Vector Autoregressions

- VAR: Vector AutoRegression
 - Nothing to do with VaR: Value at Risk (finance)
- Multivariate autoregression
- Multiple equation model for joint determination of two or more variables
- One of the most commonly used models for applied macroeconometric analysis and forecasting in central banks

Two-Variable VAR

- Two variables: y and x
- Example: output and interest rate
- Two-equation model for the two variables
- One-Step ahead model
- One equation for each variable
- Each equation is an autoregression plus distributed lag, with p lags of each variable

VAR(p) in 2 Variables

$$y_{t} = \mu_{1} + \alpha_{11}y_{t-1} + \alpha_{12}y_{t-2} + \dots + \alpha_{1p}y_{t-p}$$

$$+ \beta_{11}x_{t-1} + \beta_{12}x_{t-1} + \dots + \beta_{1p}x_{t-p} + e_{1t}$$

$$x_{t} = \mu_{2} + \alpha_{21}y_{t-1} + \alpha_{22}y_{t-2} + \dots + \alpha_{2p}y_{t-p}$$

$$+ \beta_{21}x_{t-1} + \beta_{22}x_{t-1} + \dots + \beta_{2p}x_{t-p} + e_{2t}$$

Multiple Equation System

- In general: k variables
- An equation for each variable
- Each equation includes p lags of y and p lags of x
- (In principle, the equations could have different # of lags, and different # of lags of each variable, but this is most common specification.)
- There is one error per equation.
 - The errors are (typically) correlated.

Unrestricted VAR

- An unrestricted VAR includes all variables in each equation
- A restricted VAR might include some variables in one equation, other variables in another equation
- Old-fashioned macroeconomic models (so-called simultaneous equations models of the 1950s, 1960s, 1970s) were essentially restricted VARs
 - The restrictions and specifications were derived from simplistic macro theory, e.g. Keynesian consumption functions, investment equations, etc.

VAR Revolution

- Christopher Sims (1942-) of Princeton University
 - 2011 Nobel Prize in Economics
- "Macroeconomics and Reality" (1980)
 - Sims argued that conventional macro models were "incredible" – they were based on non-credible identifying assumptions

Sims and VARs

- Sims argued that the conventional models were restricted VARs, and the restrictions had no substantive justification
 - Based on incomplete and/or non-rigorous theory, or intuition
- Sims argued that economists should instead use unrestricted models, e.g. VARs
- He proposed a set of tools for use and evaluation of VARs in practice.

Estimation

Each equation estimated by OLS

$$\begin{aligned} y_t &= \mu_1 + \alpha_{11} y_{t-1} + \alpha_{12} y_{t-2} + \dots + \alpha_{1p} y_{t-p} \\ &+ \beta_{11} x_{t-1} + \beta_{12} x_{t-1} + \dots + \beta_{1p} x_{t-p} + e_{1t} \\ x_t &= \mu_2 + \alpha_{21} y_{t-1} + \alpha_{22} y_{t-2} + \dots + \alpha_{2p} y_{t-p} \\ &+ \beta_{21} x_{t-1} + \beta_{22} x_{t-1} + \dots + \beta_{2p} x_{t-p} + e_{2t} \end{aligned}$$

Estimation in Stata

- To estimate a VAR in the variables y & x with lags 1 through p included
 - .varbasic y x, lags(1/p)
- For example, using gdp2013.dta and variables gdp and d.t12 with 3 lags
 - .gen rate=d.t12
 - .varbasic rate gdp, lags(1/3)
- Could also use
 - .var rate gdp, lags(1/3)

Example: GDP and Interest Rate

. varbasic rate gdp

Vector autoregression

```
Sample: 1954q1 - 2013q4 No. of obs = 240 Log likelihood = -896.4798 AIC = 7.553999 FPE = 6.542089 HQIC = 7.612434 Det(Sigma_ml) = 6.018939 SBIC = 7.699025
```

Equation	Parms	RMSE	R-sq	chi2	P>chi2
rate	5	.752146	0.1282	35.29972	0.0000
gdp	5	3.35843	0.1763	51.35579	0.0000

Example: GDP and Interest Rate

		Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
rate							
	rate						
	L1.	0687148	.0650433	-1.06	0.291	1961972	.0587677
	L2.	.0106681	.0624896	0.17	0.864	1118092	.1331454
	gdp						
	L1.	.0779384	.0140999	5.53	0.000	.0503032	.1055737
	L2.	.0037657	.0150392	0.25	0.802	0257106	.0332421
	_cons	2639241	.0718976	-3.67	0.000	4048407	1230075
gdp							
	rate						
	L1.	6844941	.2904269	-2.36	0.018	-1.25372	1152678
	L2.	7395324	.2790243	-2.65	0.008	-1.28641	1926549
	gdp						
	L1.	.3160889	.0629578	5.02	0.000	.192694	.4394839
	L2.	.190147	.0671521	2.83	0.005	.0585313	.3217626
	_cons	1.579774	.3210322	4.92	0.000	.950562	2.208985

