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Abstract

Two probability distributions with common support are said to exhibit density ratio ordering when they
admit a nonincreasing density ratio. Existing statistical tests of the null hypothesis of density ratio ordering
are known to be conservative, with null limiting rejection rates below the nominal significance level whenever
the two distributions are unequal. It is shown that a bootstrap procedure can be used to raise the pointwise
limiting rejection rate to the nominal significance level on the boundary of the null. This improves power
against nearby alternatives. The proposed procedure is based on preliminary estimation of a contact set,
the form of which is obtained from a novel representation of the Hadamard directional derivative of the least
concave majorant operator. Numerical simulations indicate that improvements to power can be very large
in moderately sized samples.
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1. Introduction

Let F and G be cumulative distribution functions (cdfs) on the real line R, with common support. When
F and G admit a nonincreasing density ratio dF/dG, we say that there is density ratio ordering between
F and G. Density ratio ordering implies, but is not implied by, first order stochastic dominance. While
first order or higher order stochastic dominance provides a suitable ordering between distributions in many
applications, there are times when economic or financial models indicate that density ratio ordering is the
more appropriate property to consider. For instance, Beare (2011) shows that, in a simple one period pricing
model, perverse behavior of contingent claims occurs if and only if there is a failure of density ratio ordering
between the risk neutral and physical payoff distributions associated with the market portfolio. See also
Beare and Schmidt (2016) and Beare and Dossani (2018) for related empirical analyses. Other contexts in
which density ratio ordering plays a key role, including mechanism design and auction theory, are discussed
by Roosen and Hennessy (2004).

Statistical methods for testing the null hypothesis of stochastic dominance between two cdfs are already
well established; see e.g. Anderson (1996), Davidson and Duclos (2000), Barrett and Donald (2003), Linton
et al. (2005, 2010), Donald and Hsu (2016) and the survey article by Maasoumi (2001). Less work has been
done on testing the null hypothesis of density ratio ordering. Dykstra et al. (1995) and Roosen and Hennessy
(2004) dealt with the case where F and G are discrete distributions. The more delicate case where F and G
are continuous distributions was studied by Carolan and Tebbs (2005) and Beare and Moon (2015). These
authors exploit the fact that, in the continuous case, density ratio ordering is equivalent to the concavity
of the ordinal dominance curve (odc): the composition of F with G−1, the quantile function for G. They
consider a statistic constructed from the difference between an empirical estimate of the odc and its least
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concave majorant (lcm). It is compared to a fixed critical value that delivers a limiting rejection rate equal
to nominal size when F = G, and below nominal size when F 6= G but density ratio ordering is satisfied.

The contribution of this paper is a modification to the density ratio ordering test of Carolan and Tebbs
(2005) and Beare and Moon (2015) that improves power. We retain the test statistic used by those authors,
but compare it to a data dependent critical value computed using the bootstrap. This has the effect of
raising the limiting rejection rate of the test to the nominal significance level on the boundary of the null;
more precisely, at those points in the null where the limit distribution of the test statistic is nondegenerate.
Consequently, power is improved at nearby points in the alternative. Our bootstrap procedure requires
preliminary estimation of a contact set, and has a similar flavor to the bootstrap procedures used by Linton
et al. (2010) and Donald and Hsu (2016) to improve the power of the test of stochastic dominance proposed
by Barrett and Donald (2003).

The main technical hurdles we face when studying the asymptotic properties of our procedure relate to
the differential properties of the lcm operator. Beare and Moon (2015) showed that this operator fails to
be Hadamard differentiable at all points in the null, but instead satisfies a weaker smoothness condition
dubbed Hadamard directional differentiability by Shapiro (1990). Hadamard directional differentiability
suffices for the application of the functional delta method, which is the key device used by Beare and Moon
(2015) to determine the asymptotic behavior of their test statistic. However, as shown by Dümbgen (1993)
and discussed further in a recent working paper by Fang and Santos (2016), standard bootstrap inference
can be problematic when working with operators that are Hadamard directionally differentiable but not
Hadamard differentiable. We propose a modified bootstrap procedure with good asymptotic and finite
sample properties. Our primary technical innovation is a new representation of the Hadamard directional
derivative of the lcm operator that expresses the derivative at each point in the null in terms of an estimable
subset of the unit cube: our contact set.

The remainder of our paper is structured as follows. In Section 2 we introduce our sampling framework
and test statistic, including a discussion of the directional differentiability of the lcm operator, and an
explanation of how this property can be used to derive relevant asymptotic results under the null. In
Section 3 we present our main results, including our new representation of the directional derivative of the
lcm operator. We explain how this representation can be used to develop a modified bootstrap procedure
based on preliminary estimation of the contact set, and establish conditions under which this procedure
raises the limiting rejection rate of our test to the nominal significance level on the boundary of the null.
Section 4 provides a discussion of some practical issues that arise in the implementation of our procedure,
including the numerical computation of suprema and integrals, and the selection of a tuning parameter used
in the contact set estimation. Section 5 reports numerical evidence on the finite sample performance of our
procedure, and final remarks are given in Section 6. Mathematical proofs of the results stated in Section
3 are collected in Appendix A. A variance estimator used in the construction of our estimated contact set
is provided in Appendix B. Further numerical results to supplement those in Section 5 are provided in
Appendix C.

2. Test statistic

Here we introduce the test of density ratio ordering studied by Carolan and Tebbs (2005) and Beare and
Moon (2015), including details sufficient to provide a basis for our discussion of bootstrap critical values in
Section 3. In Section 2.1 we define the null and alternative hypotheses, state the sampling framework, and
explain the construction of the test statistic. In Section 2.2 we review results given by Beare and Moon
(2015) on the differential properties of the lcm operator, including a discussion of the distinction between
Hadamard differentiability and Hadamard directional differentiability. These results are used in Section
2.3 to give a brief derivation of the limit distribution of our test statistic under the null hypothesis, again
following Beare and Moon (2015).

