Joint Tests

\[y_t = \alpha + \beta_1 y_{t-1} + \cdots + \beta_p y_{t-p} + e_t \]

- How do we assess if a subset of coefficients are jointly zero? Example: 3rd+4th lags

```
. reg gdp L(1/4).gdp, r
```

| | Coef. | Robust Std. Err. | t | P>|t| | [95% Conf. Interval] |
|------|---------|------------------|------|------|---------------------|
| gdp | | | | | |
| L1. | .327656 | .076895 | 4.26 | 0.000| .1761871 | .479125 |
| L2. | .1466135| .0858808 | 1.71 | 0.089| -.0225558 | .3157828 |
| L3. | -.0980287| .0728951 | -1.34| 0.180| -.2416186 | .0455611 |
| L4. | -.0889209| .0790354 | -1.13| 0.262| -.244606 | .0667641 |
| _cons| 2.378427| .4731312 | 5.03 | 0.000| 1.446447 | 3.310408 |
Joint Hypothesis

• This is a joint test of
 \[\beta_3 = 0 \]
 \[\beta_4 = 0 \]

• This can be done with an “F test”

• In STATA, after `regress (reg)` or `newey`
 `.test L3.gdp L4.gdp`

• List variables whose coefficients are tested for zero.
Joint Tests

• “F test” named after R.A. Fisher
 – (1890-1992)
 – A founder of modern statistical theory

• Modern form known as a “Wald test”, named after Abraham Wald (1902-1950)
 – Early contributor to econometrics
F test computation

```
. test L3.gdp L4.gdp

( 1)  L3.gdp = 0
( 2)  L4.gdp = 0

          F(  2,  242) =  1.76
Prob > F =  0.1747
```

• You need to list each variable separately
• STATA describes the hypothesis
• The value of “F” is the F-statistic
• “Prob>F” is the p-value
 – Small p-values cause rejection of hypothesis of zero coefficients
 – Conventionally, reject hypothesis if p-value < 0.05
Example: 2-step-ahead GDP AR(4)

```
. newey gdp L(2/5).gdp, lag(2)
```

Regression with Newey-West standard errors
maximum lag: 2

| | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|---|---------|-----------|------|-------|----------------------|
| gdp | .2410617 | .0768239 | 3.14 | 0.002 | .0897296 - .3923938 |
| L2. | -.0368004 | .0703583 | -0.52 | 0.601 | -.1753962 - .1017954 |
| L3. | -.0910108 | .0791053 | -1.15 | 0.251 | -.2468369 - .0648152 |
| L4. | -.1128763 | .0687243 | -1.64 | 0.102 | -.2482533 - .0225006 |
| L5. | .329426 | .5460059 | 6.10 | 0.000 | 2.253873 - 4.404979 |

```
. test L3.gdp L4.gdp L5.gdp
```

(1) L3.gdp = 0
(2) L4.gdp = 0
(3) L5.gdp = 0

```
F(  3,   241) =  1.65
Prob > F =   0.1793
```
Testing after Estimation

• The commands **predict** and **test** are applied to the most recently estimated model

• The command test uses the standard error method specified by the estimation command
 - `reg y x`: classical F test
 - `reg r x, r`: heteroskedasticity-robust F test
 - `newey y x, lag(m)`: correlation-robust F test
 • (The robust tests are actually Wald statistics)
Measures of Fit from AR(p)

- Residual Sum of Squared Errors: \(SSR = \sum_{t=1}^{T} \hat{e}_t^2 \)
- Residual Mean Squared Error: \(s^2 = \frac{1}{T - p - 1} \sum_{t=1}^{T} \hat{e}_t^2 \)
- Root MSE (Standard Error of Regression): \(SER = \sqrt{\frac{1}{T - p - 1} \sum_{t=1}^{T} \hat{e}_t^2} \)
- R-squared: \(R^2 = \frac{\sum_{t=1}^{T} \hat{e}_t^2}{\sum_{t=1}^{T} (y_t - \bar{y})^2} \)
- R-bar-squared: \(\overline{R}^2 = \frac{1}{T - p - 1} \frac{\sum_{t=1}^{T} \hat{e}_t^2}{\frac{1}{T - 1} \sum_{t=1}^{T} (y_t - \bar{y})^2} \)
Uses

