir. Since the space spanned by

W = (X,Z) equals that spanned by (X̃, Z) we can write

W
(
W ′W

)−1
W ′ = Z

(
Z ′Z

)−1
Z ′ + X̃

(
X̃ ′X̃

)−1
X̃ ′.

Since Z ′ê(β) = 0 we find

W
(
W ′W

)−1
W ′ê(β) = X̃

(
X̃ ′X̃

)−1
X̃ ′ê(β)

= X̃
(
X̃ ′X̃

)−1
X̃ ′Ỹ − X̃ββ′X̃ ′Ỹ

and

ê(β)′W
(
W ′W

)−1
W ′ê(β) = Ỹ ′X̃

(
X̃ ′X̃

)−1
X̃ ′Ỹ − Ỹ ′X̃ββ′X̃ ′Ỹ

= Ỹ ′Ỹ − Ỹ ′M
X̃
Ỹ − Ỹ ′X̃ββ′X̃ ′Ỹ

where

M
X̃

= M
X̃

= I − X̃
(
X̃ ′X̃

)−1
X̃ ′.

Using the partialling out (residual regression) approach we can write the variance estimator (7) as

Ω̂ =
1

T
Y ′
(
I −W

(
W ′W

)−1
W ′
)
Y =

1

T
Ỹ ′M

X̃
Ỹ .

Thus the concentrated GMM criterion is

J∗r (β) = tr
(

Ω̂−1ê(β)′W
(
W ′W

)−1
W ′ê(β)

)
= tr

(
Ω̂−1

(
Ỹ ′Ỹ

))
− tr

(
Ω̂−1

(
Ỹ ′M

X̃
Ỹ
))
− tr

(
Ω̂−1

(
Ỹ ′X̃ββ′X̃ ′Ỹ

))
= tr

(
Ω̂−1

(
Ỹ ′Ỹ

))
− Tp− T tr

(
β′X̃ ′Ỹ

(
Ỹ ′M

X̃
Ỹ
)−1

Ỹ ′X̃β

)
. (8)

The GMM estimator minimizes J∗r (β), or equivalently maximizes the third term in (8). This
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is a generalized eigenvalue problem. Lemma 2 (in the next section) shows that the solution is

β̂gmm = [ν̃1, ..., ν̃r] as claimed.

Since the estimates α̂gmm, Ψ̂gmm are found by regression given β̂gmm, and this is equivalent with

MLE, we also conclude that α̂gmm = α̂mle and Ψ̂gmm = Ψ̂mle. This completes the proof of Theorem

1.

To establish Theorem 2, Lemma 2 also shows that the minimum of the criterion is

Jr(α̂gmm, β̂gmm, Ψ̂gmm) = min
β′X̃′X̃β=Ir

Jr(α, β,G)

= min
β′X̃′X̃β=Ir

J∗r (β)

= tr
(

Ω̂−1
(
Ỹ ′Ỹ

))
− Tp− T max

β′X̃′X̃β=Ir

tr

(
β′X̃ ′Ỹ

(
Ỹ ′M

X̃
Ỹ
)−1

Ỹ ′X̃β

)
= tr

(
Ω̂−1

(
Ỹ ′Ỹ

))
− Tp− T

r∑
i=1

λ̂i

1− λ̂i
.

This establishes Theorem 2.

5 Extrema of Quadratic Forms

To establish Theorems 1 and 2 we need a simple extrema property. We first state a simple prop-

erty which relates the maximization of quadratic forms to generalized eigenvalues and eigenvectors.

It is a slight extension of Theorem 11.13 of Magnus and Neudecker (1988).

Lemma 1. Suppose A and C are p×p real symmetric matrices with C > 0. Let λ1 > · · · > λp > 0

be the generalized eigenvalues of A with respect to C and ν1, ..., vp be the associated eigenvectors.

Then

max
β′Cβ=Ir

tr
(
β′Aβ

)
=

r∑
i=1

λi

and

argmax
β′Cβ=Ir

tr
(
β′Aβ

)
= [ν1, ..., νr] .

Proof. Define γ = C1/2′β and A = C−1/2AC−1/2′. The eigenvalues of A are equal to the

generalized eigenvalues λi of A with respect to B. The associated eigenvectors of A are C1/2′νi.

