Comparative Social Mobility Revisited: Models of Convergence and Divergence in 16 Countries

David B. Grusky, Robert M. Hauser

COMPARATIVE SOCIAL MOBILITY REVISITED: MODELS OF CONVERGENCE AND DIVERGENCE IN 16 COUNTRIES*

DAVID B. GRUSKY ROBERT M. HAUSER
University of Wisconsin–Madison

This paper reanalyzes 3-stratum intergenerational mobility classifications, assembled by Hazelrigg and Garnier for men in 16 countries in the 1960s and 1970s. Log-linear and log-multiplicative models are used to compare mobility regimes and to estimate effects of industrialization, educational enrollment, social democracy, and income inequality on immobility and other parameters of the mobility process. Several models of mobility fit the data equally well, so criteria of plausibility and parsimony are applied to choose one model of stratum-specific immobility and another model of vertical mobility with uniform immobility. We find substantial similarity in mobility and immobility across countries, but the exogenous variables do explain systematic differences among countries. Cross-national variations are complex because most of the exogenous variables have different effects on different parameters of the mobility regime. Relative to other factors, industrialization and education have weaker effects on mobility regimes than has usually been supposed.

Three issues have dominated comparative studies of social mobility.1 The starting point for most research is the thesis advanced by Lipset and Zetterberg (1959) that observed mobility rates are much the same in Western industrialized societies. However, more recent and detailed data lend little support for this position (Hauser and Featherman, 1977; Erikson et al., 1979; Hope, 1982). Featherman et al. (1975) suggested that variation in observed mobility rates might derive from historical and cultural differences in occupational structures, but not from differences in exchanges between occupations. This hypothesis, labelled the FJH revision by Erikson et al., leads to the prediction that mobility chances are invariant once variations in origin and destination distributions have been controlled. Although the FJH revision has been supported by pairwise or three-way comparisons (Erikson et al., 1982; McRoberts and Selbee, 1981; Hope, 1982; Portocarero, 1983; Hauser, 1983), research with a larger sample of countries has tended to emphasize cross-national variability (Tyree et al., 1979; Hazelrigg and Garnier, 1976; McClendon, 1980a).2 There is also some dis-

* Direct all correspondence to: David B. Grusky and Robert M. Hauser, Department of Sociology, University of Wisconsin, Madison, WI 53706.

1 Matras (1980) and Simkus (1981a) have recently reviewed comparative mobility studies.

2 Of course, there is an element of subjectivity in any evaluation of the FJH revision; it is unclear how much similarity in mobility regimes is necessary to confirm the hypothesis.
agreement about the degree to which "structural influences," reflected in the margins of the mobility table, can account for national differences in observed mobility rates. The FJH revision implies that variation in observed mobility must be attributed to marginal differences, yet McClendon (1980b) has recently reported a contrary finding among industrialized nations.

A second and closely related issue is the effect of economic development on social mobility. The contention is that mobility increases with industrialization, even after controls are introduced for changes in class or occupation distributions. Proponents of the "thesis of industrialism" argue that economic development entails a process of rationalization that weakensascriptive allocation of roles. It is also suggested that the expansion of mass communication attenuates cultural barriers to mobility and that increases in geographic movement reduce parental control over the occupations of their offspring (Treiman, 1970). The thesis of industrialism is to be contrasted with the FJH revision; the latter allows an initial developmental effect on mobility, but it implies there is no further effect once a certain level of industrialization is reached. Unfortunately, evidence on the industrialism thesis is no more conclusive than that addressing the FJH revision. Some studies report a positive relationship between industrialization and mobility (Tyree et al., 1979; Hazelrigg, 1974; Cutright, 1968), but others report no significant association (Hazelrigg and Garnier, 1976; Hardy and Hazelrigg, 1978). In an effort to reconcile these findings, McClendon (1980a) claims that the positive relationship holds only when the sample is restricted to men of nonfarm origins. By virtue of his distinction among immobility parameters of different occupational strata, McClendon's research leads in a fruitful direction.

A third issue in comparative mobility is the influence of noneconomic variables on mobility processes. Contrary to the view that the logic of industrialism results in a uniform institutional structure, it has been suggested that mobility can be manipulated by political agencies or social policies. The claim is that noneconomic variables not only influence mobility rates indirectly by affecting the structure of occupational demand, but that they also have implications for relative mobility rates. This argument has been advanced persuasively with regard to the consequences of social democratic policies for reducing class-based inequalities in life chances. Although it is conceded that social democrats have done little to redistribute material rewards, they may have rendered such inequality more palatable by ensuring meritorocratic forms of class recruitment (see Parkin, 1971; Stephens, 1980; Erikson et al., 1982).

Others argue that state socialist societies offer yet stronger testimony to the role of political ideology in effecting changes in the stratification system. Aside from increasing the material rewards and prestige of skilled manual workers, socialist policies may also have consequences for the reproduction of classes over generations. These societies may have a more fluid class structure because of blue-collar educational quotas, the declassement of upper administrators, the absence of inheritable private property, and the attenuation of a working-class subculture. At the same time, there is reason to suppose that the current mobility regimes of socialist states may not differ altogether from those of capitalist states since many of the egalitarian policies have been reversed in the "secondary stage" of socialist development (see Giddens, 1973; Parkin, 1971; Simkus, 1980).

Two other variables might also be classified as noneconomic determinants of mobility regimes. First, it has long been argued that the expansion of educational opportunities should produce a more fluid society. Not only are opportunities to learn skills equalized when the locus of training shifts from the home to the school, but cultural barriers to mobility also diminish as mass education resocializes students to a shared system of values (Featherman and Hauser, 1978). Second, it has been suggested recently that rates of mobility are affected by the distance between social classes. Large socioeconomic gaps between classes may imply less fluidity because the elite have increased power and motivation to prevent upward or downward movement (Tyree et al., 1979).

The goals of this paper are to address both the convergence and industrialism theses and to explore the role of noneconomic variables in mobility processes. The preceding review shows these issues are not new, nor are the data we shall employ. These data are 3 × 3 classifications of son's by father's occupation for sixteen countries; each table categorizes occupations as white collar, blue collar, or farm. The tables were originally assembled by Hazelrigg and Garnier (1976) from mobility surveys of the 1960s and early 1970s, but they have been reanalyzed extensively (Hardy and Hazelrigg, 1978; McClendon, 1980a, 1980b; Tyree et al., 1979; Heath, 1981; Urton, 1981; Raftery, 1983).3 We will not discuss problems

3 Following McClendon (1980a, 1980b), Bulgaria was omitted from the data because the sample included both males and females. Some of the cited
of validity and comparability associated with these data because they have been outlined by Hazelrigg and Garnier (1976:500). Suffice it to say that this three-stratum classification captures important barriers to occupational mobility and other significant differences in life chances (e.g., see Blau and Duncan, 1967:59).

Several of the analyses of the Hazelrigg-Garnier data have focused on one or two of the four independent contrasts among the three strata. This is valid, but we think it better to analyze the full mobility classification. Other studies based on the Hazelrigg-Garnier data have used methods that confound marginal and interaction effects by rescaling marginals arbitrarily or by fitting saturated loglinear models (Featherman and Hauser, 1978:161–66). Such methods mute disparities between occupational strata in the strength of inheritance. This is an important point, for one of our preferred models says that these disparities are large and occur in all countries.

We think it useful to complete a methodologically sound analysis of the Hazelrigg-Garnier tables, if only to provide a provisional baseline of results for future comparative research with the national mobility surveys of the early to mid 1970s. These newer surveys permit the specification of mobility processes in greater detail, and for those nations where data are available from repeated surveys (or repeated measurements on cohorts within a survey), it will be possible to incorporate a true temporal dimension into comparative analyses (Featherman et al., 1974; Broom and McDonnell, 1977). However, even where data have been preserved in unit-record form, it is no small task to produce comparable, detailed mobility tables for two or three nations, let alone 15 or 16. Although an effort is currently underway to render the more recent data sufficiently comparable for detailed cross-national research, to our knowledge no such collections of tables exist for more than 4 nations (Pontinen et al., 1983; Pontinen, 1983). As newer data become available, it is important that they be compared to a set of valid findings from earlier studies.

We also hope that our models of the Hazelrigg-Garnier data may provide a methodological template for the new round of comparative mobility analysis. We propose simple multiplicative models that directly incorporate exogenous determinants of social mobility, thereby providing an integrated framework for measuring the sources of different mobility regimes. Because our analysis is based upon highly aggregated tables, our preferred mobility models have few parameters, and it is relatively easy for us to introduce our methods of comparative analysis. Moreover, we shall explain how our models and findings can be generalized to disaggregated mobility classifications.

Our models yield new findings about the permeability of class boundaries (Blau and Duncan, 1967), blue-collar status disinheritance (Goodman, 1969a), and vertical class mobility (Hope, 1982). These findings help to specify the structure of the mobility regime that is putatively shared by Western industrial societies. Convergence theories have remained notably agnostic on this issue; the FJH revision states there is a single pattern of mobility but leaves the shape of this pattern unspecified. We hope to add substance to the FJH thesis by offering preliminary hypotheses about shared features of the mobility regime.

Although we shall argue that there is a broad similarity in mobility processes, this is not to preclude national variations of sociological interest. We think these variations can best be explained using multivariate models of the effects of political and economic variables. Indeed, the primary points of contention demand multivariate analysis. For example, Ossowski (1957) argues forcefully that the question to ask is not whether the introduction of socialism increased mobility, but whether this increase was any greater than might have been expected from the concurrent economic expansion. Similarly, the general debate over convergence also pertains to the consequences of political programs net of developmental processes. In addition to resolving claims for an independent "ideological effect," a multivariate analysis can elucidate the processes by which industrialization influences mobility chances.