• SSR is a direct measure of the fit of the regression
 – It decreases as you add regressors
• s^2 is an estimate of the error variance
• SER is an estimate of the error standard deviation
• R^2 and R-bar-squared are measures of in-sample forecast accuracy
Example

```
. reg gdp L(1/4).gdp

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>662.232234</td>
<td>4</td>
<td>165.558059</td>
</tr>
<tr>
<td>Residual</td>
<td>3518.78213</td>
<td>242</td>
<td>14.540422</td>
</tr>
<tr>
<td>Total</td>
<td>4181.01437</td>
<td>246</td>
<td>16.9959934</td>
</tr>
</tbody>
</table>

Number of obs = 247
F( 4, 242) = 11.39
Prob > F = 0.0000
R-squared = 0.1584
Adj R-squared = 0.1445
Root MSE = 3.8132
```

- SSR=3518.78
- $s^2 = 14.54$
- $R^2 = 0.158$
- R-bar-squared=0.144
- SER=3.8132
Access after estimation

• STATA stores many of these numbers in “_result”
 • _result(1)=T
 • _result(2)=MSS (model sum of squares)
 • _result(3)=k (number of regressors)
 • _result(4)=SSR
 • _result(5)=T-k-1
 • _result(6)=F-stat (all coefs=0)
 • _result(7)=R^2
 • _result(8)=R-bar-squared
 • _result(9)=SER
Model Selection

• Take the GDP example. Should we use an AR(1), AR(2), AR(3),...?

• How do we pick a forecasting model from among a set of forecasting models?

• This problem is called *model selection*

• There are sets of tools and methods, but there is no universally agreed methodology.
Selection based on Fit

- You could try and pick the model with the smallest SSR or largest R^2.
- But the SSR increases (and R^2 decreases) as you add regressors.
- So this idea would simply pick the largest model.
- Not a useful method!
Selection Based on Testing

• You could test if some coefficients are zero.
• If the test accepts, then set these to zero.
• If the test rejects, keep these variables.
• This is called “selection based on testing”
• You could either use
 – Sequential t-tests
 – Sequential F-tests
Example: GDP

| gdp | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------|----------|-----------|---------|-------|---------------------|
| gdp L1. | .327656 | .076895 | 4.26 | 0.000 | .1761871 - .479125 |
| L2. | .1466135 | .0858808 | 1.71 | 0.089 | -.0225558 - .3157828|
| L3. | -.0980287| .0728951 | -1.34 | 0.180 | -.2416186 - .0455611|
| L4. | -.0889209| .0790354 | -1.13 | 0.262 | -.244606 - .0667641 |

- Sequential F tests do not reject 4th lag, 3rd+4th, and 2nd+3rd+4th
- Rejects 1st+2nd+3rd+4th
- Testing method selects AR(1)
Example: GDP

| | Coef. | Robust Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-----|----------|------------------|-------|-----|----------------------|
| gdp | | | | | |
| L1. | 0.327656 | 0.076895 | 4.26 | 0.000 | 0.1761871 0.479125 |
| L2. | 0.1466135| 0.0858808 | 1.71 | 0.089 | -0.0225558 0.3157828 |
| L3. | -0.0980287| 0.0728951 | -1.34 | 0.180 | -0.2416186 0.0455611 |
| L4. | -0.0889209| 0.0790354 | -1.13 | 0.262 | -0.244606 0.0667641 |

. test L3.gdp L4.gdp

(1) L3.gdp = 0
(2) L4.gdp = 0

F(2, 242) = 1.76
Prob > F = 0.1747

. test L2.gdp L3.gdp L4.gdp

(1) L2.gdp = 0
(2) L3.gdp = 0
(3) L4.gdp = 0

F(3, 242) = 1.36
Prob > F = 0.2552

. test L1.gdp L2.gdp L3.gdp L4.gdp

(1) L.gdp = 0
(2) L2.gdp = 0
(3) L3.gdp = 0
(4) L4.gdp = 0

F(4, 242) = 8.85
Prob > F = 0.0000
Sequential t-tests

| | Coef. | Robust Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------|--------|------------------|-------|-----|---------------------|
| gdp | | | | | |
| L1. | .3412071 | .0764232 | 4.46 | 0.000 | .1906738 - .4917405 |
| L2. | .1327376 | .0826814 | 1.61 | 0.110 | -.0301228 - .2955981 |
| L3. | -.1293765 | .0731709 | -1.77 | 0.078 | -.2735037 - .0147508 |

