
SSC Pub.# 4-1

1

Using SAS to Perform a Table Lookup Last revised: 05/22/96

Table lookup is the technique you use to acquire additional information from an auxiliary
source to supplement or replace information being processed in your SAS data set.  To
illustrate, consider the data below which was taken from the Places Rated Almanac,
published by Rand McNally.  329 cities are rated.  The first nine columns of the data
contain the rating criteria used by Places Rated Almanac.  The tenth column contains a
numeric code identifying the city which was rated.

468  7339  618  970 2531 2560   237  859 5250   3

476  7908 1431  610 6883 3399  4655 1617 5864   4

659  8393 1853 1483 6558 3026  4496 2612 5727   5

520  5819  640  727 2444 2972   334 1018 5254   6

559  8288  621  514 2881 3144  2333 1117 5097   7

537  6487  965  706 4975 2945  1487 1280 5795   8

A second set of data illustrated below contains the same numeric code used above
identifying the city which was ranked.  The second column identifies the city and state
which correspond to the numeric code.
 

 134 Houma-Thibodaux, LA

  23 Aurora-Elgin, IL

   5 Albuquerque, NM

  80 Davenport-Rock Island-Moline, IA-IL

When you write a SAS program to retrieve the city and state information from the second
data set in order to add this information to the first data set, this is known as table lookup.  

Definition of Terms

Primary File is the file for which you want to obtain auxiliary information - the first
data set in the illustration above.

Lookup File is an auxiliary file that is maintained separately from the primary file and
is referenced for one or more of the observations of the primary file - the
second data set in the illustration above.

Key Variable is the variable(s) whose values are the common elements between the
primary file and the lookup file - the numeric code representing the city in
the illustration above.



SSC Pub.# 4-1

2

The lookup file either can be part of the source code, stored in a SAS data set, or stored as
a user-defined format.  

Table Lookup Techniques

There are several table lookup techniques available in SAS which will be illustrated in this
document:

C Match-Merging Two SAS Data Sets

C Direct Access

C Format Tables

C Arrays

SAS also provides a querying language called SQL which can perform table lookup but
that technique will not be covered herein.

Match-Merging Two SAS Data Sets

Match-merging can be used in the example on the previous page to retrieve the city and
state information from the lookup file  in order to add this information to the primary file.
Match-merging requires that both the primary file and the lookup file be SAS data sets. 
To merge the primary and lookup files, do the following:

C make sure both data sets are sorted by the values of the key variable

C merge the two data sets by the key variable to form a third data set

The SAS program below illustrates the process:

data places;
   infile "~/soc365/places.dat";
   input climate housing hlth_car crime transp educ arts rec econ
city_cod;
run;

data lookup;
   length city $ 50;
   infile "~/soc365/places.key" missover pad;
   input city_cod city $50.;
run;

proc sort data=places; by city_cod; run;
proc sort data=lookup; by city_cod; run;

data all;
   merge places lookup;
   by city_cod;
   drop city_cod;
run;



SSC Pub.# 4-1

3

A partial listing of the resulting data set is shown below:



SSC Pub.# 4-1

4

                H
      C    H    L
      L    O    T         T
      I    U    H    C    R
      M    S    _    R    A    E    A         E  C
  O   A    I    C    I    N    D    R    R    C  I
  B   T    N    A    M    S    U    T    E    O  T
  S   E    G    R    E    P    C    S    C    N  Y
  1 521 6200  237  923 4031 2757  996 1405 7633 Abilene, TX      
  2 575 8138 1656  886 4883 2438 5564 2632 4350 Akron, OH      
  3 468 7339  618  970 2531 2560  237  859 5250 Albany, GA        
  4 476 7908 1431  610 6883 3399 4655 1617 5864 Albany-Schen, NY  
  5 659 8393 1853 1483 6558 3026 4496 2612 5727 Albuquerque, NM    

Sometimes you need to compute the information you want to merge with the primary file. 
For example, suppose you have a data set which contains information on family members.  
Each record contains one person's data including a family identifier, the person's gender,
and their age:

fam
id

sex age

1 1 35
2 1 36
2 1 5
2 2 3
3 1 37
3 2 38
3 2 2
4 1 39
4 1 40
4 2 1
4 2 2
5 1 41
5 1 3
5 1 42
5 1 43
5 2 44
5 2 1
5 2 2

Suppose you need to append to each record the number of women within a family that are
between the age of 16 and 66. In order to do match-merging, this supplemental information
must be stored in a SAS data set.  This can easily be accomplished by doing the following:

C create a new variable whose value is 1 if the individual is a woman and between
the age of 16 and 66

C sort the SAS data set by the family identifier

C use one of SAS's procedures for computing descriptive statistics to add up the
number of women in each household between 16 and 66 and output the
information to a new SAS data set.