In the course of the analysis, we reject several models of the 3×3 mobility classifications; however, a satisfactory fit can be obtained with several equivalent models that are theoretically appealing. One such model is quasi-perfect mobility, which specifies the association between origins and destinations in terms of parameters for inheritance in each of the three strata. A second family of models specifies barriers between strata, and a third family of models specifies a vertical hierarchy with unequal distances between strata. A rationale for each of these studies have supplemented these data with mobility classifications from other countries. We have revised the counts for the U.S., France, Hungary, and the Philippines to reflect the sizes and designs of those samples. These data are available from the authors by request.

* We refer to the comparative stratification project now underway at the University of Mannheim under the direction of Walter Mueller and John Goldthorpe.
models may be drawn from well-developed research traditions, but their formal equivalence in the \(3 \times 3 \) table means that each model produces exactly the same fitted counts. Our analysis shows the algebraic relationships among these models and suggests that two of them are preferable to the others. Using the quasi-perfect mobility model, we investigate differences between occupational strata in opportunities for mobility or inheritance. We believe that these differences in relative mobility chances arise primarily from variation in the resources and desirability accorded occupations. However, we emphasize variation in economic resources since their transmission is perhaps the most decisive and reliable mechanism of intergenerational inheritance (Goldthorpe, 1980:100). It follows that white-collar immobility should be strong since fathers within this stratum can transmit resources in the form of a business enterprise, professional practice, or privileged education. The desirability of white-collar positions strengthens inheritance further, as white-collar sons wish to retain their fathers’ positions. In contrast, sons from the blue-collar stratum do not receive economic resources that bind them to their fathers’ stratum, nor do they typically find inheritance as desirable as mobility to the white-collar stratum; the absence of these processes implies considerable mobility for sons of blue-collar origins. The structure of farm inheritance contrasts quite sharply with this blue-collar fluidity. Not only is land a tangible economic good, but there are strong cultural practices and traditions favoring its transfer from generation to generation. Farm inheritance is further strengthened by spatial isolation from urban labor markets (Featherman and Hauser, 1978:188). Given the distinctive skills of farmers, traditions of land tenure, and spatial isolation, one might expect farm inheritance to be even stronger than that of the white-collar stratum. Three implications follow from these observations about inheritance. First, the relative strengths of stratum-specific inheritance may be uniform across nations simply because there is substantial uniformity in the economic resources and desirability of occupations (Treiman, 1977). It is commonly argued that the latter uniformities also account for the cross-national regularity in occupational prestige hierarchies (Treiman, 1977; Goldthorpe and Hope, 1974). Thus, invariance in mobility processes may be closely related to other constants in stratification. Second, rather than deriving from the standardizing logic of industrialism, the common structure of mobility may apply to all societies regardless of their economic development. The FJH hypothesis may be broadened in this manner because occupational resources and desirability are similar in all complex societies, industrialized or not (Treiman, 1977). Third, recent discussions of economic and political effects on mobility may be misleading because they assume uniform effects on the inheritance of all occupational strata. We argue that the consequences of a given variable may not be the same in each stratum because their incumbents have differing resources and motivations to favor or oppose the equalization of opportunity.

THE CROSS-NATIONAL STRUCTURE OF MOBILITY

There has been no direct test of the Lipset-Zetterberg hypothesis in earlier studies. To carry out this test, we set up a model of global equality between the mobility classifications in the full set of 16 nations and in the 9 most industrialized, nonsocialist nations. Within the more industrialized subsample, this model yields a highly significant likelihood-ratio chi-square test statistic, \(L^2 = 3.201 \) with 64 degrees of freedom (df), and the ratio of the test statistic to its degrees of freedom is \(L^2/df = 50.0 \). In the full sample, \(L^2 = 18.390 \) with 120 df and \(L^2/df = 153.3 \). There is no less evidence of heterogeneity among mobility classifications within the industrialized subsample than within the full set of 16 countries, for there are 3 times as many observations in the full sample as in the industrialized subsample. Thus, we reject the Lipset-Zetterberg hypothesis. Not only is there highly significant variation in observed mobility rates among industrialized nations, but there is no less variation among these nations than among nations that vary widely in level of industrialization.

The remainder of our analysis focuses on the FJH revision of the Lipset-Zetterberg hypothesis, that is, on the measurement and explanation of intersocietal variation in social fluidity.\(^7\) Table 1 shows the fit of selected models of mobility and immobility. The left-hand side of

\(^5\) Although there is intergenerational transfer of skills in the blue-collar stratum, we think it is far stronger in the farm sector, where the family is more often the unit of production.

\(^6\) This argument for uniformity may need qualification in the case of socialist societies to the degree that they accord greater desirability to blue-collar occupations and prohibit formal ownership of economic resources (Parkin, 1971; Giddens, 1973).

\(^7\) Goldthorpe (1980) uses the term social fluidity for mobility and immobility net of marginal effects. We use it to refer globally to interaction effects, rather than using “mobility” as an inclusive term.
Table 1. Selected Models of Mobility with and without Cross-National Equality Constraints: Sixteen-Country Sample and Industrialized Subsample

<table>
<thead>
<tr>
<th>Model</th>
<th>Full Sample</th>
<th>Industrialized Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L²</td>
<td>df</td>
</tr>
<tr>
<td>A. Unconstrained Models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Independence</td>
<td>42970</td>
<td>64</td>
</tr>
<tr>
<td>2. Quasi-perfect mobility</td>
<td>150</td>
<td>16</td>
</tr>
<tr>
<td>3. Uniform inheritance</td>
<td>6222</td>
<td>48</td>
</tr>
<tr>
<td>4. Perfect blue-collar mobility</td>
<td>841</td>
<td>32</td>
</tr>
<tr>
<td>5. Symmetry</td>
<td>24636</td>
<td>48</td>
</tr>
<tr>
<td>B. Models with Cross-National Constraints</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Quasi-perfect mobility</td>
<td>1500</td>
<td>61</td>
</tr>
<tr>
<td>7. Uniform inheritance</td>
<td>7069</td>
<td>63</td>
</tr>
<tr>
<td>8. Perfect blue-collar mobility</td>
<td>1640</td>
<td>62</td>
</tr>
<tr>
<td>9. All two-way interactions</td>
<td>1329</td>
<td>60</td>
</tr>
<tr>
<td>C. Contrasts Between Constrained and Unconstrained Models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. 2 vs. 6</td>
<td>1350</td>
<td>45</td>
</tr>
<tr>
<td>11. 3 vs. 7</td>
<td>847</td>
<td>15</td>
</tr>
<tr>
<td>12. 4 vs. 8</td>
<td>799</td>
<td>30</td>
</tr>
</tbody>
</table>

The full sample includes Australia, Belgium, France, Hungary, Italy, Japan, Philippines, Spain, United States, West Germany, West Malaysia, Yugoslavia, Denmark, Finland, Norway and Sweden. The industrialized subsample includes Australia, Belgium, France, United States, West Germany, Denmark, Finland, Norway and Sweden.

The table pertains to the full set of countries, while the right-hand side of the table pertains to nine highly industrialized nations. In Panel A, the models do not place any cross-country equality constraints on parameters, so the fit statistic for each model is simply the sum of the fit statistics for that model applied to each country separately. Panel B reports the fit of several of the models of Panel A, each subject to the additional restriction that all of the interaction parameters of that model (but not the marginal effects) are the same in each country. Panel C displays contrasts between corresponding models in Panel A and in Panel B.

Models 1 through 4 in Table 1 are of the form

\[E[X_{ijk}] = \alpha_{i}\beta_{jk}\gamma_{ik}\delta_{ik} \]

where \(\delta_{ij} = \delta_{ik} \) for \((i,j) \in H_m\). In this context, \(X_{ijk} \) is the observed frequency in the \(ijk^{th}\) cell of the classification of father’s stratum \(i\) by son’s stratum \(j\) by country \((k)\), and \(H_m\) is a partition of the pairs \((i,j)\), which is mutually exclusive, exhaustive, and cross-nationally invariant. Subject to the usual normalizations, this model implies that expected frequencies in the \(k^{th}\) country are the product of a grand mean \((\alpha_{i})\), a row effect \((\beta_{jk})\), a column effect \((\gamma_{ik})\), and an interaction effect \((\delta_{ij})\). Models 1 through 4 differ only by partitioning the pairs \((i,j)\) according to various theories of the structure of interaction. These partitions are displayed in Figure 1; cells sharing a numeric value within a matrix are assigned the same interaction parameter in the corresponding model. Note that we have specialized the model to impose the same partition of cells in each country, but not necessarily to specify the same interaction parameters in each country. Since this general model has been discussed in detail elsewhere (e.g., Hauser, 1978, 1979), we will not elaborate it further.