| | Coef. | Robust Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------|--------|------------------|-------|-----|---------------------|
| gdp | | | | | |
| L1. | .3268403 | .0760611 | 4.30 | 0.000 | .1770265 - .476654 |
| L2. | .0870349 | .0742668 | 1.17 | 0.242 | -.059245 - .2333148 |

| | Coef. | Robust Std. Err. | t | P>|t| | [95% Conf. Interval] |
|-------|--------|------------------|-------|-----|---------------------|
| gdp | | | | | |
| L1. | .3604753 | .0690582 | 5.22 | 0.000 | .22446 - .4964907 |

- Sequential t-tests also select AR(1)
Select based on Tests?

- Somewhat popular, but testing does not lead to good forecasting models
- Testing asks if there is strong statistical evidence against a restricted model
- If the evidence is not strong, testing selects the restricted model
- Testing does not attempt to evaluate which model will lead to a better forecast.
Bayes Criterion

• Thomas Bayes (1702-1761) is credited with inventing *Bayes Theorem*
 – $M_1 =$ model 1
 – $M_2 =$ model 2
 – $D =$ Data

$$P(M_1 | D) = \frac{P(D | M_1)}{P(D | M_1)P(M_1) + P(D | M_2)P(M_2)}$$
Bayes Selection

• The probabilities $P(M_1)$ and $P(M_2)$ are “priors” believed by the user.

• The probabilities $P(D|M_1)$ and $P(D|M_2)$ come from probability models.

• We can then compute the posterior probability of model 1

$$P(M_1 | D) = \frac{P(D | M_1)P(M_1)}{P(D | M_1)P(M_1) + P(D | M_2)P(M_2)}$$
Simplification

- AR(p) with normal errors and uniform priors

\[P(M_1 | D) \propto \exp \left(-\frac{T}{2} \cdot BIC \right) \]

where

\[BIC = N \ln \left(\frac{SSR}{T} \right) + (p + 1) \ln(N) \]

is known as the Bayes Information Criterion or Schwarz Information Criterion (SIC). The number \(N \) is the total number of observations, while \(T \) is the number used for estimation of the AR(p).
Bayes Selection

• The Bayes method is to select the model with the highest posterior probability
 — the model with the smallest value of BIC
• Sometimes BIC is written a bit differently
• But are all equivalent for model selection

\[
BIC_1 = N \ln \left(\frac{SSR}{T} \right) + (p + 1) \ln(N)
\]

\[
BIC_2 = \ln \left(\frac{SSR}{T} \right) + (p + 1) \frac{\ln(N)}{N}
\]
Trade-off

• When we compare models, the larger model (the AR with more lags) will have
 – Smaller SSR
 – Larger p

• The BIC trades these off.
 – The first term is decreasing in p
 – The second term is increasing in p

$$BIC = N \ln\left(\frac{SSR}{T}\right) + (p + 1)\ln(N)$$
Computation

• $N=$total number of observations
• For every AR(p) model

$$BIC = N \ln \left(\frac{SSR}{T} \right) + (p + 1) \ln(N)$$

• As you change the AR order, the number of observations used for estimation T changes.
 — Do not change N as you vary AR models
Computation

• For a baseline model, record N (example $N=250$)
• Direct calculation
 \[
 \text{.dis ln(_result(4)/_result(1))*250+(1+_result(3))*ln(250)}
 \]
 or
 \[
 \text{.dis ln(e(rss)/e(N))*250+e(rank)*ln(250)}
 \]
 \[
 _result(1)=e(N)=T
 \]
 \[
 _result(3)=p
 \]
 \[
 e(rank)=p+1
 \]
 \[
 _result(4)=e(rss)=SSR
 \]
• Warning:
 – STATA has \textbf{estimates} and \textbf{estat} commands which report “BIC”, but they assume $N=T$ which is not appropriate for AR comparisons
 – Use the direct calculation
Example: AR for GDP