2.1. Statistical framework

Our data consist of two independent and identically distributed samples of real valued random variables
(X1, . . . , Xm) and (Y1, . . . , Yn), mutually independent of one another. (We briefly discuss the case of depen-
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dent samples in Section 3.4 below.) We let F denote the common cdf of the Xi’s and G denote the common
cdf of the Yj ’s, and assume that F and G are continuous and strictly increasing on their common support.
Our goal is to test the hypothesis that the odc R = F ◦G−1 is concave, where G−1(u) = inf{y : G(y) ≥ u}
is the quantile function corresponding to G. Let Θ denote the collection of strictly increasing, continuously
differentiable maps θ : [0, 1] → [0, 1] with θ(0) = 0 and θ(1) = 1, and let Θ0 = {θ ∈ Θ : θ is concave}. We
maintain throughout that R ∈ Θ, and write R′ for its first derivative. We seek to test the null hypothesis
H0 : R ∈ Θ0 against the alternative hypothesis H1 : R ∈ Θ \Θ0.

Let `∞ ([a, b]) denote the collection of uniformly bounded real valued functions on [a, b] equipped with
the uniform norm. The following definition is taken from Beare and Moon (2015, Def. 2.1).

Definition 2.1. Given a closed interval [a, b] ⊆ [0, 1], the lcm over [a, b] is the operatorM[a,b] : `∞ ([0, 1])→
`∞ ([a, b]) that maps each f ∈ `∞ ([0, 1]) to the function

M[a,b]f(u) = inf{g(u) : g ∈ `∞ ([a, b]) , g is concave, and f ≤ g on [a, b]}, u ∈ [a, b].

We write M as shorthand for M[0,1], and refer to M as the lcm operator.

Following Carolan and Tebbs (2005), we take as our estimator of R the empirical odc Rm,n = Fm ◦G−1n ,
where

Fm(·) =
1

m

m∑
i=1

1(Xi ≤ ·), Gn(·) =
1

n

n∑
j=1

1(Yj ≤ ·),

are the empirical cdfs of (Xi) and (Yj) respectively. Our test statistic is

Mm,n = cm,n ‖MRm,n −Rm,n‖p ,

where cm,n = (mn/(m + n))1/2, ‖ · ‖p is the Lp-norm with respect to Lebesgue measure on [0, 1], and
p ∈ [1,∞]. This statistic was proposed by Carolan and Tebbs (2005) for p = 1 and p =∞, while Beare and
Moon (2015) considered the more general family of statistics indexed by p ∈ [1,∞]

The empirical odc Rm,n is unaffected with probability one if we replace our observations Xi and Yj with
ψ(Xi) and ψ(Yj) for any real valued ψ strictly increasing on the common support of F and G. Taking ψ = G
normalizes the cdf of the ψ(Xi)’s to be R and the cdf of the ψ(Yj)’s to be uniform on [0, 1], and so we see
that the distribution of Mm,n is uniquely determined by R. Consequently, it makes sense to talk about the
distribution of Mm,n at different points in Θ; different pairs of cdfs (F,G) give rise to the same distribution
for Mm,n whenever they correspond to the same odc R ∈ Θ.

In the asymptotic theory to be developed shortly, we will let the two sample sizes m and n tend to
infinity simultaneously, with n/(m + n) → λ ∈ (0, 1). Formally, we can think of m as being implicitly a
function of n, with m(n) → ∞ and n/(m(n) + n) → λ ∈ (0, 1) as n → ∞. We might therefore consider
indexing all sample statistics only by n, and never by m or m,n. However, for concreteness, we continue
to index sample statistics by m and/or n where appropriate, consistent with Carolan and Tebbs (2005) and
Beare and Moon (2015).

2.2. Differential properties of the lcm operator

The arguments used by Beare and Moon (2015) to determine the null limiting behavior of Mm,n rely
critically on an understanding of the differential properties of the operator M. The following definition is
adapted from Dümbgen (1993).

Definition 2.2. Let X and Y be real Banach spaces. A map φ : Xφ ⊆ X → Y is said to be Hadamard
directionally differentiable at x ∈ Xφ tangentially to a linear space X0 ⊆ X if there exists a map φ′x :
X0 → Y such that

φ′x(z) = lim
n→∞

φ(x+ tnzn)− φ(x)

tn
, (2.1)

for any sequences z1, z2, . . . ∈ X and t1, t2, . . . ∈ (0, 1) with zn → z ∈ X0 and tn ↓ 0 as n → ∞, and
x+ tnzn ∈ Xφ for all n. We refer to φ′x(z) as the Hadamard directional derivative of φ at x in direction z.
If φ′x is linear then we say that φ is Hadamard differentiable at x tangentially to X0, and we refer to φ′x(z)
as the Hadamard derivative of φ at x in direction z.
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Figure 2.1: Panel (b) displays the Hadamard directional derivative M′Rh for the particular choice of R and h shown in panel
(a). Panel (c) displays M′R(−h).

A Hadamard directional derivative is automatically continuous and positive homogeneous of degree
one, but may be nonlinear. Linearity turns out to be unimportant for applications of the functional delta
method (Shapiro, 1991), but is vitally important for applying the functional delta method for the bootstrap
(Dümbgen, 1993; Fang and Santos, 2016), commonly used to establish bootstrap consistency. We will say
more about this later.

It turns out that, at points R ∈ Θ0, the lcm operatorM is Hadamard directionally differentiable but not
in general Hadamard differentiable. The following result, in which C([0, 1]) denotes the space of continuous
real valued functions on [0, 1] equipped with the uniform norm, was proved by Beare and Moon (2015, Lem.
3.2). See also Beare and Fang (2017, Prop. 2.1) for a closely related result that applies to the lcm of real
valued functions on [0,∞).

Lemma 2.1. If R ∈ Θ0 then M is Hadamard directionally differentiable at R tangentially to C ([0, 1]).
Given h ∈ C ([0, 1]), if R is affine in a neighborhood of u ∈ (0, 1), then we haveM′Rh(u) =M[aR,u,bR,u]h(u),
where

aR,u = sup{u′ ∈ (0, u] : R is not affine in a neighborhood of u′},
bR,u = inf{u′ ∈ [u, 1) : R is not affine in a neighborhood of u′},

and we define inf ∅ = 1 and sup∅ = 0. If R is not affine in a neighborhood of u ∈ (0, 1), or if u ∈ {0, 1},
then M′Rh(u) = h(u).