![Figure 1. Parameter Displays Describing the Structure of Association for Selected Models of Mobility](image-url)
Model 1 specifies conditional independence of father's and son's stratum, so \(\delta_{ik} = 1 \) for all pairs \((i,j)\) in all countries \(k\); this says there is no intergenerational association in any of the 16 countries. Although the global chi-square statistic, \(\chi^2 = 42,970 \), reveals that independence is patently inconsistent with these data, this model provides a baseline statistic representing the association to be explained by subsequent models. Model 2, quasi-perfect mobility, fits a distinct inheritance parameter to each diagonal cell and posits independence among the remaining cells off the diagonal. This model fits extremely well, accounting for 99.7 percent of the association under the baseline model of independence. Indeed, the model cannot be rejected at the .05 level in ten of the sixteen countries, and in all countries it explains at least 97.3 percent of the association. Since this is one of our preferred models, we shall consider its implications in some detail.9

First, quasi-perfect mobility implies quasi-symmetry in a \(3 \times 3 \) table. In a mobility classification, quasi-symmetry means that upward and downward moves are equally likely, net of differences in the prevalence of occupations. Thus, our results do not support the interpretation of semipermeable class boundaries advanced by Blau and Duncan (1967) for the United States. Hauser and Featherman (1978:184–87) and Hauser (1981) report a similar finding in disaggregated American mobility tables; we extend that finding to a larger set of countries.10

Symmetry in exchange mobility is entirely consistent with intergenerational occupational change and consequent differences between observed inflow and outflow distributions. We can see this by contrasting the model of quasi-perfect mobility (quasi-symmetry) with that of complete symmetry (Model 5), which posits equal frequencies in corresponding cells above and below the main diagonal of each mobility classification, \(E[X_{ijk}] = E[X_{jik}] \). The fit of Model 5, \(\chi^2_{12} = 24,636 \), shows that observed frequencies are highly asymmetric. However, from the excellent fit of quasi-perfect mobility (quasi-symmetry), we know this observed asymmetry derives from heterogeneity between origin and destination distributions rather than an intrinsic asymmetry of exchange between occupational strata.

Second, the quasi-perfect mobility model says that mobility does not follow a social distance gradient. Those who move off the diagonal are equally likely to reach either of the two remaining strata regardless of distance or direction. The implication is that long-range mobility is no less frequent than short-range mobility after controlling for marginal effects. Featherman and Hauser (1978: Ch. 4) offer a similar interpretation of disaggregated American mobility tables.11

Third, the parameters of the quasi-perfect mobility model reveal wide differences among strata in the strength of inheritance. For purposes of summary, it is instructive to consider Model 6, which constrains parameter estimates to be the same in all sixteen countries. Net of row and column effects, farm inheritance is 12.3 times more likely than mobility off the diagonal, white-collar inheritance is 5.2 times more likely than mobility, and blue-collar inheritance is only 1.2 times more likely than mobility. The picture that emerges is one of severe immobility at the two extremes of the occupational hierarchy and considerable fluidity in the middle (compare Hauser and Featherman, 1978: Ch. 4). Indeed, the United States and Hungary show significant blue-collar disinheritance.13 A net propensity for mobility out of the blue-collar stratum was first noted by Goodman (1965:575, 1969a) in the classic British and Danish mobility tables of the early postwar period; the results presented here extend his finding to additional countries.14

9 Jutaka et al. (1975) also found that the quasi-perfect mobility model adequately fitted a number of national mobility tables, primarily drawn from Miller (1960). Our preference for this model is specific to the \(3 \times 3 \) classification used here. In other mobility tables, including disaggregations of this one, other models may well be preferable.

10 For an explanation of quasi-symmetry, see Bishop et al. (1975: Ch. 8). Featherman and Hauser (1978:184–87) and Hauser (1981) discuss the relevance of quasi-symmetry to the interpretation of social mobility. Featherman and Hauser did find some asymmetries in their analysis of intergenerational mobility to current occupations, but the majority of these pertained to mobility within the broad strata of the present analysis.

11 This property of the model is also consistent with certain social distance models, for example, crossings models (Goodman, 1972; Pontinen, 1982).

12 As Goodman (1969b:15) has demonstrated, the quasi-perfect mobility model is especially useful in comparisons of occupational or stratum persistence because the inheritance parameters are not confounded with one another. The stratum inheritance parameters analyzed by McClendon (1980b:499–500) do not have this desirable property.

13 On request the authors will provide estimates of stratum inheritance under quasi-perfect mobility in each of the sixteen countries. References to statistical significance in the text are based on the \(a = .05 \) level, two-tailed.

14 Note that Great Britain is not included in the present analysis, and our Danish classification, obtained from a 1972 survey, does not show blue-collar status disinheritance. However, in 1972 the parameter for blue-collar immobility in Denmark is still among the lowest in our sample.
Friendly critics have suggested to us that blue-collar disinheritance is implausible and, for that reason, should lead us to reject quasi-perfect mobility in favor of other equivalent models (Goodman, 1979b; Hauser, 1979:453-54, 1981; MacDonald, 1981). On the basis of our earlier discussion of mechanisms of stratum inheritance, we do not think it is possible to rule out blue-collar status disinheritance (see Featherman and Hauser, 1978:179-89). Moreover, we will show that quasi-perfect mobility is more plausible than some other equivalent models of the 3 × 3 table.

The remaining models in Panel A of Table 1 help us to test, elaborate, and qualify these interpretations. The uniform inheritance model (Line 3) posits a single inflation factor for the main diagonal; the model says that occupational strata share a uniform propensity for inheritance. This model fits poorly, confirming our observation of substantial variability among inheritance parameters. The model of perfect blue-collar mobility (Line 4) equates densities of mobility and immobility for men of blue-collar origin or destination (Goodman, 1965:569-71). Net of marginal effects, this model says that blue-collar workers are recruited equally from all three occupational strata and that men of blue-collar origins are selected equally into all three strata. Further, the model says that blue-collar mobility and immobility are as likely as exchange between the white-collar and farm strata. This model does not fit satisfactorily (L2 = 841 with 32 df), yet it does account for 98 percent of the test statistic under conditional independence (compare Lines 1 and 4). Moreover, Model 4 does fit well in 6 countries: Italy, West Malaysia, Yugoslavia, Denmark, Norway, and Sweden. The contrast between Models 2 and 4 tests whether there is significant blue-collar stratum inheritance or disinheritance. Although the global contrast between these models is clearly significant (L2 = 691 with 16 df), the contrast is nonsignificant in Australia and in the other 6 countries where Model 4 fits the data. This provides further evidence for attenuated blue-collar inheritance: it is so weak that densities of mobility and blue-collar immobility can be equated in several of the countries in our data.

15 The contrast between Model 2 and Model 3 yields L2 = 6,072 with 32 df. We also reject all three hypotheses of pairwise equality between stratum inheritance parameters. The test statistics are L2 = 2,734 for equality of white-collar and blue-collar inheritance, L2 = 1,087 for equality of white-collar and farm inheritance, and L2 = 5,577 for equality of blue-collar and farm inheritance, each with 16 df.

16 The model of perfect blue-collar mobility is equivalent in the 3 × 3 table to a crossings model without a parameter for blue-collar immobility. It would be interesting to recast some of our comparative findings in the terms of either of these models; we have not done so here because of the more satisfactory fit of quasi-perfect mobility.

CONVERGENCE IN SOCIAL FLUIDITY

The cross-national consistency in the fit of quasi-perfect mobility provides some evidence of similarity in processes of mobility, but we have not yet tested the cross-national variation in the parameters estimated under this model. If the same model fits, but its coefficients vary from country to country, then convergence obtains only in a limited sense. The remainder of Table 1 addresses this issue. Whereas each model in Panel A allows interactions between strata to vary across countries, each model in Panel B equates those interactions. The statistics in Panel B reflect lack of fit in the models of Panel A as well as cross-national differences in coefficients, whereas the contrasts between fit statistics in Panels A and B
reflect the latter component alone. As shown in Panel C, each of these contrasts is highly significant statistically. At the same time, there is also a great deal of cross-national similarity in parameter estimates; no more than 3.6 percent of the chi-square statistic under conditional independence is attributable to variation in parameters. A similar conclusion may be drawn from the fit of the model of all two-way interactions, which allows 4 df for interaction between origin and outcome strata (Line 9 of Panel B).

These results make it quite clear that the "cross-nationally common element heavily predominates over the cross-nationally variable one" (Erikson et al., 1982:12). Not only does one simple model, quasi-perfect mobility, fit all of these data satisfactorily, but its coefficients do not vary greatly between countries. These findings of cross-national invariance support the FJH revision of the Lipset-Zetterberg hypothesis.

The results of Table 1 imply convergence among industrialized countries in our sample, but they also suggest that conclusions of invariance apply equally to the full sample. Under each of the models of Table 1, the share of association due to cross-national interaction effects (L\parallel/L\parallel) is virtually the same in the full sample as in the industrialized subsample. This suggests an extension of the scope of the FJH hypothesis to state that mobility regimes are much the same in all complex societies, regardless of economic development. This uniformity is perhaps the analogue in comparative mobility analysis to the finding of invariant prestige hierarchies in complex societies (Treiman, 1977). Indeed, there may be more than analogy here, since the same processes which produce the uniformity in prestige may also account for the invariance in mobility. Recall our earlier hypothesis that cross-national regularities in the economic resources and desirability accorded occupations may result in uniform mobility processes; it is commonly argued that these regularities also account for the uniformity in occupational prestige hierarchies (Treiman, 1977; Goldthorpe and Hope, 1974).