- There are $N=251$ observations
- An AR(0) uses $T=251$
- An AR(1) uses $T=250$ observations
- An AR(p) uses $T=251-p$ observations
Example: AR(1) for GDP

```
. reg gdp L.gdp

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>548.5238</td>
<td>1</td>
<td>548.5238</td>
</tr>
<tr>
<td>Residual</td>
<td>3663.91099</td>
<td>248</td>
<td>14.7738347</td>
</tr>
<tr>
<td>Total</td>
<td>4212.43479</td>
<td>249</td>
<td>16.9174088</td>
</tr>
</tbody>
</table>

Number of obs = 250
F( 1, 248) = 37.13
Prob > F = 0.0000
R-squared = 0.1302
Adj R-squared = 0.1267
Root MSE = 3.8437

| gdp  | Coef.  | Std. Err. | t     | P>|t|   | [95% Conf. Interval] |
|------|--------|-----------|-------|-------|----------------------|
| gdp  | 0.3604753 | 0.0591595 | 6.09  | 0.000 | 0.2439562 to 0.4769944 |
| L1.  |        |           |       |       |                      |
| _cons | 2.147687 | 0.312436  | 6.87  | 0.000 | 1.532321 to 2.763054  |
```

`. dis ln(_result(4)/_result(1))*251+(1+_result(3))*ln(251)
684.94211

\[
BIC = N \ln \left(\frac{SSR}{T} \right) + (1 + p) \ln(N) = 251 \times \ln \left(\frac{3664}{250} \right) + 4 \ln(251) = 684.9
\]
BIC picks AR(1) for GDP Growth

<table>
<thead>
<tr>
<th>AR order</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>P=0 (no lag)</td>
<td>714.4</td>
</tr>
<tr>
<td>P=1</td>
<td>684.9*</td>
</tr>
<tr>
<td>P=2</td>
<td>689.2</td>
</tr>
<tr>
<td>P=3</td>
<td>690.2</td>
</tr>
<tr>
<td>P=4</td>
<td>694.4</td>
</tr>
<tr>
<td>P=5</td>
<td>698.8</td>
</tr>
</tbody>
</table>
Problem with BIC

• This is the theory behind the BIC
• If one of the models is true, and the others false,
 – Then BIC selects the model most likely to be true
• If none of the models are true, all are approximations
 – BIC does not pick a good forecasting model
• BIC selection is not designed to produce a good forecast
Selection to Minimize MSFE

• Our goal is to produce forecasts with low MSFE (mean-square forecast error).

• If \(\hat{y} \) is a forecast for \(y \), the MSFE is

\[
R(\hat{y}) = E(y - \hat{y})^2
\]

• If we had a good estimate of the MSFE, we could pick the model (forecast) with the smallest MSFE.

• Consider the estimate: The in-sample sum of square residuals, SSR
SSR

- In-sample MSFE

 $SSR = \sum_{T=1}^{T} (y_t - \hat{y}_t)^2$

 $= \sum_{T=1}^{T} \hat{e}_t^2$

- Two troubles

 - It is a biased estimate (overfitting in-sample)

 - It decreases as you add regressors, it cannot be used for selection
Bias

- It can be shown that (approximately)

\[E(\text{SSR}) = E(\text{MSFE}) - 2\sigma^2(p+1) \]

and

\[E(\text{MSFE}) = T\sigma^2 \]

- Shibata (1980) suggested the bias adjustment

\[S_p = \text{SSR} \cdot \left(1 + \frac{2(p+1)}{N}\right) \]

- Known as the Shibata criteria.
Akaike

• If you take Shibata’s criterion, divide by T, take the log, and multiply by N, then

$$N \ln \left(\frac{S_p}{T} \right) = N \ln \left(\frac{SSR}{T} \right) + N \ln \left(1 + \frac{2(p+1)}{N} \right)$$

$$\cong N \ln \left(\frac{SSR}{T} \right) + 2(p+1)$$

$$= AIC$$

• This looks somewhat like BIC, but “2” has replaced “$\ln(N)$”.