We illustrate the content of Lemma 2.1 with an example in Figure 2.1. In panel (a) we display the odc R
at which we wish to differentiate M. It is affine over the intervals [0, a] and [b, 1], and strictly concave over
the interval [a, b]. We also display the direction h in which we wish to differentiate, a sinusoid. In panel (b)
we displayM′Rh, the Hadamard directional derivative ofM at R in direction h. It has three distinct parts.
Over the intervals [0, a] and [b, 1], where R is affine, the directional derivative is given by the restricted
lcms M[0,a]h and M[b,1]h respectively. Over the interval [a, b], where R is strictly concave, the directional
derivative is h. In panel (c) we displayM′R(−h), the Hadamard directional derivative ofM at R in direction
−h. Comparing M′Rh and M′R(−h) in panels (b) and (c), we observe that M′Rh 6= −M′R(−h), implying
that M′R cannot be linear. Consequently, M is not Hadamard differentiable at R tangentially to C([0, 1])
in the example depicted. In fact, as noted by Beare and Moon (2015), M is Hadamard differentiable at
R ∈ Θ0 tangentially to C([0, 1]) if and only if R is strictly concave.

An alternative generalization of Hadamard differentiability, called quasi-Hadamard differentiability, has
been proposed by Beutner and Zähle (2010). The primary difference between Hadamard differentiability
and quasi-Hadamard differentiability is that for the latter property we do not require the norm on X0 to
extend to a norm on X , which may be an arbitrary vector space. As discussed by Beutner and Zähle (2010,
2012), this allows the use of weighted norms on X0 that may not be finite-valued on X , broadening the
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scope of application of the functional delta method due to the availability of weak convergence results for
weighted empirical processes. If we were to tighten Definition 2.2 by requiring (2.1) to hold for all sequences
t1, t2, . . . ∈ (−1, 0)∪(0, 1) converging to zero, rather than merely for all sequences t1, t2, . . . ∈ (0, 1) decreasing
to zero, then Definition 2.2 would become a special case of quasi-Hadamard differentiability. However, such
a tightening would force the directional derivative φ′x(z) to satisfy φ′x(−z) = −φ′x(z) for every x ∈ Xφ and
z ∈X0 such that x± z ∈Xφ, which in view of Figure 2.1 is clearly not the case when φ is the lcm operator.
The lcm operator therefore fails to be quasi-Hadamard differentiable in the sense of Beutner and Zähle
(2010, 2012). On the other hand, a slightly different definition of quasi-Hadamard differentiability is stated
by Beutner et al. (2012) and Volgushev and Shao (2014), in which only sequences t1, t2, . . . converging to
zero from above are considered. This weaker definition of quasi-Hadamard differentiability is weaker than
Hadamard directional differentiability as defined here. Volgushev and Shao (2014) observe that it suffices
for the application of the functional delta method but is insufficient for the application of the functional
delta method for the bootstrap, whereas Beutner and Zähle (2016) observe that a version of the functional
delta method for the bootstrap applies under the stronger definition of quasi-Hadamard differentiability.

2.3. Limit distribution under concavity

Let A : `∞([0, 1])→ R be the operator

Af = ‖Mf − f‖p , f ∈ `∞([0, 1]).

When R is concave our test statistic Mm,n may be written as

Mm,n = cm,n (ARm,n −AR) .

Two ingredients suffice for us to establish the limit distribution of Mm,n at each R ∈ Θ0. First, we require
weak convergence of the empirical odc process cm,n(Rm,n−R) to a suitable limit, and second, we require the
operator A to satisfy a smoothness condition sufficient for the application of the functional delta method.
The former ingredient has been available at least since Hsieh and Turnbull (1996, Thm. 2.2); the following
statement is taken from Beare and Moon (2015, Lem. 3.1), with  denoting weak convergence in a metric
space—in this case `∞([0, 1]), but elsewhere depending on context—in the sense of Hoffmann-Jørgensen.

Lemma 2.2. Suppose R ∈ Θ. Then as m∧n→∞ with n/(m+n)→ λ ∈ (0, 1), we have cm,n(Rm,n−R) 
T , where T has the form

T (u) = λ1/2B1(R(u)) + (1− λ)1/2R′(u)B2(u), u ∈ [0, 1],

and B1 and B2 are independent standard Brownian bridges on [0, 1].

It remains to establish a smoothness condition on A sufficient for the application of the functional
delta method. With Lemma 2.1 in hand, a routine application of the chain rule for Hadamard directionally
differentiable operators (Shapiro, 1990, Prop. 3.6) establishes that A is Hadamard directionally differentiable
at R ∈ Θ0 tangentially to C([0, 1]), with directional derivative

A′Rh = ‖M′Rh− h‖p, h ∈ C([0, 1]).

Though textbook treatments of the functional delta method typically impose Hadamard differentiability
upon the operator in question, it is sufficient to impose the weaker requirement of Hadamard directional
differentiability. This was proved by Shapiro (1991, Thm. 2); for a more recent statement, see Fang and
Santos (2016, Thm. 2.1). We thus arrive at the following result.

Theorem 2.1. Suppose R ∈ Θ. Then as m∧n→∞ with n/(m+n)→ λ ∈ (0, 1), we have Mm,n  A′RT .

From Lemma 2.2 we see that the law of T is uniquely determined by R, and hence the law of A′RT
is also uniquely determined by R. Beare and Moon (2015, Thm. 4.1) proved that, for p ∈ [1, 2], A′RT is
stochastically dominated by A′IT = ‖MB −B‖p, where I is the identity map on [0, 1] and B is a Brownian

5



bridge. We therefore refer to R = I as the least favorable configuration (lfc) and may construct a conservative
test of concavity by using as a critical value the relevant quantile of the law of A′IT . If we reject the null
hypothesis of concavity when Mn exceeds this critical value, then the limiting rejection rate of our test is α
at the lfc R = I, and is no greater than α at all other R ∈ Θ0. The idea of using a fixed critical value to
control size at the lfc is due to Carolan and Tebbs (2005), and requires us to choose p ∈ [1, 2], as R = I is
no longer least favorable when p ∈ (2,∞] (Beare and Moon, 2015, Thm. 4.2).