Thus by Theorem 11.13 of Magnus and Neudecker (1988)

max
β′Cβ=Ir

tr
(
β′Aβ

)
= max

γ′γ=Ir
tr
(
γ′Aγ

)
=

r∑
i=1

λi
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and

argmax
β′Cβ=Ir

tr
(
β′Aβ

)
= C−1/2′ argmax

γ′γ=Ir
tr
(
γ′Aγ

)
= C−1/2′C1/2′ [ν1, ..., νr]

= [ν1, ..., νr]

as claimed.

Lemma 2. Let MX = I −X (X ′X)−1X ′. If X ′X > 0 and Y ′MXY > 0 then

max
β′X′Xβ=Ir

tr
(
β′X ′Y (Y ′MXY )−1Y ′Xβ

)
=

r∑
i=1

λi
1− λi

and

argmax
β′X′Xβ=Ir

tr
(
β′X ′Y (Y ′MXY )−1Y ′Xβ

)
= [ν1, ..., νr]

where 1 > λ1 > · · · > λp > 0 are the generalized eigenvalues of X ′Y (Y ′Y )−1Y ′X with respect to

X ′X, and ν1, ..., vp are the associated eigenvectors.

Proof. By Lemma 1,

max
β′X′Xβ=Ir

tr
(
β′X ′Y (Y ′MXY )−1Y ′Xβ

)
=

r∑
i=1

λ̃i

and

argmax
β′X′Xβ=Ir

tr
(
β′X ′Y (Y ′MXY )−1Y ′Xβ

)
= [ν̃1, ..., ν̃r]

where λ̃1 > · · · > λ̃p > 0 are the generalized eigenvalues of X ′Y (Y ′MXY )−1Y ′X with respect

to X ′X, and ν̃1, ..., ν̃p are the associated eigenvectors. The proof is established by showing that

λ̃i = λi/(1− λi) and ν̃i = νi.

Let (ν̃, λ̃) be a generalized eigenvector/eigenvalue pair of X ′Y (Y ′MXY )−1Y ′X with respect to

X ′X. The pair satisfies

X ′Y
(
Y ′MXY

)−1
Y ′Xν̃ = X ′Xν̃λ̃. (9)

By the Woodbury matrix identity

(
Y ′MXY

)−1
=
(
Y ′Y − Y ′X

(
X ′X

)−1
X ′Y

)−1
=
(
Y ′Y

)−1
+
(
Y ′Y

)−1
Y ′X

(
X ′X −X ′Y

(
Y ′Y

)−1
Y ′X

)−1
X ′Y

(
Y ′Y

)−1
=
(
Y ′Y

)−1
+
(
Y ′Y

)−1
Y ′X

(
X ′MYX

)−1
X ′Y

(
Y ′Y

)−1
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where MY = I − Y (Y ′Y )−1 Y ′. Thus

X ′Y
(
Y ′MXY

)−1
Y ′X = X ′Y

(
Y ′Y

)−1
Y ′X +X ′Y

(
Y ′Y

)−1
Y ′X

(
X ′MYX

)−1
X ′Y

(
Y ′Y

)−1
Y ′X

= X ′PYX +X ′PYX
(
X ′MYX

)−1
X ′PYX

= X ′X
(
X ′MYX

)−1
X ′PYX

where PY = Y (Y ′Y )−1 Y ′ and the final equality uses X ′PYX = X ′X −X ′MYX. Substituted into

(9) we obtain

X ′X
(
X ′MYX

)−1
X ′PYXν̃ = X ′Xν̃λ̃.

Multiplying both sides by (X ′MYX) (X ′X)−1 this implies

X ′PYXν̃ = X ′MYXν̃λ̃

= X ′Xν̃λ̃−X ′PYXν̃λ̃.

Collecting terms

X ′PYXν̃(1 + λ̃) = X ′Xν̃λ̃

which implies

X ′PYXν̃ = X ′Xν̃
λ̃

(1 + λ̃)
.

This is an eigenvalue equation. It shows that λ̃/(1 + λ̃) = λ is a generalized eigenvalue and ν̃ the

associated eigenvector of X ′PYX respect to X ′X. Solving, λ̃ = λ/(1 − λ). This means that the

generalized eigenvalues of X ′Y (Y ′MXY )−1Y ′X with respect to X ′X are λi/(1− λi) and νi. Since
λ/(1− λ) is monotonically increasing on [0, 1) and λi < 1, it follows that the ordering of λi and λ̃i
are identical. Thus λ̃i = λi/(1− λi) as claimed.
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