EQUIVALENT MODELS OF VERTICAL MOBILITY

Several researchers have noted that seemingly different models of cross-classifications may be algebraically equivalent and thus yield the same fitted counts (Goodman, 1979b; Hauser, 1979, 1981; MacDonald, 1981; Pontinen, 1982; Hout, 1983). The choice between equivalent models cannot be made on the basis of fit. This problem is highly visible in the analysis of 3 x 3 classifications; for example, a great many models imply quasi-symmetry in the 3 x 3 table, and this is the overidentifying restriction in the quasi-perfect mobility model. Some models that are equivalent in the 3 x 3 table are not equivalent in larger tables, but the same problem arises in classifications with many categories and in all other nonexperimental research. If there are some areas of study where the problem seems not to appear, it is because there is substantial consensus in the field. Nonetheless, there are many criteria of model selection other than fit, and these may be helpful in choosing among equivalent models. These criteria include the theoretical rationale of competing models, the plausibility of estimated parameters, and the invariance and autonomy of parameters across populations. We have used these criteria in assessing several equivalent models of the present data.

We focus on equivalent models that assume the three strata can be ranked or scaled. Some models are equivalent to quasi-perfect mobility but do not assume at least a rank order of strata; we have rejected these a priori. As we have stated, we think there is ample theoretical rationale to posit differences among strata in inheritance, and thus we have given priority to the model of quasi-perfect mobility (and possible restrictions of it that equate diagonal parameters) relative to models that distinguish among levels of mobility off the main diagonal. Similarly, we have rejected models that imply quasi-symmetry but appear to posit asymmetric interactions between strata.

Among models that assume the strata can be rank ordered or scaled, we have estimated crossings models (Goodman, 1972; Pontinen, 1982), uniform association (Duncan, 1979; Hope, 1981), and homogeneous row and column effects (Goodman, 1979a, 1981b). Table 2 shows a display of the multiplicative parameters of several equivalent models that elucidates the relationships among them (Goodman, 1979b). In Panel A, δ_1, δ_2, and δ_3 are the immobility parameters for white-collar, blue-collar, and farm strata, respectively, in the model of quasi-perfect mobility. In Panel B, we specify a crossings model in which the density of observations depends on the stratum boundaries that have been crossed; γ_1 is the parameter for the boundary between white- and blue-collar strata, and γ_2 is the parameter for the boundary between blue-collar and farm strata. This model also specifies a parameter, δ, for blue-collar immobility. By equating expressions for the distinct odds ratios in Model A and Model B, we obtain $\gamma_1 = \delta_1^{-1/2}$, $\gamma_2 = \delta_2^{-1/2}$, and $\delta = \delta_2$.

18 Since the data are primarily from Western industrialized nations, this finding is most tentative.
COMPARATIVE SOCIAL MOBILITY REVISITED

Table 2. Some Equivalent Multiplicative Models of the 3 x 3 Mobility Classification

<table>
<thead>
<tr>
<th>Origin</th>
<th>White-Collar</th>
<th>Blue-Collar</th>
<th>Farm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Quasi-Perfect Mobility</td>
<td>δ₁ = 1/2</td>
<td>δ₂ = 1/2</td>
<td>δ₃</td>
</tr>
<tr>
<td>B. Crossings with Blue-Collar Immobility</td>
<td>γ₁ = 1/2</td>
<td>γ₂ = 1/2</td>
<td>γ₃</td>
</tr>
<tr>
<td>C. Crossings with Uniform Immobility</td>
<td>γ₁ = 1/2</td>
<td>γ₂ = 1/2</td>
<td>γ₃</td>
</tr>
<tr>
<td>D. Model I* (homogeneous row and column effects) Plus Uniform Immobility</td>
<td>γ₁ = 1/2</td>
<td>γ₂ = 1/2</td>
<td>γ₃</td>
</tr>
<tr>
<td>E. Model II* (homogeneous row and column effects with uniform immobility)</td>
<td>γ₁ = 1/2</td>
<td>γ₂ = 1/2</td>
<td>γ₃</td>
</tr>
</tbody>
</table>

*Marginal effects are suppressed in this display. See text for explanation.

There are one-to-one correspondences between the parameter for white-collar immobility and the crossing from white- to blue-collar strata, between the respective parameters for blue-collar immobility, and between the parameter for farm immobility and the crossing from blue-collar to farm strata. Thus, not only are these two models equivalent algebraically and statistically, but their parameters are the same up to a power transformation. Immobility in the extreme categories is simply an inverse measure of the barriers to movement in or out of them. Nothing in the parameter estimates of one model could lead one to prefer it to the other on grounds of plausibility.

Panel C shows another equivalent crossings model, in which the immobility parameter pertains not merely to the blue-collar stratum, but to all three strata. Here, γ₁ is the parameter for the boundary between white- and blue-collar strata, γ₂ is the parameter for the boundary between blue-collar and farm strata, and δ is the parameter for uniform immobility. By equating expressions for the distinct odds ratios in Model A and Model C, we obtain γ₁ = (δ₂/δ₃)^(γ₂/2), γ₂ = (δ₃/δ₁)^(γ₃/2), and δ = δ₂. The blue-collar inheritance parameter of Models A and B is unchanged, while the crossings parameters of Model B are multiplied by the square root of the inheritance parameter. By applying the inheritance parameter of the middle stratum to the two extreme strata, Model C reduces the barriers (crossing parameters) between the extremes and the middle category. Although Model C does not estimate any negative barriers between strata, it still yields negative estimates of status inheritance in Hungary, the United States, and Sweden, just as does the model of quasi-perfect mobility. Model C is less appealing to us than quasi-perfect mobility (Model A) because we expect low levels of inheritance only in the blue-collar stratum, but Model C generalizes status disinheritance to all three strata in these countries.

Before discussing the remaining panels of Table 2, it is necessary to introduce some of Goodman's (1979a) association models. Uniform association assigns numeric values to the strata at equal intervals, while homogeneous row and column effect Models I* and II* permit distances between strata to differ. "Homogeneity" refers to the assumption that the distances between the same origin and destination strata are equal. In Model I* and uniform association, we assume that the blue-collar stratum lies between the white-collar and farm strata; homogeneous row and column effects Model II* does not require prior assumptions about the rank order of strata. None of these models satisfactorily accounts for stratum inheritance, and they do not fit the 16-nation data.

In less-aggregated tables, it is possible to fit uniform association or row and column effects while also fitting distinct parameters for immobility in each category (Goodman, 1979a). Those parameters are not identified in the 3 x 3 classifications, but it is possible to identify a single parameter that pertains to inheritance in all strata. Adding a single immobility parameter for each country to the model of uniform association improves fit substantially, but still does not yield a satisfactory fit. The addition

19 See Goodman (1979a:547–48) for a statement of the invariance properties of these models.
20 Goodman (1979a:550–51, 1981c:228–35) and Clogg (1982) extend association models to multi-way classifications. Without cross-national constraints on parameters, uniform association yields L^2 = 9,058 with 48 df, homogeneous row and column effects Model I* yields L^2 = 8,091 with 32 df, and homogeneous row and column effects Model II* yields L^2 = 7,399 with 32 df. On request the authors will report the fit of these models in each country.
21 The fit statistic is L^2 = 1,237 with 32 df; this model is equivalent to equal crossings with a single
of a single immobility parameter makes Model I* or Model II* equivalent to quasi-perfect mobility. The former model is shown in Panel D of Table 2, where \(y_1, y_2, \) and \(y_3 \) are scale values for the white-collar, blue-collar, and farm strata, respectively. Without loss of generality, we normalize these three parameters by fixing \(y_2 = 1 \). Consequently, \(y_1 \) pertains (inversely) to the distance between blue-collar and farm strata. As in Model C, \(\delta \) pertains to immobility in all strata. By equating expressions for the distinct odds ratios in Model A and Model D, we obtain

\[
\begin{align*}
y_1 &= (\delta_2^6 \delta_3^2 \delta_1^2)^{1/6}, \\
y_2 &= (\delta_2^2 \delta_3^2 \delta_1^2)^{1/6}, \\
\delta &= (\delta_2 \delta_3 \delta_1)^{1/6}.
\end{align*}
\]

(2)

Clearly, the parameters of Model D are a far more complex mixture of the parameters of Model A than are those of Models B or C. The distance between white-collar and blue-collar strata varies directly with white-collar inheritance, but inversely with blue-collar and farm inheritance; similarly, the distance between blue-collar and farm strata varies directly with farm inheritance, but inversely with blue-collar and white-collar inheritance.22

Given our findings about Model A, these relationships imply that the parameters of Model D should show a moderate level of stratum inheritance, a large distance between the farm stratum and either the blue- or white-collar stratum, and a smaller distance between the blue-collar and white-collar strata. While the parameters for most nations fall within this description, there is a serious anomaly in the estimates for 7 nations: Australia, Belgium, France, the Philippines, Denmark, Finland, and Sweden. In each of these nations, the estimated distance between white-collar and blue-collar strata is negative. We find these results less plausible than the estimates of blue-collar status disinheritance under quasi-perfect mobility. It is difficult to believe that the white-collar stratum is closer to the farm stratum than is the blue-collar stratum. Also, these anomalous distances are contrary to the ranking of strata that was assumed in Model I*, and this renders the model internally inconsistent.23

Panel E of Table 2 displays the parameters of Model II* with a uniform immobility parameter (hereafter, Model UII*). The \(\mu_i \) are scale values for the occupational strata and appear as exponents; in these terms the model is log-multiplicative, not log-linear. Without loss of generality, we normalize the parameters of the model by the restriction \(\mu_2 = 0 \), so \(\mu_1 \) is the distance between white- and blue-collar strata and \(\mu_3 \) is the distance between blue-collar and farm strata. As in Models C and D, \(\delta \) is a multiplicative (log-linear) effect pertaining to immobility in all strata. By equating expressions for the distinct odds ratios in Model A and Model E, we obtain

\[\begin{eqnarray*}
\delta_1 &=& \delta e^{\mu_1 (\mu_1 - \mu_3)}, \\
\delta_2 &=& \delta e^{\mu_2 (\mu_1 - \mu_3)}, \\
\delta_3 &=& \delta e^{\mu_3 (\mu_1 - \mu_3)}.
\end{eqnarray*}\]