The disadvantage of using a fixed critical value to set the limiting rejection rate equal to α at the lfc
R = I is that the limiting rejection rate may be well below α at other R ∈ Θ0. Indeed, since A′RT = 0 when
R is strictly concave, the limiting rejection rate at all strictly concave R ∈ Θ0 is zero. Numerical results
reported by Beare and Moon (2015) also indicate that, with α = 0.05 and in sample sizes as large as 500,
the rejection rate is effectively zero at some members of Θ0 that are not strictly concave, and are in fact
affine over wide portions of their domain. This is problematic because any concave member of Θ may be
approximated arbitrarily well in the uniform metric by a nonconcave member of Θ, suggesting that power
against relevant nonconcave alternatives may be close to zero.

3. Bootstrap critical values

Our main results are in this section. In Section 3.1 we give a novel representation of the Hadamard
directional derivative of the lcm operator and explain how it can be used to express the null limit distribution
of Mm,n in terms of a contact set and the weak limit of the empirical odc process. In Section 3.2 we discuss
the estimation of this contact set. In Section 3.3 we show how the estimated contact set can be used to
bootstrap critical values in a way that yields a limiting rejection rate equal to the nominal significance level
at all points in the null where R is not strictly concave. In Section 3.4 we show that our procedure leads to
an improvement in local power. In Section 3.5 we briefly consider the case of dependent samples. Proofs of
all results are collected in Appendix A.

3.1. An alternative representation of M′R
Begin by defining the set

A = {(u, v, w) ∈ [0, 1]3 : v ≤ u ≤ w}.
Let S : `∞([0, 1])→ `∞(A) be the operator

Sf(u, v, w) =
(w − u)f(v) + (u− v)f(w)

w − v , f ∈ `∞([0, 1]), (u, v, w) ∈ A,

where for v = w we define Sf(u, v, w) = f(u). We may view Sf(u, v, w) as the approximation to f(u)
obtained by linearly interpolating between the values taken by f at v and w. We note the following property
of S for later use.

Lemma 3.1. S is a linear isometry.

With the operator S and odc R we define the set

B = {(u, v, w) ∈ A : SR(u, v, w) = R(u)} ,

and the family of cross-sections

B(u) = {(v, w) ∈ [0, 1]2 : (u, v, w) ∈ B}, u ∈ [0, 1].

The set B always contains the main diagonal u = v = w of the unit cube, and the cross-section B(u) always
includes the point (u, u).

Our alternative representation of the Hadamard directional derivative of the lcm operator—compare to
Lemma 2.1 above—is as follows.
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Lemma 3.2. The Hadamard directional derivative of M at R ∈ Θ0 in direction h ∈ C([0, 1]) satisfies

M′Rh(u) = sup
(v,w)∈B(u)

Sh(u, v, w), u ∈ [0, 1].

In view of Theorem 2.1 and Lemma 3.2, when R ∈ Θ0 the weak limit A′RT of our test statistic Mm,n

satisfies

A′RT =

∥∥∥∥∥ sup
(v,w)∈B(·)

S̃T (·, v, w)

∥∥∥∥∥
p

,

where S̃ : `∞([0, 1])→ `∞(A) is the operator

S̃f(u, v, w) = Sf(u, v, w)− f(u), f ∈ `∞([0, 1]), (u, v, w) ∈ A.

The weak limit A′RT is uniquely determined by the law of T and the set B. In this sense, B plays a similar
role to the so-called contact set used by Linton et al. (2010) to characterize the null limit distribution of their
statistic for testing stochastic dominance. We shall borrow their terminology and refer to B as our contact
set. Contact sets also play a key role in the analyses of Anderson et al. (2012), Chang et al. (2015) and Lee
et al. (2018), although in these papers there arise significant additional technical complications owing to the
lack of a weak convergence result analogous to Lemma 2.2.

3.2. Contact set estimation

To implement our bootstrap procedure we require a preliminary estimate of the unknown contact set B.
We now present two candidate estimators of B, denoted Bm,n and B′m,n. By construction, Bm,n ⊆ B′m,n.
Under the null hypothesis, the two estimators closely approximate B with probability approaching one; see
Lemma 3.3 below. Under the alternative hypothesis, there can be large differences between the two that
persist asymptotically. We will see later that a smaller estimated contact set delivers a smaller critical value,
improving the probability of rejecting the null hypothesis. Our preferred contact set estimator is therefore
Bm,n, but we also discuss B′m,n for expository purposes.

Our contact set estimators make use of a tuning parameter δm,n ∈ (0,∞). The tuning parameter is
required to converge to zero as the sample sizes m and n increase, but not too quickly.

Assumption 3.1. As m ∧ n→∞ with n/(m+ n)→ λ ∈ (0, 1), we have δm,n → 0 and cm,nδm,n →∞.

The results given in this section are valid for any choice of δm,n that satisfies Assumption 3.1 with
probability one. In Section 4.2 we suggest an approach to choosing δm,n in practice. Our first contact set
estimator is

B′m,n =
{

(u, v, w) ∈ A : |S̃Rm,n(u, v, w)| ≤ δm,nV ∗m,n(u, v, w)1/2
}
. (3.1)

It contains those triples (u, v, w) ∈ A for which SRm,n(u, v, w) is close to Rm,n(u), with closeness defined in
terms of the threshold δm,nV

