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Abstract

This paper presents a new criterion based on prediction error which allows the estimation of the
number of parameters as well as structures in statistical models. The criterion is valid for short and
long samples alike. Unlike Akaike’s earlier criterion, also based on prediction error, the criterion
proposed here appears to produce consistent error estimates in ARMA processes.
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1. Introduction

Based upon the reasoning that since the ultimate use of most models of time
series is to provide predictions, there has long been a desire to base the entire
estimation procedure on minimization of prediction errors. Indeed, such es-
timators have been shown to possess desirable properties, and, in fact, in the
Gaussian ARMA processes they are comparable with the ML-estimators (Ljung
and Caines (1979)). Moreover, as shown by Davisson (1965) and Akaike
(1974), if one includes in the prediction error the effect of the estimation errors
in the parameters, a criterion results which automatically penalizes the number
of parameters in the model. This is an important innovation, for in the past a
separate hypothesis testing was required to estimate the number of the
parameters.

A meticulous analysis, above all by Shibata (1976), (1980), has revealed that
the order estimates minimizing Akaike’s AIC criterion, which in the Gaussian
ARMA processes is quite equivalent to Davisson’s prediction error criterion,
have interesting and useful properties, except that they are not consistent even
in the case of AR processes. Although one may argue that consistency in itself is
not all that important, in particular if the ‘true’ data-generating system is
infinite-dimensional, this author nevertheless feels that the AIC criterion fails an
analyzable test of performance. And this, of course, does nothing to increase
one’s confidence in it when it is to be applied to non-analyzable cases. We do
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not, incidentally, accept the premise that any physical system is infinite-
dimensional. In fact, we regard the finite amount of observed data to be the
‘true’ system, and together with possible prior information the data are all we
have about the process; any other ‘system’ explanation we invent is simply a
model, which may well be infinite-dimensional, and as such it will have to
compete with other models we care to consider.

Prompted by this shortcoming of the aic criterion, we proposed in Rissanen
(1978), (1983a), (1985) an altogether different principle, the so-called MpL
principle (MpL for minimum description length), based on a purely information-
theoretic idea: pick the parameters so that the model they define permits a
redescription of the observed sequence with the smallest number of binary
digits. This principle indeed has been shown to produce consistent order
estimates in ARMA processes (Hannan (1980)). But despite the soundness and
success of the MDL principle, the failure of such an intuitively attractive
principle as one based on prediction errors remained in this author’s mind as a
puzzling issue, so much so that he suspected that the prediction errors are not
fairly and properly represented in the above-mentioned attempts. This, indeed,
appears to be the case, and when corrected we do arrive at a criterion based on
prediction error, which is not only valid asymptotically like the previous ones
but which is also perfectly justified even for short samples. This criterion
appears to be asymptotically equivalent to the MDL criterion for Gaussian ARMA
processes, and hence their estimates should be consistent.

2. Accumulated prediction error criterion

We consider an observed sample x = x4, - - -, X,,, where the numbers x; are
delivered to us one after another so that at every time instant t=
0,1,:---,n—1 we are given the past sequence x’'=x¢X; - - - X, Here, xq is a

constant, say 0, representing the string of no observations. Suppose now that at
each t we are to make a prediction of the next value x,.,, based upon the
sequence x‘ so far seen. How should we form a measure of the prediction
errors? It seems quite natural to define the following accumulated measure:

n—1
2.1) Vk,x)=n"1 Y (01— %ein)?
0

where £,., = f(x', 6(x")) denotes the prediction made at time ¢ based upon the
past sequence x' with use of parameters estimated in some way, collected in
the k-component vector 6(x‘), which also must depend only on the past
observations. Applying the sensible reasoning that we should act on the
principle that has worked best in the past (indeed, we cannot think of a better
principle for statistical inference!), these estimates should clearly be deter-
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mined by minimization of the summed past prediction errors. The number of
parameters k is then determined so that V(k, x) is minimized.

We illustrate the use of this estimation principle in the case of ARMA models.
Suppose that we are willing to model the data as being a sample from some
stationary zero-mean one-sided moving-average ARMA (p, q) process:

2.2) Xta X+ tax_,=et+be_t - -+tb_ge,

where {e¢,} is an uncorrelated, zero-mean process such that the sequence
{e, e,_1, - - '} spans the same linear space as {x,, x,_, - - -}. The process x is then
defined up to the second moments by the p+q parameters 6=
(ay,* -+, a, by, -+, b, and the variance o> of the process e,.