In this model, the \(\mu_1 \) and \(\delta \) are quadratic functions of the logarithms of the \(\delta_i \). Our expectations about the parameters of Model E are similar to those for Model D, and in this case the estimates are more plausible. That is, in every country the blue-collar stratum is estimated to lie between the white-collar and farm strata; the distance between the white- and blue-collar strata is less than that between the blue-collar and farm strata; and there is positive status inheritance.24

We also estimated the variability of parameters across nations under quasi-perfect mobility and Model UII*. On grounds of parsimony, we would prefer the model that captured cross-national variability in the least number of its parameters. However, we found substantial cross-national variation in each of the parameters of these two and other equivalent models. There is a trade-off between the specification of heterogeneous interstratum distances in Model UII* and heterogeneous mobility parameters under quasi-perfect mobility. Model

23 The estimated parameters of Model I* with uniform inheritance are available from the authors upon request.
24 The algebraic results and parameter estimates are available from the authors upon request. Model UII* cannot be estimated with the ANOASC program (Shockey and Clogg, 1983) because we fit a single parameter for the main diagonal. We have estimated the model within GLIM (Baker and Nelder, 1978) by successively fitting models of row effects and models of column effects to the mobility classifications and their transposes, and updating the estimated scale values at each step. This parallels procedures described by Goodman (1979a:551) and Breen (forthcoming).
COMPARATIVE SOCIAL MOBILITY REVISITED 29

Table 3. Tests of Cross-National Variation in Distributions of Stratum Origin and Destination

<table>
<thead>
<tr>
<th>Model</th>
<th>L^2</th>
<th>df</th>
<th>L^2/df</th>
<th>L^2/L^2γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Tests with Independence Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. (FC){SC}</td>
<td>42970</td>
<td>64</td>
<td>671.4</td>
<td>—</td>
</tr>
<tr>
<td>2. (FC){SC}</td>
<td>54900</td>
<td>94</td>
<td>584.0</td>
<td>—</td>
</tr>
<tr>
<td>3. (FC){SC}</td>
<td>55100</td>
<td>94</td>
<td>586.2</td>
<td>—</td>
</tr>
<tr>
<td>4. (FC){SC}</td>
<td>67030</td>
<td>124</td>
<td>540.6</td>
<td>—</td>
</tr>
<tr>
<td>5. (FC){SC}</td>
<td>1329</td>
<td>60</td>
<td>22.2</td>
<td>—</td>
</tr>
<tr>
<td>6. 2 vs. 1 (Variation in father’s margin)</td>
<td>11930</td>
<td>30</td>
<td>397.7</td>
<td>—</td>
</tr>
<tr>
<td>7. 3 vs. 1 (Variation in son’s margin)</td>
<td>12130</td>
<td>30</td>
<td>404.3</td>
<td>—</td>
</tr>
<tr>
<td>8. 4 vs. 1 (Variation in both margins)</td>
<td>24060</td>
<td>60</td>
<td>401.0</td>
<td>—</td>
</tr>
<tr>
<td>B. Tests with Baseline of Quasi-Perfect Mobility or Model UII*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. (FC){SC}{Q}</td>
<td>18620</td>
<td>121</td>
<td>153.9</td>
<td>100.0</td>
</tr>
<tr>
<td>10. (FC){SC}{Q}</td>
<td>150</td>
<td>16</td>
<td>9.4</td>
<td>0.8</td>
</tr>
<tr>
<td>11. (FC){SC}{Q}</td>
<td>1500</td>
<td>61</td>
<td>24.6</td>
<td>8.1</td>
</tr>
<tr>
<td>12. (FC){SC}{Q}</td>
<td>3668</td>
<td>46</td>
<td>79.7</td>
<td>19.7</td>
</tr>
<tr>
<td>13. (FC){SC}{Q}</td>
<td>2596</td>
<td>46</td>
<td>56.4</td>
<td>13.9</td>
</tr>
<tr>
<td>14. (FC){SC}{Q}</td>
<td>3532</td>
<td>46</td>
<td>70.6</td>
<td>19.7</td>
</tr>
<tr>
<td>15. 11 vs. 10 (Variation in association)</td>
<td>1350</td>
<td>45</td>
<td>30.0</td>
<td>7.3</td>
</tr>
<tr>
<td>16. 12 vs. 10 (Variation in father’s margin)</td>
<td>3518</td>
<td>30</td>
<td>117.3</td>
<td>18.9</td>
</tr>
<tr>
<td>17. 13 vs. 10 (Variation in son’s margin)</td>
<td>2446</td>
<td>30</td>
<td>81.5</td>
<td>13.1</td>
</tr>
<tr>
<td>18. 14 vs. 10 (Variation in both margins)</td>
<td>5212</td>
<td>60</td>
<td>86.9</td>
<td>28.0</td>
</tr>
</tbody>
</table>

a F = Father’s stratum, S = Son’s stratum, C = Country, Q = Quasi-perfect mobility or Model UII*.

UII* specifies unequal distances between strata by equating densities of immobility across strata. For example, if δ₁ = δ₂, then δ₁ = δ₂ = δ. Obversely, the quasi-perfect mobility model specifies stratum differences in inheritance by ignoring interstratum distances. For example, if δ₁ = δ₂, then μ₁ = ± μ₂. While the two models use different imagery to describe the mobility process, the differences between them cannot be resolved on the basis of fit or, in our opinion, the parameter estimates in the 16-nation sample. By virtue of their equivalence many, but not all, cross-national comparisons are indifferent to the choice between the two models. Where differences between the models may occur, we present results using both models.

SOURCES OF VARIATION IN MOBILITY

We have found that observed rates of mobility vary dramatically between countries while social fluidity is relatively invariant. This implies that intersocietal differences in observed rates must be attributed to variations in occupational distributions, yet McClendon (1980b:493) has recently claimed that “cross-national variance in exchange mobility has a strong effect which is at least as great as the structural effects among the more developed nations.”

McClendon (1980b:506) claims that his findings “refute” the FJH hypothesis; we think his model of the observed, total mobility rate is substantially irrelevant to the hypothesis as formulated by Featherman et al. (1975:339–40) and subsequently tested by McRoberts and Selbee (1981), Erikson et al. (1982), Hope (1982), Hauser (1983), and Portocarero (1983). Moreover, McClendon’s model is an ad hoc mixture of observed rates and multiplicative parameters of the mobility classifications.
same issue using Model 10 as an alternative baseline. The interaction effects, Q, in this model may be interpreted either as parameters of quasi-perfect mobility or of Model UII*. We place successive equality constraints on the effects of the father's margins (Model 12), the son's margins (Model 13), both margins (Model 14), and the interaction effects (Model 11). Again, a comparison of L²/df ratios for the contrasts reveals that cross-national differences in mobility are induced primarily by variation in marginal effects, not by variation in social fluidity. This conclusion is also supported by a comparison of L²/L² values where Model 9 specifies the association to be explained.26 These results indicate that Lipset and Zetterberg were correct to consider marginal distributions the primary determinant of variation in observed mobility rates, but mistaken to suggest that the shape of these distributions would be rendered uniform by the standardizing logic of industrialism (Erikson et al., 1982,25).

table 4. A Partition of Cross-National Variation in Social Fluidity

<table>
<thead>
<tr>
<th>Model</th>
<th>L²</th>
<th>df</th>
<th>L²/df</th>
<th>L²/I²/L²-F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Nested Hierarchy of Models</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. (FC) + (SC) + (Q)</td>
<td>1500</td>
<td>61</td>
<td>24.6</td>
<td>-</td>
</tr>
<tr>
<td>2. (FC) + (SC) + (Q) + (UC)</td>
<td>896</td>
<td>46</td>
<td>19.5</td>
<td>-</td>
</tr>
<tr>
<td>3. (FC) + (SC) + (QC)</td>
<td>150</td>
<td>16</td>
<td>9.4</td>
<td>-</td>
</tr>
<tr>
<td>B. Partitioning the Variation in Q</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. 1 vs. 2 (Variation in U)</td>
<td>604</td>
<td>15</td>
<td>40.3</td>
<td>44.7</td>
</tr>
<tr>
<td>5. 2 vs. 3 (Variation in Q net of U)</td>
<td>746</td>
<td>30</td>
<td>24.9</td>
<td>55.3</td>
</tr>
<tr>
<td>6. 1 vs. 3 (Total Variation in Q)</td>
<td>1350</td>
<td>45</td>
<td>30.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

* F = Father’s stratum, S = Son’s stratum, C = Country, Q = Quasi-perfect mobility or Model UII*, U = Uniform inheritance.

SOURCES OF VARIATION IN SOCIAL FLUIDITY

While we have emphasized the fundamental similarity of mobility patterns, we do not deny that there are real national variations in social fluidity; the model of invariance can be rephrased by introducing the structure of these differences and the effect of economic and noneconomic variables on them.

Before introducing exogenous variables into our models, we ask if cross-national variation in social fluidity might be captured by a single parameter for the strength of inheritance that pertains to all of the strata. Model 1 of Table 4 describes constant, quasi-perfect mobility (or Model UII*), and Model 2 introduces a general inheritance parameter, U, that varies from country to country, but is the same for each stratum within a given country. The contrast between Model 1 and Model 2 (Line 4) measures cross-national differences in the general inheritance parameter. Model 3 permits all of the parameters of the model to vary across countries, so the contrast between Model 2 and Model 3 (Line 5) measures cross-national differences in stratum-specific inheritance (or in interstratum distances) that are independent of variation in the general inheritance parameter.