• Called the “Akaike Information criterion” (AIC)
Formulas and Comparison

\[
\begin{align*}
AIC &= N \ln\left(\frac{SSR}{T} \right) + 2(p + 1) \\
BIC &= N \ln\left(\frac{SSR}{T} \right) + \ln(N)(p + 1)
\end{align*}
\]

- Intuitively, both trade-off make similar trade-offs
 - Larger models have smaller SSR, but larger \(p \)
 - The difference is that BIC puts a higher penalty on the number of parameters
 - The AIC penalty is 2
 - The BIC penalty is \(\ln(N) > 2 \) (if \(N > 7 \))
 - For example, if \(N = 240 \), \(\ln(N) = 5.5 \) is much larger than 2
Hirotugu Akaike

- 1927-2009
- Japanese statistician
- Famous for inventing the AIC
Motivation for AIC

• Motivation 1: The AIC is an approximately unbiased estimate of the MSFE

• Motivation 2 (Akaike’s): The AIC is an approximately unbiased estimate of the Kullback-Liebler Information Criterion (KLIC)
 – A loss function on the density forecast
 – Suppose \(f(y) \) is a density forecast for \(y \), and \(g(y) \) is the true density. The KLIC risk is

\[
KLIC(f, g) = E \ln \left(\frac{f(y)}{g(y)} \right)
\]
Akaike’s Result

- Akaike showed that in a normal autoregression the AIC is an approximately unbiased estimator of the KLIC
- So Akaike recommended selecting forecasting models by finding the one model with the smallest AIC
- Unlike testing or BIC, the AIC is designed to find models with low forecast risk.
Computation

- For given N (e.g. N=251)
- Direct calculation

 \[
 \text{.dis } \ln(_\text{result}(4)/_\text{result}(1))\times251+(1+_\text{result}(3))\times2
 \]

 Or

 \[
 \text{.dis } \ln(\text{e(rss)/e(N)})\times251+\text{e(rank)}\times2
 \]

 _result(1)=e(N)=T

 _result(3)=p

 e(rank)=p+1

 _result(4)=e(rss)=SSR
Example: AR(3) for GDP

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Number of obs = 248</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>639.828998</td>
<td>3</td>
<td>213.276333</td>
<td>F(3, 244) = 14.65</td>
</tr>
<tr>
<td>Residual</td>
<td>3551.16846</td>
<td>244</td>
<td>14.5539691</td>
<td>Prob > F = 0.0000</td>
</tr>
<tr>
<td>Total</td>
<td>4190.99745</td>
<td>247</td>
<td>16.967601</td>
<td>R-squared = 0.1527</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adj R-squared = 0.1422</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Root MSE = 3.815</td>
</tr>
</tbody>
</table>

| gdp | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|----------|-----------|-----------|------|------|----------------------|
| gdp | | | | | |
| L1. | .3412071 | .0634035 | 5.38 | 0.000| .2163191 .4660952 |
| L2. | .1327376 | .0664123 | 2.00 | 0.047| .001923 .2635523 |
| L3. | -.1293765 | .0633675 | -2.04| 0.042| -.2541935 -.0045595 |
| _cons | 2.193251 | .361578 | 6.07 | 0.000| 1.481039 2.905464 |

\[
AIC = N \ln \left(\frac{SSR}{T} \right) + 2(1 + p) = 251 \times \ln \left(\frac{3551}{248} \right) + 2 \times 4 = 676.1
\]

\[
.3 \ln(_\text{result}(4)/_\text{result}(1)) + 251 \times (1 + _\text{result}(3)) \times 2 = 676.06241
\]
AIC picks AR(3) for GDP Growth

<table>
<thead>
<tr>
<th>AR order</th>
<th>BIC</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>P=0 (no lag)</td>
<td>714.4</td>
<td>710.8</td>
</tr>
<tr>
<td>P=1</td>
<td>684.9*</td>
<td>677.9</td>
</tr>
<tr>
<td>P=2</td>
<td>689.2</td>
<td>678.6</td>
</tr>
<tr>
<td>P=3</td>
<td>690.2</td>
<td>676.1*</td>
</tr>
<tr>
<td>P=4</td>
<td>694.4</td>
<td>676.8</td>
</tr>
<tr>
<td>P=5</td>
<td>698.8</td>
<td>677.7</td>
</tr>
</tbody>
</table>
Comments

