Bruce E. Hansen

"Averaging Estimators for Autoregressions with a Near Unit Root"

Journal of Econometrics, (2010) 158, 142-155.

May 2007
Revised April 2008


This paper uses local-to-unity theory to evaluate the asymptotic mean-squared error (AMSE) and forecast expected squared error from least-squares estimation of an autoregressive model with a root close to unity. We investigate unconstrained estimation, estimation imposing the unit root constraint, pre-test estimation, model selection estimation, and model average estimation. We find that the asymptotic risk depends only on the local-to-unity parameter, facilitating simple graphical comparisons. Our results strongly caution against pretesting. Strong evidence supports averaging based on Mallows weights. In particular, our Mallows averaging method has uniformly and substantially smaller risk than the conventional unconstrained estimator, and this holds for autoregressive roots far from unity. Our averaging estimator is a new approach to forecast combination.

Download PDF file

Link to Programs

Some of the above material is based upon work supported by the National Science Foundation under Grants No. SES-9022176, SES-9120576, SBR-9412339, and SBR-9807111. Any opinions, findings, and conclusions, or recommendations expressed in this material are those of the author(s), and do not necessarily reflect the views of the NSF.