This partition of the test statistics shows that nearly 45 percent of the total variation in social fluidity pertains to the general level of stratum inheritance, and about 55 percent pertains to variations in stratum-specific inheritance (or in interstratum distances). At the same time, the former component of association is larger relative to its degrees of freedom than is the latter. Clearly, cross-national variation in social fluidity cannot be summarized by a single parameter, even in the 3-stratum mobility table, cross-national differences can not satisfactorily be described by the chances of mobility relative to immobility. The following analysis considers the effect of exogenous variables on each of the parameters of quasi-perfect mobility and of Model UII*.

EXPLAINED AND UNEXPLAINED VARIATION IN SOCIAL FLUIDITY

Although the hypothesis of constant social fluidity is rejected at conventional levels of statistical significance, small departures from the model are sufficient to generate a significant chi-square value with a sample of more than 110,000 cases. Assertions of nonconvergence would be more convincing if cross-national variations in social fluidity were linked explicitly to exogenous variables. For this rea-
son we have estimated log-linear or log-
multiplicative models in which measures of in-
dustrialization, educational enrollment, social
democracy, and income inequality are used to
explain cross-national variation. These are the
major explanatory variables identified in pre-
vious research, and for the most part we have
used standard measurements of these vari-
ables.\(^{27}\)

Our models also include a dummy variable
with the value "1" for Hungary and "0" for all
other countries. We have found that Hungary
is an outlier in every one of our models, and its
presence tends to dominate and distort rela-
tionships that appear for other countries. We
experimented with numerous treatments of the
data, including shifts in functional form and the
creation of a dummy variable for socialism in
both Hungary and Yugoslavia, but we are un-
able to explain the Hungarian case. Simkus
(1981b) has documented the marked shifts in
occupational inheritance that followed the
Hungarian transition to socialism.

\(^{27}\) Industrialization is per capita energy consump-
tion in kilograms of coal, matched to the date of the
corresponding mobility study (McClendon, 1980a).
Educational enrollment is the proportion of the
population between the ages of five and nineteen
enrolled in primary or secondary education, com-
puted for 1964 or 1965 (Taylor and Hudson, 1972).
Inequality is the percentage of the national income
going to the top five percent of households, matched
to the date of the mobility study (Jain, 1975). When this statistic was not avail-
able, comparable figures were estimated from data
on inequality among income recipients or workers
(Jain, 1975), or from sectoral income distributions
(Taylor and Hudson, 1972). These estimates were
calculated with the regression procedure outlined by
Tyree et al. (1979:416). Social democracy is the pro-
portion of seats in the national legislature held by
socialist or “social democratic” parties averaged
over the elections immediately preceding and fol-
lowing 1960 (Jackman, 1975). The authors will sup-
ply the values of these variables for each country on
request.

We begin this part of the analysis with global
tests of the effects of the exogenous variables
on the parameters of our preferred models. Then,
we examine the effects of each exogenous
variable on each of the parameters of these
models. Table 5 reports fit statistics for the
baseline models of conditional independence
(Model 1) and variable social fluidity (Model
2). Model 3 specifies constant social fluidity,
and Model 4 permits each of the 5 explanatory
variables to interact with each of the param-
eters of the mobility model.\(^{28}\) The contrast be-
tween Model 3 and Model 4 shows the amount
of cross-national variability that is explained
by the 5 exogenous variables (Line 5), and the
contrast between Model 4 and Model 2 shows the
amount of cross-national variability that is not explained by the exogenous variables (Line
6). The contrast between Lines 2 and 3 gives
the total cross-national variation in social
fluidity (Line 7). The exogenous variables ac-
count for most of the cross-national variation
in stratum inheritance; 74.8 percent of the test
statistic is explained by the five variables
(1010/1350 = .748). This evidence of system-
atic, cross-national variation in mobility param-
eters lends greater credence to assertions of
nonconvergence.\(^{29}\)

**GENERAL AND STRATUM-SPECIFIC
EFFECTS ON IMMOBILITY**

Table 6 reports summary statistics for models
that partition the effects of each explanatory

\(^{28}\) On request the authors will supply a brief ap-

pendix that shows how to estimate log-linear models
with exogenous variables that affect interaction pa-

rameters.

\(^{29}\) The Hungarian case accounts for about 25 per-

cent of the test statistic for cross-national variation
in social fluidity. Thus, when we exclude Hungary
from the analysis, the other 4 explanatory variables
account for proportionately less of the cross-national
variation; our results are otherwise unaffected by
the choice between excluding Hungary and the speci-
fication of a dummy variable for that nation.
Table 6. Partitions of the Effects of Exogenous Variables on Immobility and Other Parameters of Social Fluidity

<table>
<thead>
<tr>
<th>Model</th>
<th>L^2</th>
<th>df</th>
<th>L^2/df</th>
<th>L^2_{HI}/L^2_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Baseline Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. (FC)(SC)(QI)(QE)(QH)(QD)</td>
<td>490</td>
<td>46</td>
<td>10.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(QN)(UI)(UE)(UH)(UD)(UN)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Industrialization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Delete (QI) from baseline</td>
<td>502</td>
<td>48</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>3. Delete (QI)(UI) from baseline</td>
<td>523</td>
<td>49</td>
<td>10.7</td>
<td></td>
</tr>
<tr>
<td>4. 2 vs. 3 (Immobility effect)</td>
<td>21</td>
<td>1</td>
<td>21.0</td>
<td>1.6</td>
</tr>
<tr>
<td>5. 1 vs. 2 (Other effects)</td>
<td>12</td>
<td>2</td>
<td>6.0</td>
<td>0.9</td>
</tr>
<tr>
<td>6. 1 vs. 3 (Total effects)</td>
<td>33</td>
<td>3</td>
<td>11.0</td>
<td>2.4</td>
</tr>
<tr>
<td>C. Educational Enrollment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Delete (QE) from baseline</td>
<td>517</td>
<td>48</td>
<td>10.8</td>
<td></td>
</tr>
<tr>
<td>8. Delete (QE)(UE) from baseline</td>
<td>522</td>
<td>49</td>
<td>10.7</td>
<td></td>
</tr>
<tr>
<td>9. 7 vs. 8 (Immobility effect)</td>
<td>5</td>
<td>1</td>
<td>5.0</td>
<td>0.4</td>
</tr>
<tr>
<td>10. 1 vs. 7 (Other effects)</td>
<td>27</td>
<td>2</td>
<td>13.5</td>
<td>2.0</td>
</tr>
<tr>
<td>11. 1 vs. 8 (Total effects)</td>
<td>32</td>
<td>3</td>
<td>10.7</td>
<td>2.4</td>
</tr>
<tr>
<td>D. Hungary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Delete (QH) from baseline</td>
<td>680</td>
<td>48</td>
<td>14.2</td>
<td></td>
</tr>
<tr>
<td>13. Delete (QH)(UH) from baseline</td>
<td>822</td>
<td>49</td>
<td>16.8</td>
<td></td>
</tr>
<tr>
<td>14. 12 vs. 13 (Immobility effect)</td>
<td>142</td>
<td>1</td>
<td>142.0</td>
<td>10.5</td>
</tr>
<tr>
<td>15. 1 vs. 12 (Other effects)</td>
<td>190</td>
<td>2</td>
<td>95.0</td>
<td>14.1</td>
</tr>
<tr>
<td>16. 1 vs. 13 (Total effects)</td>
<td>332</td>
<td>3</td>
<td>110.7</td>
<td>24.6</td>
</tr>
<tr>
<td>E. Social Democracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Delete (QD) from baseline</td>
<td>626</td>
<td>48</td>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td>18. Delete (QD)(UD) from baseline</td>
<td>687</td>
<td>49</td>
<td>14.0</td>
<td></td>
</tr>
<tr>
<td>19. 17 vs. 18 (Immobility effect)</td>
<td>61</td>
<td>1</td>
<td>61.0</td>
<td>4.5</td>
</tr>
<tr>
<td>20. 1 vs. 17 (Other effects)</td>
<td>136</td>
<td>2</td>
<td>68.0</td>
<td>10.1</td>
</tr>
<tr>
<td>21. 1 vs. 18 (Total effects)</td>
<td>197</td>
<td>3</td>
<td>65.7</td>
<td>14.6</td>
</tr>
<tr>
<td>F. Inequality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Delete (QN) from baseline</td>
<td>497</td>
<td>48</td>
<td>10.4</td>
<td></td>
</tr>
<tr>
<td>23. Delete (QN)(UN) from baseline</td>
<td>600</td>
<td>49</td>
<td>12.2</td>
<td></td>
</tr>
<tr>
<td>24. 22 vs. 23 (Immobility effect)</td>
<td>103</td>
<td>1</td>
<td>103.0</td>
<td>7.6</td>
</tr>
<tr>
<td>25. 1 vs. 22 (Other effects)</td>
<td>7</td>
<td>2</td>
<td>3.5</td>
<td>0.5</td>
</tr>
<tr>
<td>26. 1 vs. 23 (Total effects)</td>
<td>110</td>
<td>3</td>
<td>36.7</td>
<td>8.1</td>
</tr>
</tbody>
</table>

F = Father’s stratum, S = Son’s stratum, Q = Quasi-perfect mobility or Model UII, U = Uniform inheritance, I = Industrialization, E = Educational enrollment, H = Hungary, D = Social democracy, N = Inequality. The denominator in the L^2_{HI}/L^2_T statistic is the total variation in quasi-perfect mobility or Model UII* (Table 5, Line 7).

variable on the general level of immobility relative to other parameters of social fluidity. Our analysis is based upon backward selection from the baseline model in Panel A (Line 1), which includes all possible interactions between the exogenous variables and parameters of social fluidity. We have included redundant parameters in the description of Model 1, so interactions between an exogenous variable and the other parameters can be dropped without deleting the interactions of that same exogenous variable with the general level of immobility. For example, in Line B2, where the term (QI) is deleted, the model does include a possible effect of industrialization on the general level of stratum immobility, but it no longer includes effects of industrialization on the other parameters. This implies that there are no effects of industrialization on stratum-specific mobility or, equivalently on interstratum distances in Model UII*. In Line B3, both the (QI) and (UI) terms are deleted, so the model includes no effects of industrialization. Thus, the contrast between Line B2 and Line B3 pertains to the effect of industrialization on immobility (Line B4), and the contrast between Line A1 and Line B2 pertains to other effects of industrialization (Line B5). In this case, industrialization has a modest effect on immobility (L^2 = 21 with 1 df) and its other effects are very small, but statistically significant (L^2 = 12 with 2 df). Panels C to F of Table 6 report similar analyses of the effects of the other explanatory variables.