∗
m,n(u, v, w)1/2. Here, V ∗m,n(u, v, w) is a regularized estimate of the variance of

cm,nS̃Rm,n(u, v, w), which we set equal to

V ∗m,n(u, v, w) = ηu ∧ (η` ∨ (Vm,n(u, v, w))) , (3.2)

where ηu and η` are positive constants and Vm,n(u, v, w) is a plug-in estimate of the asymptotic variance of

cm,nS̃Rm,n(u, v, w). A formula for Vm,n(u, v, w) is given in Appendix B. The role of η` and ηu is technical:
fixed positive lower and upper bounds on the threshold facilitate a simple proof of Lemma 3.3 below, which
establishes good behavior of Bm,n and B′m,n. Lemma 3.3 in fact remains true for any choice of V ∗m,n that is
bounded from above and below by fixed positive values; indeed, we could simply set V ∗m,n = 1. However, we
have found in numerical simulations that letting the threshold reflect the variance of the estimated curve
yields a test with superior power, and works well even when η` = 0 and ηu = ∞. Using a smaller ηu like
ηu = 1 yields moderate power improvement over using ηu = ∞ in the simulations. Thus, we suggest using
η` = 0 and ηu = 1.
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In large samples, B′m,n can be expected to provide a good approximation to B regardless of whether the
null hypothesis is true. For our purposes, a better estimator of B is one that provides a good approximation
to B when the null hypothesis is satisfied, but is as small as possible otherwise. Consider the possible
contact sets B that may obtain when the null hypothesis is satisfied. When R is concave, if B contains some
triple (u, v, w) ∈ A, then it must be the case that R(t) =MR(t) for t ∈ {u, v, w}. Our second contact set
estimator is constructed to exclude members of B′m,n that appear very likely to violate this condition:

Bm,n =
{

(u, v, w) ∈ B′m,n :MRm,n(u)−Rm,n(u) ≤ δm,n
}
.

Ideally, one would like to choose the threshold here to reflect the sample variance of MRm,n(u)−Rm,n(u)
as well but this variance is more difficult to characterize. Thus, for transparency, we simply use δm,n.

Our next result states that, with high probability, Bm,n provides a good outer-approximation to our
contact set B when the null hypothesis is satisfied.

Lemma 3.3. Suppose R ∈ Θ0 and Assumption 3.1 is satisfied. Then as m∧n→∞ with n/(m+n)→ λ ∈
(0, 1), we have P (B ⊆ Bm,n ⊆ B′m,n ⊆ Bε)→ 1 for any ε > 0, where

Bε =

{
a ∈ A : inf

b∈B
‖b− a‖ ≤ ε

}
,

the ε-enlargement of B.

3.3. Bootstrap procedure

In short, our bootstrap approximation to the weak limit A′RT of Mm,n works by simulating the dis-

tribution of M∗m,n = Â′m,nT ∗m,n conditional on our data, where T ∗m,n is a bootstrap version of T , and

Â′m,n : `∞([0, 1])→ R is the data dependent operator

Â′m,nf =

∥∥∥∥∥ sup
(v,w)∈Bm,n(·)

S̃f(·, v, w)

∥∥∥∥∥
p

, f ∈ `∞([0, 1]).

The estimated operator Â′m,n is determined by the estimated contact set Bm,n; note that Bm,n(u) is a
cross-section of Bm,n, defined in the same way as B(u). Our approach places us in the general framework
used by Fang and Santos (2016) to explore the use of bootstrap inference when standard differentiability
conditions are violated.

To obtain T ∗m,n, we first construct bootstrap versions of Fm and Gn by setting

F ∗m(·) =
1

m

m∑
i=1

V ∗i,m1(Xi ≤ ·), G∗n(·) =
1

n

n∑
j=1

W ∗j,n1(Yj ≤ ·), (3.3)

where the weights V ∗m = (V ∗1,m, . . . , V
∗
m,m) and W ∗n = (W ∗1,n, . . . ,W

∗
n,n) are drawn independently of the data

and of one another from the multinomial distribution with probabilities spread evenly over the categories
1, . . . ,m and 1, . . . , n respectively. This corresponds to letting F ∗m and G∗n be the empirical cdfs of bootstrap
samples of size m and n drawn from the discrete uniform distribution on (X1, . . . , Xm) and (Y1, . . . , Yn)
respectively. From F ∗m and G∗n we construct R∗m,n = F ∗m ◦ G∗−1n , our bootstrap version of Rm,n. We then
set T ∗m,n = cm,n(R∗m,n −Rm,n).

The following result establishes that the law of T ∗m,n conditional on the data provides an accurate
approximation to the law of T with high probability. Weak convergence conditional on the data in probability
is meant in the sense of Kosorok (2008, pp. 19-20).

Lemma 3.4. Suppose R ∈ Θ. Then as m ∧ n → ∞ with n/(m + n) → λ ∈ (0, 1), we have T ∗m,n  T
conditional on the data in probability.
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The law of T ∗m,n conditional on the data can be simulated: we simply compute large numbers of realiza-
tions of T ∗m,n corresponding to repeated draws of the multinomial weights V ∗m and W ∗n . In order to obtain
suitable critical values for our test statistic, we seek to approximate the law of its weak limit A′RT when
R ∈ Θ0. If A were Hadamard differentiable at R ∈ Θ0 tangentially to C([0, 1]), we could deduce from the
functional delta method for the bootstrap that cm,n(AR∗m,n − ARm,n)  A′RT conditional on the data in
probability, which would justify the use of the law of cm,n(AR∗m,n −ARm,n) conditional on the data as an
approximation to the law of A′RT . Unfortunately we cannot apply the delta method for the bootstrap in
this fashion unless R is strictly concave, because it is only at the strictly concave members of Θ0 that A is
Hadamard differentiable. Though A is Hadamard directionally differentiable at all R ∈ Θ0, it was shown by
Dümbgen (1993) and Fang and Santos (2016) that directional differentiability does not suffice for the appli-
cation of the functional delta method for the bootstrap, and that the näıve bootstrap typically fails when
working with operators that are not fully Hadamard differentiable. The relevant results are Proposition 1
of Dümbgen (1993) and Theorems 3.1 and A.1 and Remark 3.2 of Fang and Santos (2016), which show that
the law of cm,n(AR∗m,n−ARm,n) conditional on the data provides a consistent approximation to the target
weak limit A′RT if and only if A is Hadamard differentiable at R tangentially to the support of T . When
this condition fails, as it does here when R is not strictly concave, consistent approximation may instead be
achieved using a modified bootstrap procedure based on an explicit or implicit estimate of the directional
derivative A′R. In our case that estimate is Â′m,n defined above, constructed from the estimated contact set
Bm,n.