SSC Pub.# 4-1

5

The SAS program below illustrates the process:

data workable;
   infile "~/dissert/families.dat";
   input famid sex age;
   if 16 < age < 66 and sex = 1 then wfemale=1;
      else wfemale=.;
run;

proc sort data=workable;
   by famid;
run;

 /*count the number of working women in the family */
proc means data=workable noprint;
   var wfemale;
   output out=count sum=numwf;
   by famid;
run;

A listing of the resulting data set is shown below:
  
  OBS   FAMID        NUMWF
    1       1            1  
    2       2            1  
    3       3            1  
    4       4            2  
    5       5            3  

This SAS data set can now be used as the lookup file in the match-merge:

data two;
   merge workable count;
   by famid;
run;

The merged data set is shown below:

   OBS    FAMID    SEX    AGE    WFEMALE    NUMWF
     1      1       1      35       1         1  
     2      2       1      36       1         1  
     3      2       1       5       .         1  
     4      2       2       3       .         1  
     5      3       1      37       1         1  
     6      3       2      38       .         1  
     7      3       2       2       .         1  
     8      4       1      39       1         2  
     9      4       1      40       1         2  
    10      4       2       1       .         2  
    11      4       2       2       .         2
    12      5       1      41       1         3  
    13      5       1       3       .         3  
    14      5       1      42       1         3  
    15      5       1      43       1         3  
    16      5       2      44       .         3  
    17      5       2       1       .         3  
    18      5       2       2       .         3  

Table Lookup using Direct Access



SSC Pub.# 4-1

6

Instead of searching a file sequentially until you find the match you need, you can access
the lookup result directly based on its location in the lookup file.  This technique is known
as direct access.  If your files are entry-sequenced, you can obtain your lookup results
directly, based on the physical location of a given value of the key variable. 

To perform a table lookup using direct access, you must be able to identify or assign a key
variable in the primary file that indicates the record's location within the lookup file.  In the
above example, the variable CITY_COD in the PLACES SAS data set meets this
requirement.  To illustrate, suppose you need to identify the 10 top ranked cities under the
category of education.   For EDUCATION, the higher the value, the higher the ranking. 
So, first you need to sort the data set in descending order by EDUCATION:

proc sort data=places out=top_educ(obs=10); 
   by descending educ;

(obs=10) is used in order to eliminate all but the first 10 observations.  The resulting
data set is shown below:

  OBS    CITY_COD    EDUC
    1       234      3781
    2        34      3653
    3       314      3635
    4       131      3628
    5       256      3582
    6       243      3558
    7       237      3544
    8       193      3539
    9       262      3530
   10       288      3525

Now you are ready to perform the table lookup.  First, read in the observations from the
primary file:

data all;
   set top_educ;

Then, to access the correct observation from the lookup file, use the POINT= option in
another SET statement.  The POINT= option identifies the variable in the primary file
(CITY_COD, in this example) whose value represents the location (by observation
number) of the observation you want the SET statement to read.

   set lookup point=city_cod;

Only the necessary observations are read from the lookup data set with direct access unlike
match-merging which reads all the records.  Note also that the POINT= variable is not
added to the output data set.  Below is the entire program that performs the table lookup
and the resulting data set:

data all;
   set top_educ;
   set lookup point=city_cod;
run;

  OBS    CITY                                 EDUC



SSC Pub.# 4-1

7

    1    Philadelphia, PA-NJ                  3781
    2    Bergen-Passaic, NJ                   3653
    3    Washington, DC-MD-VA                 3635
    4    Hartford, CT                         3628
    5    Rochester, NY                        3582
    6    Providence, RI                       3558
    7    Pittsburgh, PA                       3544
    8    Middlesex-Somerset, Hunterdon, NJ    3539
    9    St. Louis, MO-IL                     3530
   10    Springfield, MA                      3525

Table Lookup using Format Tables

Table lookup can sometimes include data manipulation that involves checking data against
a list or separating data into categories.  Often format tables are used as the lookup file in
these situations.   The advantage of using format tables is that they can be created and
stored separately from the program and data libraries in SAS, meaning they are accessible
to any SAS program and can be altered without altering the SAS data set.  