• BIC picks AR(1), AIC picks AR(3)

• This is common
 – AIC typically selects a larger model than BIC
 – Mechanically, it is because BIC puts a larger penalty on the dimension of the model]
 • (ln(N) versus 2)
 – Conceptually, it is because
 • BIC assumes that there is a true finite model, and is trying to find the true model
 • AIC assumes all models are approximations, and is trying to find the model which makes the best forecast.
 – Extra lags are included if (on balance) they help to forecast
Selection based on Prediction Errors

• A sophisticated selection method is to compute true out-of-sample forecasts and forecast errors, and pick the model with the smallest out-of-sample forecast variance
 – Instead of forecast variance, you can apply any loss function to the forecast errors
Forecasts

• Your sample is \([y_1, y_T]\) for observations \([1, \ldots, T]\)

• For each \(y_t\), you construct an out-of-sample forecast \(\hat{y}_t\).
 – This is typically done on the observations \([R+1, \ldots, T]\)
 – \(R\) is a start-up number
 – \(P=T-R\) is the number of out-of-sample forecasts
Out-of-Sample Forecasts

• By out-of sample, \(\hat{y}_t \) must be computed using only the observations \([1,\ldots,t-1]\)
• In an AR(1)
 \[
 \hat{y}_t = \hat{\alpha}_{t-1} + \hat{\beta}_{t-1} y_{t-1}
 \]
• Where the coefficients are estimated using only the observations \([1,\ldots,t-1]\)
• Also called “Pseudo Out-of-Sample” forecasting
 – Diebold, Section 10.3
 – Stock-Watson, Key Concept 14.10
• The out-of-sample forecast error is
 \[
 \tilde{e}_t = y_t - \hat{y}_t
 \]
Forecast error

• The out-of-sample (OOS) forecast error is different than the full-sample least-squares residual
• It is a true forecast error
• An estimate of the mean-square forecast error is the sample variance of the OOS errors

\[\tilde{\sigma}^2 = \frac{1}{P} \sum_{t=R+1}^{T} \tilde{e}_t^2 \]
Selection based on pseudo OOS MSE

• The predictive least-squares (PLS) criterion is the estimated MSFE using the OOS forecast errors

\[
PLS = \sqrt{\frac{1}{P} \sum_{t=R+1}^{T} \tilde{e}_t^2}
\]

• PLS selection picks the model with the smallest PLS criterion

• This is very popular in applied forecasting
Comments on PLS

• PLS has the advantage that it does not depend on approximations or distribution theory
• It can be computed for any forecast method
 – You just need a time-series of actual forecasts
 – You can use it to compare published forecasts
• Disadvantages
 – It requires the start-up number of observations R
 – The forecasts in the early part of the sample will be less precise than in the later part
 • Averaging over these errors can be misleading
 • Will therefore tend to select smaller models than AIC
 – Less strong theoretical foundation for PLS than for AIC
Jorma Rissanen

- The idea of PLS is due to Jorma Rissanen, a Finnish information theorist
Computation

• Numerical Computation of PLS in STATA is unfortunately tricky
• We will discuss it later when we discuss recursive estimation
PLS picks AR(2) for GDP Growth

<table>
<thead>
<tr>
<th>AR order</th>
<th>BIC</th>
<th>AIC</th>
<th>PLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P=0 (no lag)</td>
<td>714.4</td>
<td>710.8</td>
<td>3.58</td>
</tr>
<tr>
<td>P=1</td>
<td>684.9*</td>
<td>677.9</td>
<td>3.435</td>
</tr>
<tr>
<td>P=2</td>
<td>689.2</td>
<td>678.6</td>
<td>3.432*</td>
</tr>
<tr>
<td>P=3</td>
<td>690.2</td>
<td>676.1*</td>
<td>3.47</td>
</tr>
<tr>
<td>P=4</td>
<td>694.4</td>
<td>676.8</td>
<td>3.53</td>
</tr>
<tr>
<td>P=5</td>
<td>698.8</td>
<td>677.7</td>
<td>3.52</td>
</tr>
</tbody>
</table>