We will approximate the law of A′RT using the law of M∗m,n = Â′m,nT ∗m,n conditional on the data. For a
test with nominal size α ∈ (0, 1/2) we take as our critical value

µm,n(α) = inf{x : P (M∗m,n ≤ x | X1, . . . , Xm, Y1, . . . , Yn) ≥ 1− α},

the (1− α)-quantile of the distribution of M∗m,n conditional on the data.

Theorem 3.1. Suppose R ∈ Θ0 and Assumption 3.1 is satisfied. Then as m ∧ n → ∞ with n/(m + n) →
λ ∈ (0, 1), we have M∗m,n  A′RT conditional on the data in probability. If in addition R is not strictly
concave, we have P (Mm,n > µm,n(α))→ α.

Theorem 3.1 establishes that our bootstrap procedure delivers a test with limiting rejection rate equal
to nominal size whenever R is concave but not strictly concave. These R are precisely those points in Θ0

at which the limit distribution of Mm,n is nondegenerate, and form what Linton et al. (2010) refer to as
the boundary of the null. Of course, this notion of boundary differs from the usual topological one; in the
uniform topology, every member of Θ0 is the limit of a sequence in Θ1, and so Θ0 is its own boundary.

A shortcoming of Theorem 3.1 is that it says nothing about the limiting rejection rate of our test when
R is strictly concave. In this case, both Mm,n and µm,n(α) converge in probability to zero, and we cannot
say much of substance about their relative magnitudes without investigating their higher order asymptotic
behavior, which seems difficult. In a related context, Andrews and Shi (2013, p. 625) have proposed a
technical remedy to this problem: instead of using µm,n(α) as our critical value, we can use µm,n(α) + ε
or µm,n(α) ∨ ε, where ε > 0 is some small fixed value. The presence of ε prevents our critical value from
converging in probability to zero alongside Mm,n when R is strictly concave, ensuring a limiting rejection
rate of zero. For further discussion, see Fang and Santos (2016, Rem. 3.12) and Donald and Hsu (2016, p.
13). We have found in numerical simulations with p = 1 and p = 2 that in practice it is unnecessary to
modify the critical value in this fashion. Our test appears to be conservative at strictly concave choices of
R, and also at many concave choices of R that are not strictly concave.

3.4. Power advantage of the bootstrap test

To demonstrate the asymptotic power advantage of our bootstrap test over the fixed critical value test of
Beare and Moon (2015) we shall show that, when p ∈ [1, 2], the conditional weak limit of our bootstrapped
statistic M∗m,n under a sequence of local alternatives is stochastically dominated by A′IB, where B is a
standard Brownian bridge. Recall that the test of Beare and Moon (2015) involves comparing Mm,n to the
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(1 − α)-quantile of A′IB, whereas our bootstrap test involves comparing Mm,n to the conditional (1 − α)-
quantile of M∗m,n. Let ν(α) denote the former quantile and, as above, let µm,n(α) denote the latter quantile.

Fix a point in the null R ∈ Θ0 and a sequence R(1), R(2), . . . in Θ \ Θ0 such that, for all m, we have
R(m) = R+m−1/2∆ for some ∆ ∈ C([0, 1]). We can interpret R(m) as a local alternative to R obtained by
perturbing R in direction ∆. Let T be as in Lemma 2.2. The following result characterizes the asymptotic
behavior of Mm,n and M∗m,n, and the relative asymptotic power of tests based on the critical values ν(α)
and µm,n(α), along our sequence of local alternatives.

Theorem 3.2. Suppose that p ∈ [1, 2]. Under the sequence (R(m) : m ≥ 1), as m∧n→∞ with n/(m+n)→
λ ∈ (0, 1) we have

(a) Mm,n  A′R(T + λ1/2∆),
(b) M∗m,n  A′RT conditional on the data in probability, and
(c) lim supP (Mm,n > ν(α)) ≤ lim inf P (Mm,n > µm,n(α)).

The limits superior and inferior in (c) are proper limits. If R is not strictly concave and also not equal to I
then the weak inequality in (c) may be replaced with a strict inequality.

The conditional weak limit of M∗m,n given in part (b) of Theorem 3.2 can be shown (Beare and Moon,
2015, Theorem 4.1) to be stochastically dominated by A′IB. Thus µm,n(α) converges to a value µ(α) ≤ ν(α),
implying a weak increase in local power, as indicated by part (c) of Theorem 3.2. The increase in local power
is strict when R belongs to the boundary of the null but does not satisfy the lfc R = I. It can be seen in
panels (a) and (b) of Figure 3 of Beare and Moon (2015) that the difference between µ(α) and ν(α) can be
very large for certain choices of R ∈ Θ0.

3.5. Extension to dependent samples

We have focused for clarity on the case where the data are independent between and within samples.
However, most of our results generalize without much difficulty to the dependent case. It is more natural
to consider dependence between samples when observations are paired as (Xi, Yi), so we focus on the case
m = n and set cn = cm,n, Rn = Rm,n and R∗n = R∗m,n. Suppose we drop the assumption of independence
between and within samples and instead assume directly that

n1/2((Fn, Gn)− (F,G)) (B1 ◦ F,B2 ◦G) (3.4)

in `∞([0, 1])× `∞([0, 1]), where B1 and B2 are random elements of C([0, 1]). Donsker’s theorem implies that
(3.4) is satisfied when the data are independent between and within samples, with B1 and B2 independent
standard Brownian bridges. In the case where we have dependence between samples but the pairs (Xi, Yi)
are iid across i, a bivariate extension of Donsker’s theorem ensures that (3.4) continues to be satisfied but
the standard Brownian motions B1 and B2 are no longer independent. When there is dependence within
samples, (3.4) may be satisfied under a suitable mixing condition or related property (Dehling and Philipp,
2002). In any case, if (3.4) is satisfied then Lemma 2.2 will continue to hold with B1 and B2 suitably
redefined; this can be proved by applying the functional delta method using Lemma A.1 in Appendix A.
Note that Lemma A.1 is applicable because we may assume without loss of generality that G is the uniform
distribution on [0, 1], due to the fact that Rn is unaffected with probability one if we replace our pairs of
observations (Xi, Yi) with (G(Xi), G(Yi)), as discussed in Section 2.1. Theorem 2.1 and Lemma 3.3 also
remain valid and require essentially no change to the proofs.