Checking Data Against a List

Often when you are processing a variable's data values, you may want to check those
values against a list of entries.  To illustrate, consider the variable for educational
attainment in the PUMS 1990 data set.  Educational attainment is coded into 18
categories, 0-17.   Printing frequency tables involving this variable is not very meaningful
unless you have a data dictionary handy:

                            Cumulative  Cumulative
EDUC   Frequency   Percent   Frequency    Percent 
--------------------------------------------------
   0          1       0.0           1        0.0  
   1          4       0.0           5        0.1  
   2          9       0.1          14        0.1  
   3         35       0.4          49        0.5  
   4         91       0.9         140        1.4  
   5        251       2.5         391        3.9  
   6        481       4.8         872        8.7  
   7        962       9.6        1834       18.3  
   8       1386      13.9        3220       32.2  
   9       1759      17.6        4979       49.8  
  10       1740      17.4        6719       67.2  
  11       1389      13.9        8108       81.1  
  12        973       9.7        9081       90.8  
  13        561       5.6        9642       96.4  
  14        233       2.3        9875       98.8  
  15         88       0.9        9963       99.6  
  16         26       0.3        9989       99.9  
  17         11       0.1       10000      100.0  

Using a format table which contains the value labels for the educational attainment codes,
would be a big improvement to the above table.  This can be done with the list-checking
operation following the steps below:

C create a format table whose values act as the lookup table

C check the primary file against the lookup file



SSC Pub.# 4-1

8

C print out the results.

Use PROC FORMAT to create the lookup table:

proc format;
   value educ 0="< 3 yrs old"
1="no school"
2="nursery school"
3="kindergarten"
4="thru 4th grade"
5="thru 8th grade"
6="9th grade"
7="10th grade"
8="11th grade"
9="12th but nongrad"
10="H.S. Grad"
11="College,no degree"
12="Assoc.,occupat."
13="Assoc., academic."
14="Bachelor Degree"
15="Master Degree"
16="Profess. degree"
17="Doctorate degree";
run;

Then to check the primary file against the lookup file and print out the results, use a
FORMAT statement to associate the format table with the educational attainment variable,
EDUC:

proc freq;
   tables educ;
   format educ educ.;
run;

                                        Cumulative  Cumulative
            EDUC   Frequency   Percent   Frequency    Percent 
--------------------------------------------------------------
< 3 yrs old               1       0.0           1        0.0  
no school                 4       0.0           5        0.1  
nursery school            9       0.1          14        0.1  
kindergarten             35       0.4          49        0.5  
thru 4th grade           91       0.9         140        1.4  
thru 8th grade          251       2.5         391        3.9  
9th grade               481       4.8         872        8.7  
10th grade              962       9.6        1834       18.3  
11th grade             1386      13.9        3220       32.2  
12th but nongrad       1759      17.6        4979       49.8  
H.S. Grad              1740      17.4        6719       67.2  
College,no degre       1389      13.9        8108       81.1  
Assoc.,occupat.         973       9.7        9081       90.8  
Assoc., academic        561       5.6        9642       96.4  
Bachelor Degree         233       2.3        9875       98.8  
Master Degree            88       0.9        9963       99.6  
Profess. degree          26       0.3        9989       99.9  
Doctorate degree         11       0.1       10000      100.0  

Separating Data into Categories

You can also use format tables to categorize data values.  This is sometimes a convenient



SSC Pub.# 4-1

9

way of temporarily recoding values.  Suppose you needed to recode the 18 educational
attainment variables into four categories.  You can use a VALUE statement in PROC
FORMAT to categorize the values:

proc format;
   value 0-9="Did not graduate"
10="H.S. Grad"
11-13="Some college"
14-17="College Grad";
run;

Then to check the primary file against the lookup file and print out the results, use a
FORMAT statement to associate the format table with the educational attainment variable,
EDUC:

proc freq;
format yearsch educcat.;
tables educ;
run;
                                        Cumulative  Cumulative
            EDUC   Frequency   Percent   Frequency    Percent 
--------------------------------------------------------------
Did not graduate       4979      49.8        4979       49.8  
H.S. Grad              1740      17.4        6719       67.2  
Some college           2923      29.2        9642       96.4  
College Grad            358       3.6       10000      100.0  

Positional Lookup with Temporary Arrays

Arrays are appropriate for use in table lookups when:

C values to be returned can be identified positionally (that is, 1st item, 2nd, item, and
so on)

C one or more numeric values identify the table value to be returned.

The values that make up the array (lookup table) can be hard coded in either the DATA
step or stored in a SAS data set or an external file and loaded into array variables via a
SET or INPUT statement.  Both techniques will be illustrated.