Order Selection

- A VAR(p) includes p lags of each variable in each equation
- In a two-variable system, the number of coefficients in each equation is 1+2p
 - The total number is 2(1+2p)=2+4p
- In a k-variable system, the number of coefficients in each equation is 1+kp
 - The total number is k(1+2p)=k+2kp
- How should *p* be selected?
- Common approach:
 - Information criterion, primarily AIC

AIC and BIC for VAR Models

$$AIC = -2L + 2(k + 2kp)$$

$$BIC = -2L + (k + 2kp)\ln(T)$$

where L is log-likelihood from model

Select model with smallest AIC (or BIC)

Stata Implementation

- varsoc command
- To calculate information criterion for a VAR in variables x and y up to a maximum lag of pmax:
 - .varsoc x y, maxlag(pmax)
- Produces a convenient table

Example: GDP and Interest Rate

. varsoc rate gdp, maxlag(8)

Selection-order criteria Sample: 1955q3 - 2013q4

Number of obs = 234

lag	LL	LR	df	р	FPE	AIC	HQIC	SBIC
0	-908.041				8.18559	7.77813	7.79004	7.80766
1	-882.051	51.979	4	0.000	6.78308	7.59018	7.62591*	7.67878*
2	-876.011	12.081	4	0.017	6.66587*	7.57274*	7.63228	7.7204
3	-874.997	2.0279	4	0.731	6.83834	7.59826	7.68162	7.80499
4	-869.617	10.76*	4	0.029	6.75844	7.58647	7.69364	7.85226
5	-867.435	4.3637	4	0.359	6.86471	7.60201	7.73299	7.92687
6	-865.116	4.6376	4	0.327	6.9647	7.61638	7.77118	8.0003
7	-861.706	6.8213	4	0.146	7.00073	7.62142	7.80003	8.06441
8	-861.084	1.2442	4	0.871	7.20695	7.65029	7.85272	8.15234

Endogenous: rate gdp

Exogenous: _cons

Result

- For this example
 - AIC selects p=3
 - − BIC selects *p=2*
- Notice that the AIC value for p=3 in this table (AIC=7.572) is different from that obtained when we estimated the VAR(3) model (AIC=7.553).
 - This is because for the AIC comparison, all estimates are from a common sample, in this case excluding the first 8 observations since the maximum order is set to 8
- The varsoc command is correct

Let's look at the VAR(3) estimates again.

Example: GDP and Interest Rate

		Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
rate							
	rate						
	L1.	0687148	.0650433	-1.06	0.291	1961972	.0587677
	L2.	.0106681	.0624896	0.17	0.864	1118092	.1331454
	gdp						
	L1.	.0779384	.0140999	5.53	0.000	.0503032	.1055737
	L2.	.0037657	.0150392	0.25	0.802	0257106	.0332421
	_cons	2639241	.0718976	-3.67	0.000	4048407	1230075
gdp							
	rate						
	L1.	6844941	.2904269	-2.36	0.018	-1.25372	1152678
	L2.	7395324	.2790243	-2.65	0.008	-1.28641	1926549
	gdp						
	L1.	.3160889	.0629578	5.02	0.000	.192694	.4394839
	L2.	.190147	.0671521	2.83	0.005	.0585313	.3217626
	_cons	1.579774	.3210322	4.92	0.000	.950562	2.208985

Interpretation

- It is difficult to interpret the large number of coefficients in the VAR model
- Main tools for interpretation
 - Impulse responses

Impulse Response Analysis

VAR(1) with no intercept

$$y_{t} = \alpha_{11} y_{t-1} + \beta_{11} x_{t-1} + e_{1t}$$
$$x_{t} = \alpha_{21} y_{t-1} + \beta_{21} x_{t-1} + e_{2t}$$

 The impulse responses are the time-paths of to y and x in response to shocks

Impulse Response Analysis

- The errors may be correlated.
- We "orthogonalize" them

$$e_{1t} = u_{1t}$$

$$e_{2t} = \rho e_{1t} + u_{2t}$$

$$= \rho u_{1t} + u_{2t}$$

Orthogonalized Model

$$y_{t} = \alpha_{11} y_{t-1} + \beta_{11} x_{t-1} + u_{1t}$$

$$x_{t} = \alpha_{21} y_{t-1} + \beta_{21} x_{t-1} + \rho u_{1t} + u_{2t}$$

- The shocks u₁ and u₂ are uncorrelated
- The ordering matters
 - The shock to y affects both y and x in period t
 - The shock to x affects only x in period t
- The impulse responses are the time-paths of to y and x in response to the shocks u₁ and u₂
- Imagine y=0 and x=0. Set u₁=1. Trace the history of y and x