The bootstrap procedure proposed in Section 3.3 cannot be expected to work under dependent sampling
when F ∗n and G∗n are defined as in (3.3). We instead require bootstrap versions of Fn and Gn that properly
capture dependence between and within samples. In the case where we have dependence between samples
but the pairs (Xi, Yi) are iid across i, it is enough to replace the multinomial weights W ∗j,n in (3.3) with
V ∗j,n, so that the two bootstrapped cdfs use the same weights. When there is dependence within samples,
a resampling procedure suitable for serially dependent data must be applied; see Radulović (2002) for a
survey and discussion of such procedures. A suitable procedure must satisfy

n1/2((F ∗n , G
∗
n)− (Fn, Gn)) (B1 ◦ F,B2 ◦G) (3.5)
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in `∞([0, 1]) × `∞([0, 1]) conditional on the data in probability, meaning that it consistently approximates
the law of n1/2((Fn, Gn) − (F,G)). We further require that R∗n is unaffected with probability one if we
replace the pairs (Xi, Yi) with (G(Xi), G(Yi)), as is the case when F ∗n and G∗n are defined as in (3.3). With
these additional conditions in place the proof of Lemma 3.4 goes through in the dependent case, but with
(A.1) and (A.2) assumed rather than deduced. Theorem 3.1 then follows with no further changes to the
proof required. Theorem 3.2 follows similarly if we assume (3.4) and (3.5) to hold under the sequence of
local alternatives considered there.

4. Practical implementation

Here we provide some pragmatic guidelines for implementing our testing procedure. In Section 4.1 we
provide a step-by-step guide to the computation of our test statistic and bootstrap critical value, avoiding
abstract operations such as suprema over infinite sets and integration, and instead using only operations that
are easily implementable using standard numerical software packages. A method for choosing the tuning
parameter δm,n is suggested in Section 4.2.

4.1. Numerical computation

What follows is a step-by-step recipe for computing our test statistic and critical value. We allow the
calculations to use a smaller number of grid points (N) than the sample sizes to make the computation
easier in the case of very large n (e.g. n > 1000). When N = n, all steps below provide an exact calculation,
with the exception of step 3(v), which uses a summation to numerically approximate an integral. When
N < n, all steps use approximation.

1. Compute the test statistic.

(i) Order the sample of X as X(1) ≤ · · · ≤ X(m).

(ii) Set Rm,n(0) = 0 and for i = 1, . . . , N compute

Rm,n

(
i

N

)
=

1

m
max{j = 1, . . . ,m : X(j) ≤ G−1n (i/N)},

with the maximum over the empty set defined to be zero.

(iii) For j = 0, . . . , N − 1 and i = j + 1, . . . , N and k = i, . . . , N compute

SRm,n
(
i

N
,
j

N
,
k

N

)
=

(k − i)Rm,n(j/N) + (i− j)Rm,n(k/N)

k − j ,

and for i = 0, . . . , N set SRm,n(i/N, i/N, i/N) = Rm,n(i/N).

(iv) Set MRm,n(1) = Rm,n(1) and for i = 1, . . . , N compute

MRm,n

(
i− 1

N

)
= max
j=1,...,i

max
k=i,...,N

SRm,n
(
i

N
,
j

N
,
k

N

)
.

(v) Compute Mm,n. For p = 1 we have

Mm,n =
cm,n
N

N∑
i=1

[
1

2
MRm,n

(
i− 1

N

)
+

1

2
MRm,n

(
i

N

)
−Rm,n

(
i

N

)]
.

For p = 2 we have

Mm,n =
cm,n
N1/2

(
N∑
i=1

{
1

3

[
MRm,n

(
i

N

)
−MRm,n

(
i− 1

N

)]2
+

[
MRm,n

(
i− 1

N

)
−Rm,n

(
i

N

)][
MRm,n

(
i

N

)
−Rm,n

(
i

N

)]})1/2

.
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2. Determine which of the relevant points in the unit cube belong to the estimated contact set. For
i = 0, . . . , N and j = 0, . . . , i and k = i, . . . , N , set bi,j,k = 1 if the inequalities∣∣∣∣SRm,n( i

N
,
j

N
,
k

N

)
−Rm,n

(
i

N

)∣∣∣∣ ≤ δm,nV ∗m,n( i

N
,
j

N
,
k

N

)
and

MRm,n

(
i

N

)
−Rm,n

(
i

N

)
≤ δm,n

are satisfied, and set bi,j,k = 0 otherwise. The variance estimator V ∗m,n(i/N, j/N, k/N) is computed as
described in Section 3.2 and Appendix B.

3. Generate the bootstrap critical value.

(i) Generate bootstrap samples X∗1 , . . . , X
∗
m and Y ∗1 , . . . , Y

∗
n by drawing with replacement from the

original samples X1, . . . , Xm and Y1, . . . , Yn.

(ii) For i = 0, . . . , n and j = 0, . . . , i and k = i, . . . , N compute R∗m,n(i/N) and SR∗m,n(i/N, j/N, k/N)
by following the procedure in steps 1(i)-1(iii).

(iii) For i = 0, . . . , N and j = 0, . . . , i and k = i, . . . , n compute

S̃T ∗m,n

(
i

N
,
j

N
,
k

N

)
= cm,n

[
SR∗m,n

(
i

N
,
j

N
,
k

N

)
−R∗m,n

(
i

N

)
−SRm,n

(
i

N
,
j

N
,
k

N

)
+Rm,n

(
i

N

)]
.