The examples in this section make use of temporary arrays.  To designate an array as
temporary you use the keyword _TEMPORARY_ in the ARRAY statement instead of
variable names as elements of the array.  Temporary arrays yield the following
advantages:

C elements of the array are not written to data sets

C each element requires about 40 bytes less memory than do DATA step variables
used in arrays

C faster retrieval of values.

Using Arrays that are Hard Coded in the DATA Step



SSC Pub.# 4-1

10

To illustrate this technique, consider a data set containing scores for various high school
tests.  Suppose you want to compare each student's performance on the Math, Science, and
English exams (HSM, HSE, and HSS) with that of the school district's median scores for
the three exams - 8.0 for the Math exam, 7.0 for the Science exam, and 7.5 for the English
exam.  Write the program following the steps below:

1. Define a temporary array to hold the district wide median scores:

array median {3} _temporary_ (8 7 7.5);

2. Define an array whose values will be HSM, HSE, and HSS for each observation:

array exams {3} hsm hss hse;

The order in which the variables are specified is very important.  They must
correspond exactly to the order in which they were specified for the temporary array. 

3. Define a third array whose values will contain the differences between the student's
scores and the district median scores:

array diff {3};

Note that no variables or numbers were specified as element of the array in the
statement above.  By default, SAS automatically creates variable names as elements. 
For this example, the variable names assigned are DIFF1, DIFF2, and DIFF3.

4. Now, all that is needed is a DO loop to compute the differences.  The entire DATA
step and a partial listing of the resulting data set are shown below:

 data gpa;
   infile "gpa.dat";
   input gpa hsm hss hse satm satv sex;
   label gpa="College Grade Point Average"
         hsm="High School Math Exam"
         hss="High School Science Exam"
         hse="High School English Exam"
         satm="Math SAT Score"
         satv="Verbal SAT Score";
   array median {3} _temporary_ (8 7 7.5);
   array exams {3} hsm hss hse;
   array diff {3};
   do i=1 to 3;
      diff{i}=exams{i}-median{i};
   end;
   drop i;
run;

OBS    HSM    HSS    HSE    DIFF1    DIFF2    DIFF3   
  1     10     10     10       2        3       2.5   
  2      9      9     10       1        2       2.5   
  3      9      6      6       1       -1      -1.5   
  4     10      9      9       2        2       1.5   
  5      6      8      5      -2        1      -2.5   

When the lookup operation depends on more than one factor, you can use a



SSC Pub.# 4-1

11

multidimensional array.  To illustrate, consider the example on the previous page but
assume district median scores were computed separately for men and women:

HSM HSS HSE

Women Median(1,1)8.0 Median(1,2)7.5 Median(1,3)8.5

Men Median(2,1)8.5 Median(2,2)7.5 Median(2,3)8.0

With two-dimensional arrays, the elements are placed in the array by filling each column
within each row:

array median {2, 3} _temporary_ (8.0, 7.5, 8.5, 8.5, 7.5, 8.0);

The program is very similar to the one for the above example except that you need to use
an IF statement within the DO loop to determine the value of SEX for the observation. 
Then depending on the value of SEX, the difference is computed.  The entire DATA step
and a partial listing of the resulting data set are shown below:

data gpa;
   infile "gpa.dat";
   input gpa hsm hss hse satm satv sex;
   label gpa="College Grade Point Average"
         hsm="High School Math Exam"
         hss="High School Science Exam"
         hse="High School English Exam"
         satm="Math SAT Score"
         satv="Verbal SAT Score";
   array median {2,3} _temporary_ (8,7.5,8.5,8.5,7.5,8);
   array exams {3} hsm hss hse;
   array diff {3};
   do i=1 to 3;
      if sex=1 then diff{i}=exams{i}-median{1,i};
         else diff{i}=exams{i}-median{2,i};
   end;
   drop i;
run;

SEX    HSM    HSS    HSE    DIFF1    DIFF2    DIFF3    
  1     10     10     10      2.0      2.5      1.5    
  2      9      9     10      0.5      1.5      2.0     
  1      9      6      6      1.0     -1.5     -2.5     
  2     10      9      9      1.5      1.5      1.0     

Loading an ARRAY from a SAS Data Set

Array values can also be stored in a SAS data set or an external file.  This is convenient
when there are too many values to easily initialize in the ARRAY statement and/or the
same values are used in many programs.  To illustrate, assume you have a permanent SAS
data set called CLASS which contains the following variables for a group of teenagers:
HEIGHT, WEIGHT, AGE, and TYPE.  TYPE represents body type and is made up of
three categories: small, medium, or large (coded 1, 2, or 3).  CLASS will be the primary
file in the table lookup.  Following is a listing of the data set:



SSC Pub.# 4-1

12

OBS    HEIGHT    WEIGHT    AGE    TYPE
  1      69       112.5     14      2 
  2      56        84.0     13      1 
  3      65        98.0     13      2 
  4      62       102.5     14      3 
  5      63       102.5     14      3 
  6      57        83.0     12      2 
  7      59        84.5     12      3 
  8      62       112.5     15      2 
  9      62        84.0     13      1 
 10      59        99.5     12      3 
 11      51        50.5     11      3 
 12      64        90.0     14      2 
 13      56        77.0     12      3 
 14      66       112.0     15      1 
 15      72       150.0     16      3 
 16      64       128.0     12      2 
 17      67       133.0     15      2 
 18      57        85.0     11      3 
 19      66       112.0     15      3 

Suppose you want to determine how overweight the individual is based on a published
table of recommended weights based on height and body type.  You have this table stored
in a permanent SAS data set called TABLE:



SSC Pub.# 4-1

13

OBS    SMALL    MEDIUM    LARGE    HEIGHT
  1    102.5      104     105.5      51  
  2    103.5      105     106.5      52  
  3    104.5      106     107.5      53  
  4    105.5      107     108.5      54  
  5    106.5      108     109.5      55  
  6    107.5      109     110.5      56  
  7    108.5      110     111.5      57  
  8    109.5      111     112.5      58  
  9    110.5      112     113.5      59  
 10    111.5      113     114.5      60  
 11    112.5      114     115.5      61  
 12    113.5      115     116.5      62  
 13    114.5      116     117.5      63  
 14    115.5      117     118.5      64  
 15    116.5      118     119.5      65  
 16    117.5      119     120.5      66  
 17    118.5      120     121.5      67  
 18    119.5      121     122.5      68  
 19    120.5      122     123.5      69  
 20    121.5      123     124.5      70  
 21    122.5      124     125.5      71  
 22    123.5      125     126.5      72  
 23    124.5      126     127.5      73  
 24    125.5      127     128.5      74  
 25    126.5      128     129.5      75  

TABLE will be the lookup table in this example.  Write the DATA step program following
the steps below:

1. Define a temporary two-dimensional array to hold the recommended weights:

   array wt{51:75,3} _temporary_;

The syntax {51:75,3} indicates that the array has elements numbered {51,1},
{52,1}, {53,1}, . . . , {75,3} instead of {1,1}, {2,1}, {3,1},  . . .   51- 75 represent the
range in values for HEIGHT and 1 - 3 represent the range in values for body type in
the lookup table.

2. All the values can be loaded into the array at once so to prevent SAS from reloading
the values for each loop of the DATA step you need to add an IF condition to instruct
SAS to load the array only the first time through the DATA step:

   if _n_ = 1 then do i=1 to 25;

 i is set equal to 1 to 25 because there are 25 weight values for each body type. 
You could also have specified i=51 to 75. 

3. Use a SET statement to instruct SAS where to find the values for the array.  Then
specify assignment statements to load the elements of the array:

      set save.table;
      wt{height,1}=small;
      wt{height,2}=medium;
      wt{height,3}=large;
   end;



SSC Pub.# 4-1

14

The end; statement signals the end of the DO loop.

4. Last, SET the primary file and compute the difference between the person's weight and
their ideal weight:

   set save.class;
   diff=wt{height,type}-weight;

The variables HEIGHT and TYPE are used as pointers to the ARRAY.

The entire DATA step and a partial listing of the resulting data set are shown below:

data shape;

* load the lookup table into an array;
   array wt{51:75,3} _temporary_;
   if _n_ = 1 then do i=1 to 25;
      set save.table;
      wt{height,1}=small;
      wt{height,2}=medium;
      wt{height,3}=large;
   end;

* read in the class data;
   set save.class;
   diff=wt{height,type}-weight;
run;

OBS    TYPE    HEIGHT    WEIGHT     DIFF
  1      2       69       112.5      9.5
  2      1       56        84.0     23.5
  3      2       65        98.0     20.0
  4      3       62       102.5     14.0
  5      3       63       102.5     15.0
  6      2       57        83.0     27.0
  7      3       59        84.5     29.0
  8      2       62       112.5      2.5
  9      1       62        84.0     29.5
 10      3       59        99.5     14.0
 11      3       51        50.5     55.0
 12      2       64        90.0     27.0
 13      3       56        77.0     33.5
 14      1       66       112.0      5.5
 15      3       72       150.0    -23.5
 16      2       64       128.0    -11.0
 17      2       67       133.0    -13.0
 18      3       57        85.0     26.5
 19      3       66       112.0      8.5