The Hungarian case accounts for 24.6 percent of the test statistic for cross-national variation in social fluidity; this underlines the importance of seeking theoretical explanations of East European mobility regimes. Social democracy accounts for 14.6 percent of the test statistic. At the same time, recall our earlier observation that Yugoslavia is not an outlier in our analyses.
statistic, and income inequality accounts for 8.1 percent of the test statistic. In contrast, industrialization and education each account for only 2.4 percent of the test statistic. Contrary to theories of convergence, this indicates quite clearly that political variables—including the Hungarian exception—influence mobility processes, even after economic development is controlled. These results are also inconsistent with Ossowski’s (1957) hypothesis that the consequences of socialist policies were in fact the result of concurrent economic expansion. At least in the present data, the logic of industrialism demands no more uniformity in mobility regimes than does the logic of political organization.

We have considered two alternative explanations of this finding. First, industrialization and educational enrollment might have larger effects in the equations that do not include interactions with political variables. This is not the case in the present data; even when industrialization or educational enrollment is entered by itself, neither variable accounts for a large component of cross-national variability in social fluidity. Second, comparisons among components of the likelihood-ratio test statistic are affected by incidental cross-national variations in sample size that may be related to the explanatory variables. Suppose the extremes of social democracy were represented by very large samples, while the extremes of industrialization were represented by very small samples. Then, social democracy might account for a larger test statistic even if its effects were no stronger than those of industrialization. To take account of this possibility, we have examined scatter plots of the size of the national samples against each of the exogenous variables, and we have found no evidence that incidental variations in sample size explain the power of the contrasts involving political variables.

In the case of quasi-perfect mobility, the contrasts in Table 6 imply that the effects of exogenous variables cannot be generalized across inheritance parameters. That is, the tests for effects of exogenous variables on other parameters of social fluidity (Lines 5, 10, 15, 20, and 25) may be construed as tests of differences between the effects of those variables on the three parameters of status inheritance under quasi-perfect mobility. All of these tests are statistically significant beyond the 0.05 level, and less than half of the total effects of education, social democracy, and socialism pertain to the overall level of inheritance. At the same time, virtually all of the effects of income inequality pertain to the general immobility parameter; its stratum-specific effects are trivial.

Table 7 shows the effects of the explanatory variables on parameters of social fluidity in the uniform inheritance model, the quasi-perfect mobility model, and Model UII*. The coefficients reported in Panel A are from the model \{PC\} \{SC\} \{Q\} \{UI\} \{UE\} \{UH\} \{UD\} \{UN\}. The coefficients reported in Panels B and C

<table>
<thead>
<tr>
<th>Parameters of social fluidity</th>
<th>Uniform Inheritance</th>
<th>White-collar inheritance</th>
<th>Blue-collar inheritance</th>
<th>Farm inheritance</th>
<th>White-collar to blue-collar distance</th>
<th>Uniform inheritance</th>
<th>Blue-collar to farm distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exogenous Variables</td>
<td>Industrialization</td>
<td>Educational enrollment</td>
<td>Hungary</td>
<td>Social democracy</td>
<td>Inequality</td>
<td>Industrialization</td>
<td>Educational enrollment</td>
</tr>
<tr>
<td>A. Uniform Inheritance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Uniform inheritance</td>
<td>-.085</td>
<td>.067</td>
<td>-.483</td>
<td>-.058</td>
<td>-.268</td>
<td>(.012)</td>
<td>(.025)</td>
</tr>
<tr>
<td>B. Quasi-Perfect Mobility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. White-collar inheritance</td>
<td>.033</td>
<td>-.094</td>
<td>.835</td>
<td>-.062</td>
<td>-.349</td>
<td>(.030)</td>
<td>(.061)</td>
</tr>
<tr>
<td>3. Blue-collar inheritance</td>
<td>-.109</td>
<td>.001</td>
<td>-.1208</td>
<td>.058</td>
<td>-.118</td>
<td>(.028)</td>
<td>(.059)</td>
</tr>
<tr>
<td>4. Farm inheritance</td>
<td>-.118</td>
<td>.401</td>
<td>-.020</td>
<td>-.331</td>
<td>-.240</td>
<td>(.040)</td>
<td>(.076)</td>
</tr>
<tr>
<td>C. Model UII*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. White-collar to</td>
<td>.037</td>
<td>.002</td>
<td>.619</td>
<td>-.058</td>
<td>-.069</td>
<td>(.027)</td>
<td>(.055)</td>
</tr>
<tr>
<td>blue-collar distance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(.003)</td>
<td>(.015)</td>
</tr>
<tr>
<td>6. Uniform inheritance</td>
<td>-.069</td>
<td>.003</td>
<td>-.542</td>
<td>-.004</td>
<td>-.193</td>
<td>(.015)</td>
<td>(.031)</td>
</tr>
<tr>
<td>7. Blue-collar to farm</td>
<td>-.082</td>
<td>.368</td>
<td>-.134</td>
<td>-.246</td>
<td>.025</td>
<td>(.033)</td>
<td>(.059)</td>
</tr>
<tr>
<td>distance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(.033)</td>
<td>(.059)</td>
</tr>
</tbody>
</table>

*Entries are metric coefficient (standard error). For convenience in presentation, the scales of the educational enrollment, inequality and social democracy indicators were divided by 10, and the scale of the industrialization indicator was divided by 1000. The sign on the blue-collar to farm coefficient was reflected so it varies positively with distance.
are from the model \{FC\} \{SC\} \{Q1\} \{QE\} \{QH\} \{QD\} \{QN\}, where Q refers either to quasi-
perfect mobility or Model UII*. Although the
fit statistic is the same, regardless of which
model Q denotes, the estimates of the interac-
tions between exogenous variables and social
fluidity are specific to each model. As we have
shown, the parameters of each of these models
are complex mixtures of the parameters of the
other. However, under quasi-perfect mobility
and Model UII*, respectively, there are rough
correspondences between the effects of each
exogenous variable on white-collar inher-
ance and blue-collar to blue-collar distance
(Lines 2 and 5), on blue-collar inheritance and
uniform inheritance (Lines 3 and 6), and on
farm inheritance and blue-collar to farm dis-
tance (Lines 4 and 7).

The coefficients for interaction with indus-
trialization demonstrate the conflicting conse-
quences of economic development for social
fluidity. Although there is a negative effect of
industrialization on blue-collar and farm inher-
tance, the coefficient of white-collar inherit-
ance is insignificant at the 0.05 level. Simi-
larly, under Model UII* industrialization has
no significant effect on the distance between
the white- and blue-collar strata, but has nega-
tive effects on the other two parameters. These
results differ from those in previous research.
Some studies have reported a positive relation-
ship between industrialization and exchange
mobility (Hazelrigg, 1974; Cutright, 1968),
while others have reported no significant asso-
ciation (Hazelrigg and Garnier, 1976; Hardy
and Hazelrigg, 1978). Both of these conclu-
sions may be partially correct, since the conse-
quences of economic development are by no
means uniform. The negative association be-
tween industrialization and inheritance (Line 1)
do not extend to the white-collar stratum; it
may not be surprising that a stratum with
vested interests in its own reproduction proves
resistant to pressures for the equalization of
opportunity.

The effects of educational enrollment are
equally diverse. There are positive effects of
education on farm inheritance and blue-collar
to farm distance, but the other coefficients in
Panels B and C are nonsignificant. Although it
commonly argued that the expansion of edu-
cation facilitates mobility, we find no evidence
of this effect in our multivariate model. This
provides some support at the macrosocial level
for radical interpretations of schooling as an
instrument for the maintenance of status over
generations. Moreover, farm inheritance (and
blue-collar to farm distance) actually increases
with educational enrollment. This suggests that
the transition to a "credential society" may
restrict the mobility chances of farmers,

perhaps because their access to education is
limited by cultural expectations and work obli-
gations.31

Simkus' (1981b) analysis of intercohort
trends in Hungarian mobility uncovered a dra-
matic reduction in elite persistence during the
transition to socialism. However large this
trend, we find that in comparison with other
nations and net of other variables, Hungary has
strongly positive coefficients for white-collar
hierarchical inheritance and white- to blue-collar distance.
From this, one might speculate that theories of a
new class under state socialism (Djilas, 1957,
Konrad and Szelenyi, 1979) apply not only to
the tangible privileges of the upper strata, but
also to the opportunity for class inheritance
(compare Giddens, 1973:240). This is particu-
larly striking because the new class does not
retain rights of disposal over private property;
in the absence of formal ownership we suspect
that advantaged access to education assumes a
primary role in status transmission (see Simkus
and Andorka, 1982).