In view of the class of models selected we consider a linear predictor with the
prediction error €., = X,,, — X, given by €,,, = e,,,, which is determined by

p +q parameters 0(t)=(a,, -, a,, b1, -, by, and the data as follows: for
i=0,---,t+1, put
(2'3) ei,t + bl,tei—l,t+ st bq,tei—q,!= xi + al,txi—l +eeet ap,txi—p7

where x;=¢;,=0 for i=0. The parameter vector 6(t), in turn, should be
determined so that the criterion

t—1
(2.4) sSA)=t"Y e,
4]

is minimized. Finally, the numbers p and q are determined so that the
accumulated prediction errors (2.1) are minimized.

An outstanding feature of the criterion (2.1) is that it uses the same given set
of observations both as the basis for estimation and as a test of the validity of
the estimates. We may compare this with Akaike’s criterion aic, which can also
be interpreted in terms of prediction errors. It follows from a result in Davisson
(1965), when specialized to a stationary AR (p°)-process (see also Fuller and
Hasza (1981)) that

(2.5) Ego(Xy 41— %4> =0*(1+p/n)+o(n™")

where X,,; denotes the predictor obtained with the least squares estimator
6(x™) having p, p=p°, components. In other words,

Xn+1= —A1 X, =~ ° "~ apxn—p+l’

where d; are determined from the observed sequence x" by minimization of
the error squares (2.4) for t=n. Further, o® denotes the variance of the
stationary process {e,} which with the p°-component ° determines the process
x,. We thus see that the more parameters (above the ‘true’ number p°) we pick
in the model, the greater the mean prediction error (2.5). The next step is to
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replace the variance o by the estimate, the minimized error squares s*(n) in
(2.4). This estimator has a bias, which is asymptotically given by —op/n. By
correcting this and substituting the result in (2.5), we get Akaike’s AIC criterion
after taking the natural logarithm:

(2.6) 21n s(n)+2p/n.

It seems to us that both applications of the prediction error principle are
meaningful, although in (2.6) no specific samples are used as a means of
validating the estimates. Instead, the asymptotic mean is taken to provide a
sort of validation. However, something appears to be lost in such a substitute
validation procedure, which becomes evident in the lack of consistency of the
resulting order estimates. Our criterion (2.1), instead, forces a validation after
each observation is received, which leads to a greater penalty on the number of
parameters used. That this, in turn, should produce consistent order estimates
can be seen from the asymptotic analysis carried out in the next section, but its
plausibility is easy to see intuitively. It certainly seems reasonable to expect
that a model’s predictive capability cannot be improved by estimating excessive
unnecessary parameters, while an improvement does result if a new relevant
parameter is added to the model. Hence, the best predictions are obtained
when the model has as many parameters as the—this time imaginary—data-
generating system.

In Stone (1977) and Geisser and Eddy (1979) another predictive approach to
model selection was described, which also uses the common batch of data both
for estimation and validation. However, that approach is not ‘honestly’ predic-
tive in the same sense as ours, and, in fact, Stone in the case with independence
shows that the resulting criterion is asymptotically equivalent to Akaike’s
criterion. Hence, cross-validation in itself does not seem to guarantee consis-
tency, and indeed why should it?

3. Asymptotic properties

In order to analyze further the proposed criterion and its estimators, suppose
that the strings x are generated by a process in the class of Gaussian ARMA
processes. We wish to find out how small the mean of the accumulated
prediction error criterion (2.1) then can be made. In Rissanen (1984) we
proved an asymptotic result, which states the following.

No matter how many parameters we estimate, and no matter how we
estimate them, the inequality

(3.1) EgoV(k,x)Zo 1+ ((k°—¢€)/n)Inn],

holds for all positive numbers € and all ‘true’ parameters 6°, defining stationary
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the standardized quantile function QI(u) defined by
QI(u) = Q(u)— Q(0.5)/2(Q(0.75)— Q(0.25)).