Impulse Responses by Recursion

$$y_{1} = \alpha_{11}0 + \beta_{11}0 + 1 = 1$$

$$x_{1} = \alpha_{21}0 + \beta_{21}0 + \rho 1 = \rho$$

$$y_{2} = \alpha_{11}y_{1} + \beta_{11}x_{1} = \alpha_{11} + \beta_{11}$$

$$x_{2} = \alpha_{21}y_{1} + \beta_{21}x_{1} = \alpha_{21} + \beta_{21}\rho$$

$$y_{3} = \alpha_{11}y_{2} + \beta_{11}x_{2} = \alpha_{11}(\alpha_{11} + \beta_{11}) + \beta_{11}(\alpha_{21} + \beta_{21}\rho)$$

$$x_{3} = \alpha_{21}y_{2} + \beta_{21}x_{2} = \alpha_{21}(\alpha_{11} + \beta_{11}) + \beta_{21}(\alpha_{21} + \beta_{21}\rho)$$

Impulse Responses

- The impulse responses are these time-paths
 of y and x due to the shocks u₁ and u₂
- They are found by this recursion formula
- They are functions of the estimated VAR coefficients

Impact of Shocks on Variables

- In a 2-variable system, there are 4 impulse response functions
 - The effect on y of a shock to y (u_1)
 - The effect on y of a shock to x (u_2)
 - The effect on x of a shock to y (u_1)
 - The effect on x of a shock to $x (u_2)$
- In a k-variable system, there are k² impulse response functions!

Stata Calculation

- Impulse response automatically calculated with varbasic command
- A kxk matrix of impulse response is created

GDP/Interest Rate Example

Interpretation

- Labeled "Graphs by irfname, impulse variable, and response variable"
 - "Impulse variable" means the source of the shock
 - "Response variable" means the variable being affected
- Upper left: "varbasic, gdp, gdp"
 - Impact of a gdp shock on the time-path of gdp
- Upper right: "varbasic, gdp, rate"
 - Impact of a gdp shock on the time-path of interest rates
- Lower left: "varbasic, rate, gdp,"
 - Impact of an interest rate shock on the time-path of gdp
- Lower fight: "varbasic, rate, rate"
 - Impact of an interest rate shock on the time-path of interest rates
- The impulse response is graphed as a function of forward time periods

Scale

- The graphs are all created on the same scale, so difficult to read
- It may be better to create graphs separate for each impulse response
 - . irf graph oirf, impulse(gdp) response(rate)
- This creates the impulse response for the impact of a gdp shock on the time-path of interest rates

GDP on GDP

. irf graph oirf, impulse(gdp) response(gdp)

GDP on Interest Rates

. irf graph oirf, impulse(gdp) response(rate)

Interest Rates on Interest Rates

. irf graph oirf, impulse(rate) response(rate)

Interest Rates on GDP

. irf graph oirf, impulse(rate) response(gdp)

3-variable system

- Interest Rate Change (12-month T-Bill)
- Investment Growth Rate
- GDP Growth Rate

GDP/Investment/Interest Rate

Investment Shock on GDP

Investment Shock on Interest Rate

Interest Rate Shock on Investment

High Dimensional Estimation

- What if you have a situation where the number of regressions p exceeds the number of observations n?
- Classic example: gene array data
 - Goal: Determine which gene causes cancer
 - Number of regressors p = number of genes (5000)
 - Number of observations p = 50 (or similar)

LASSO

- One solution is LASSO estimation
- Similar idea: LARS, SCAD, Elastic Net
- Idea: Minimize the sum-of-squared errors subject to a penalty based on the sum of the absolute value of the coefficients

$$x_{t} = \mu_{2} + \alpha_{21} y_{t-1} + \alpha_{22} y_{t-2} + \dots + \alpha_{2p} y_{t-p}$$
$$+ \beta_{21} x_{t-1} + \beta_{22} x_{t-1} + \dots + \beta_{2p} x_{t-p} + e_{2t}$$

LASSO

Model

$$y_t = \mu + \beta_1 x_{1t} + \beta_2 x_{2t} + \dots + \beta_p x_{pt} + e_t$$

Minimize sum-of-squared errors plus penalty

$$\sum_{t=1}^{T} \left(y_{t} - \mu + \beta_{1} x_{1t} + \beta_{2} x_{2t} + \dots + \beta_{p} x_{pt} \right)^{2}$$

$$+\lambda\sum_{j=1}^{p}\left|\beta_{j}\right|$$

The penalty changes the problem.

Most coefficient estimates are zero.

LASSO and Forecasting

- Lasso very popular in high-dimensional statistics
- I haven't yet seen Lasso being discussed in economic forecasting
- It is just a matter of time
- Not programmed in Stata
- If interested, I recommend the R package

Software after UW??

- You are unlikely to have access to Stata outside a university environment
 - Some corporations may have a few licenses
 - Non-academic price is expensive
- Excel widely available
 - Often used for regression analysis in corporations
 - Highly limited & clumsy
- R is a viable option
 - Free, open-source
 - Continuously updated
 - Popular among statisticians
 - http://www.r-project.org/
 - A different style; may need to do more programming
 - Documentation sometimes limited