Although the strength of white-collar inherit-
ance might give an impression of imperme-
able class boundaries, this must be reconciled
with the extreme fluidity of Hungary's blue-
collar stratum. Net of all other effects in the
model, blue-collar inheritance is 3.3 times less
likely in Hungary. Blue-collar disinheritance
may result from explicit educational quotas de-
signated to favor proletarian families (Giddens,
1973:231; Parkin, 1971:142), or from the
attenuation of a distinctive working-class sub-
culture (Parkin, 1971:157). A parallel inter-
pretation of the Hungarian exception applies to
parameters of Model UII*.

The coefficients for social democracy under-
score the point that the exogenous variables
have nonuniform effects on social fluidity. In
Panels B and C we find that social democracy
reduces the inheritance or distance pertaining
to the white-collar and farm strata, but has
insignificant or contrary effects on blue-collar
or uniform inheritance. These findings for farm
and white-collar strata suggest that social de-
mocracy can be effective in equalizing life
chances and producing a more open society. In
addition, these results are a notable exception
to the pattern of white-collar resistance to the

31 Since educational enrollment and industrializa-
tion are highly intercorrelated, we tested our model
against the alternative that their effects on each of
the quasi-perfect mobility parameters are the same
when the two exogenous variables are standardized.
The hypothesis of equal effects was rejected for
blue-collar and farm inheritance, but not for white-
collar inheritance. The latter finding is not surpris-
ing, for Table 7 shows that the effects of educational
enrollment and industrialization on white-collar in-
heritance are not significantly different from zero.
equalization of opportunity; social democrats may indeed be "liberals who really mean it" (Parkin, 1979:189). Because change in mobility regimes may require the hegemony of social democratic parties, these results might be stronger if our index pertained to a longer segment of political history (Hewitt, 1977:456; Erikson et al., 1982:25–26). Also, the effects of social democracy are the same if the sample is restricted to capitalist nations; this is important because the absence of social democratic rule has no obvious interpretation in the socialist nations.

The final variable in Table 7 pertains to the contention that rates of mobility are governed by the degree of inequality between social classes. We find significant negative coefficients for the three parameters of quasi-perfect mobility and for the uniform inheritance parameter of Model UII*; the sign of these effects is contrary to that hypothesized by Tyree et al. (1979). No less than these authors, we find this result difficult to interpret. However, it may be that high rates of stratum inheritance motivate various forms of collective action that reduce income inequality. Blau and Duncan (1967:440) argue that workers lacking prospects of advancement for themselves or their children are more likely to organize a union to raise wages or to vote for a party advocating progressive taxation. It follows that income inequality and stratum inheritance may be negatively related, but through a causal path opposite to that assumed by Tyree et al.

CONCLUSIONS

We have gained new insights into the leading issues of comparative social mobility by reanalyzing a standard set of data. Although we know the limitations of these data, we think that our results set a provisional baseline for future comparative research with "second generation" studies. We expect and hope that many of our findings will be elaborated, challenged, and falsified in future work.

The preceding analysis provides considerable support for the FJH revision of the Lipset-Zetterberg hypothesis, which implies that historical and cultural variations affect the shape of the occupational structure but not the interactions between occupational strata; this invariance is perhaps stronger than heretofore supposed. We have also proposed that the FJH revision might be elaborated in two respects. First, we suggested that uniformity in mobility regimes is not limited to highly industrialized societies but may extend across levels of economic development. Industrialized countries share a common pattern of mobility, but the pattern can not derive from the "logic of industrialism" if it applies equally to less-developed societies. This uniformity in mobility patterns may be the analogue to invariance in prestige hierarchies, in the sense that both may result from cross-national regularities in the resources and desirability accorded occupations.

Second, we provided greater substance to the FJH revision by specifying the structure of the shared mobility regime. Since the revision remains agnostic with regard to this structure, we proceeded inductively by fitting a series of mobility models. It is most striking that quasi-symmetry (and equivalent models) provided superior fit in nearly all the countries. This finding implies that Blau and Duncan's (1967) hypothesis of semipermeable class boundaries is not confirmed in the United States, nor in the other countries in our sample. Rather, there is a symmetry of exchanges between occupational strata, once intergenerational shifts in the marginal distributions are controlled.

We have examined several models of mobility that are equivalent to quasi-symmetry, and among these there are reasons to prefer quasi-perfect mobility and Model UII*. The former model yields distinct parameters for stratum-specific inheritance, while the latter specifies unequal distances between strata, plus an inheritance parameter that pertains to all strata. Both of these models are theoretically appealing; both yield plausible parameter estimates; and both display cross-national variation in their parameters. Consequently, a choice between these models must rest upon criteria outside the mobility process per se, and we have used both models in our analysis.

Under the quasi-perfect mobility model, we find strong white-collar inheritance and even stronger farm inheritance, perhaps consonant with the beliefs of the more extreme critics of rigidity in the class structure. Although the strength of inheritance within these strata might lend the impression of distinct class boundaries, this must be reconciled with extreme fluidity in the blue-collar stratum. Indeed, in several countries there is actually a net propensity for blue-collar disinheritance; this finding extends Goodman's (1965, 1969a, 1969b) results on the classic British and Danish mobility tables. Within all sixteen countries, the picture that emerges is one of severe immobility at the two extremes of the occupational hierarchy and considerable fluidity in the middle. Under this model, the cross-national structure of mobility closely resembles the pattern described by Featherman and Hauser (1978) in the United States. Correspondingly, under Model UII*, we find a large distance between the white-collar and blue-collar strata, an even larger distance between
the blue-collar and farm strata, and a moderately strong residue of stratum inheritance.

Although we have found substantial similarities in mobility regimes across countries, we have also analyzed deviations from the common pattern. In this respect we departed from earlier international comparisons by directly incorporating several explanatory variables within a mobility model and by estimating and comparing the effects of these variables on the parameters of social fluidity. Contrary to assumptions of convergence theories, the results suggest that differences in the structure of mobility are at least as much a consequence of political organization as of economic development. The findings also suggest that the effects of political and economic variables are more complex than commonly supposed, in the sense that they cannot be generalized across the several parameters of mobility. It is reassuring that our substantive conclusions about the effects of exogenous variables do not appear to differ across our preferred models of the mobility regime.

The need to extend and elaborate our analysis is accentuated by our finding that intersocietal differences in observed mobility are induced principally by variations in the marginal distributions of the mobility tables. This suggests that future research should explore the effects of economic and political variables on the shape of the social hierarchy. Much the same conclusion was advanced by Hauser et al. (1975) in their longitudinal analysis of American mobility classifications. They argued that further research cannot treat marginal differences as a nuisance factor if they are the driving force behind temporal change in observed mobility rates. We might add that economic and political variables may well have a greater effect on the structure of occupational supply and demand than on social fluidity. Although issues of this nature may be addressed within the general analytic framework presented here, we leave this task for future research.

REFERENCES

Allison, Paul D.

Baker, R. J. and J. A. Nelder

Bishop, Yvonne M., Stephen E. Fienberg and Paul W. Holland

Blau, Peter M. and Otis D. Duncan

Breen, Richard
forthcoming "Fitting non-hierarchical and association-combining linear models using GLIM." Sociological Methods and Research.

Breiger, Ronald L.

Broom, Leonard and Patrick McDonnell

Clogg, Clifford C.

Cutright, Phillip

Djilas, Milovan

Duncan, Otis D.

Erikson, Robert, John H. Goldthorpe and Lucienne Portocarrero

Featherman, David L. and Robert M. Hauser

Featherman, David L., F. Lancaster Jones and Robert M. Hauser

Featherman, David L., Robert M. Hauser and William H. Sewell

Giddens, Anthony

Goldthorpe, John H.

Goldthorpe, John H. and Keith Hope
COMPARATIVE SOCIAL MOBILITY REVISITED

Goodman, Leo A.

Hazelrigg, Lawrence E.

Heath, Anthony

Hewitt, Christopher

Hope, Keith

Hout, Michael

Iutaka, S., B. F. Bloomer, R. E. Burke and O. Wolowyna

Jackman, Robert W.

Jain, Shail

Konrad, George and Ivan Szelenyi

Lipset, Seymour M. and Hans L. Zetterberg

Matras, Judah

McDonald, K. I.

McClenond, McKee J.
1980a "Occupational mobility and economic de-
development: a cross-national analysis.” Sociological Focus 13:331–42.

McRoberts, Hugh A. and Kevin Selbee

Miller, S. M.

Ossowski, Stanislaw

Parkin, Frank
1971 Class Inequality and Political Order. New York: Praeger.

Pontinen, Seppo

Pontinen, Seppo, Matti Alestalo and Hannu Uusitalo

Pullum, Thomas

Portocarero, Lucienne

Raftery, Adrian E.

Shockey, James W. and Clifford C. Clogg

Simkus, Albert A.

Simkus, Albert A. and Rudolf Andorka

Stephens, John D.

Taylor, Charles L. and Michael C. Hudson

Treiman, Donald J.

Tyrre, Andrea, Moshe Semyonov and Robert Hodge

Urton, William L.