We call QI(u) an identification-quantile function; it equals 0 at u = 0.5 and its
slope at u=0.5 is approximately equal to 1. It is an easily estimated approxi-
mation to the unit-quantile function Q1(u) defined by

Q1(u) ={Q(u) - Q(0.5)}/q(0.5).

The corresponding density function f1(x) is normalized so that the median =0
and f1(0)=0. The unit-density function f1(x) is: exp (—mx?) for normal dis-
tributions; exp (—2x), x =—0.5 log 2, for exponential distributions.

natural logarithmic unit in the AR case, is as follows:
(3.3) Ins(n)+3((p+1)/n)Inn.

If we replace in (3.2) o by its bias-corrected estimate, as above following
(2.5), we get the criterion

(3.4) 21ns(n)+(p/n)1n n,

which differs from (3.3) in having one fewer parameter. The extra parameter in
(3.3) is o2, whose best estimate is s(n) no matter how the other p parameters
are estimated. Hence, for estimating these the two criteria are equivalent. We
conjecture that the difference between V(p,x) and (3.4), multiplied by
n(ln n)™1, tends to 0. If this is true, then because the order estimates obtained
by minimization of (3.3) have been shown to be consistent (Hannan and Quinn
(1979), Rissanen (1980)), so should be the estimates obtained by minimization
of the accumulated prediction errors (2.1).

4. Simulations

We illustrate the use of the criterion (2.1) by applying it to a sequence of
observations generated by a Gaussian ARMA system. We fitted models of type
ArMa (p, q) with (p,q)=(1,0), (2,0), (1,1), and (0,2). Table 1 gives the
minimized criterion V(k, x") for five different values of n along the single
sample of size 600. If we add that models (2, 2) and (0, 1) gave uniformly worse
values than the two best models (1,0) and (1,1) in the table (we did not
calculate the last entry for the two worst models), the reader can conclude that
a system (1, 1) was the one that generated the data. Notice, however, that up to
the sample size 200 the simpler first-order AR model (1, 0) performed better
than the eventual winner (1, 1).
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TABLE 1
Minimized criterion values for four models

Length n
50 100 200 300 600

(1,0) 1336 1276 1.101 1.107 1.015
Model (2,0) 1.629 1.385 1156 1.120 —
(g (1,1) 1505 1307 1.117 1.096 0.996

0,2) 1925 1520 1221 1.159 —

The data-generating system had the parameters a, =0.5 and b, =—0.3. The
300-sample estimate of the (1,0)-model was d,=0.59 while the same esti-
mates for the two parameters in the (1, 1)-model were d,=0.335 and 51=
—0.405. The associated minimized sample variance for the best (1, 1)-model
was 5%(300) = 1.024, which gives the value 1.024(1+1log 300)/300)=1.073 for
the MDL criterion (3.3), where we now used the binary logarithm. This is a little
smaller than the table entry 1.096. For the final sample size of 600 we got with
the same model s*(600)=0.953, which gives the value 0.988 for the MDL
criterion. This, again, is less than the corresponding table entry 0.996. We
conclude that the criterion (2.1) imposes a greater penalty on the system
complexity than the MDL criterion. This is particularly noticeable for short
samples where the relative model cost is greater. Hence, the criterion (2.1)
tends to underestimate the number of parameters, which is, perhaps, just as it
ought to be. After all, the ‘information’ in the data, the word taken in the
technical sense as the infinum of the code lengths, cannot be defined without
including the estimation of the parameters, and, hence, to achieve the total
information only those parameters which ‘buy’ enough performance should be
retained. This means that initially when the sample size is small the optimum
model necessarily has only a few parameters and others will be included
gradually as more data is received. This is in keeping with our general
philosophy that there never is any ‘true’ system nor a ‘true’ number of
parameters—only an optimum number—and an excessively complex model is
bad not only because of practicability reasons in being more difficult and
expensive to implement, but because it performs worse.

In conclusion, we point out that the criterion (2.1) ought to give reasonable
results even when used to estimate the structure of vector ARMA processes.
After all, when a model in a ‘bad’ structure is selected, the parameters are
expressed in a coordinate system with some axes tending to be near parallel,
and one may expect large estimation errors and hence large prediction errors.
For the estimation of structure with a three-term MDL criterion we refer to
Rissanen (1983b).
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