(iv) For i = 0, . . . , N compute

H∗m,n

(
i

N

)
= max
j=0,...,i

max
k=i,...,N

bi,j,kS̃T
∗
m,n

(
i

N
,
j

N
,
k

N

)
.

(v) Exact computation of M∗m,n is complicated. We suggest using the numerical approximation

M∗m,n ≈
[

1

N

n∑
i=1

H∗m,n

(
i

N

)p]1/p
.

(vi) Repeat steps 3(i)-3(v) S times, for some large S, to obtain a large number of realizations of M∗m,n.
Our bootstrap critical value µm,n(α) is set equal to the [αS]-th largest of these realizations.
We reject the null if Mm,n > µm,n(α). As a p-value we may take the smallest q such that
Mm,n > µm,n(q).

4.2. Tuning parameter selection

Under Assumption 3.1 we are free to choose any tuning parameter δm,n that satisfies δm,n → 0 and
cm,nδm,n → ∞ as our sample sizes m and n increase. That is all well and good for the purposes of
asymptotic thought experiments, but not a lot of help when it comes to choosing δm,n in practice. The
following procedure for choosing δm,n has worked well for us in numerical simulations when p = 1 and p = 2,
and thus is recommended for practical implementation.

For a grid of candidate tuning parameters, use Monte Carlo simulation to compute the rejection rate
of the test when R = I, the least favorable case for p = 1 and p = 2. Then, choose the smallest tuning
parameter that yields a rejection rate acceptably close to the nominal size α. Such a choice is possible
because the rejection rate of our test is monotonically decreasing in δm,n and we have found in numerical
simulations that the rejection rate is below α at R = I when δm,n is chosen very large, and rises above α at
R = I when δm,n becomes sufficiently small. The selected tuning parameter will control the finite sample
rejection rate at R = I by construction, and we have found in numerical simulations that it delivers a finite
sample rejection rate near or below nominal size at other points in the null.
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Figure 5.1: Concave ordinal dominance curves used to evaluate finite sample size. The parameter γ varies from 0 to 0.8 in even
increments.

5. Finite sample performance

To investigate the finite sample performance of our proposed testing procedure we used Monte Carlo
simulation to compute rejection rates at a range of odcs satisfying the null or alternative hypothesis. Here
we report results obtained for equally sized samples with m = n = 200. Results for other sample sizes
we investigated were qualitatively similar; we report results for m = n = 400 in Appendix C. For each
odc considered, we used 10000 Monte Carlo replications to compute rejection rates. We used the method
of Giacomini et al. (2013) to reduce computation time, so bootstrap critical values were based on 10000
bootstrap samples drawn over the full set of Monte Carlo replications. Rejection rates were computed using
p = 1 and p = 2. A tuning parameter value of δm,n = .065 was used for p = 1 and .06 was used for p = 2; at
these values, preliminary simulations of the kind described in Section 4.2 indicated that the rejection rates
at R = I were close to .05. In view of the rate requirement on δm,n, we expect the values that work well at
larger sample sizes to be smaller, and at smaller sample sizes to be larger.

The odcs used in our simulations were drawn from four parametric families. To investigate the behavior
of our test when R is concave, we considered two families of concave odcs parametrized by γ ∈ [0, 1).

(I) RI
γ(u) =

{
1+γ
1−γu if 0 ≤ u ≤ 1−γ

2
1−γ
1+γu+ 2γ

1+γ if 1−γ
2 ≤ u ≤ 1,

(II) RII
γ (u) =


1+γ
1−γu if 0 ≤ u ≤ 1−γ

4

u+ γ/2 if 1−γ
4 ≤ u ≤ 3−γ

4
1−γ
1+γu+ 2γ

1+γ if 3−γ
4 ≤ u ≤ 1.

In panel (a) of Figure 5.1 we graph RI
γ for several values of γ. At γ = 0 the graph of RI

γ is the 45◦ line, while
for γ > 0 the graph is piecewise affine with a single kink located at a point that moves toward the upper-left
corner of the unit square as γ → 1. This is the same family of curves considered in numerical simulations
reported by Beare and Moon (2015, Fig. 1), except that we have not bothered to smooth away the single kink
appearing when γ > 0. This means that our kinked odcs violate the continuous differentiability condition
imposed on members of Θ; however, we have found that applying a small degree of smoothing to RI

γ to
restore continuous differentiability makes essentially no difference to the rejection rates computed. In panel
(b) of Figure 5.1, we graph the second family of odcs RII

γ for several values of γ. At γ = 0, its graph is the
45◦ line, while for γ > 0, the graph is piecewise affine with two kinks located at points that move toward
the upper-left corner of the unit square as γ increases.

To investigate the behavior of our test when R is not concave, we considered two additional families of
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Figure 5.2: Nonconcave ordinal dominance curves used to evaluate finite sample power. The parameter γ varies from 0 to .4
in even increments in panel (a), and from 0 to 1 in even increments in panel (b).

odcs parametrized by γ ∈ [0, 1].

(III) RIII
γ (u) =


7u if 0 ≤ u ≤ 1−γ

8
1
7u+ 6−6γ

7 if 1−γ
8 ≤ u ≤ 1+6γ

8

7u− 6γ if 1+6γ
8 ≤ u ≤ 1+7γ

8
1
7u+ 6

7 if 1+7γ
8 ≤ u ≤ 1,

(IV) RIV
γ (u) =


4u if 0 ≤ u ≤ 1

10

u+ 3
10 + 2γ

(
u− 1

10

) (
u− 3

5

)
if 1

10 ≤ u ≤ 3
5

1
4u+ 3

4 if 3
5 ≤ u ≤ 1.

In panel (a) of Figure 5.2 we graph RIII
γ for several values of γ. When γ = 0 we see that RIII

γ is a piecewise

affine concave function with a single kink, and in fact we have RIII
0 = RI

.75. When γ > 0, RIII
γ is a piecewise

affine nonconcave function with three kinks. As γ increases, RIII
γ moves further away from the concave

function RIII
0 ; intuitively, we can think of RIII

γ as moving deeper into the alternative region as γ increases.

Strictly speaking RIII
γ does not belong to Θ due to the violation of continuous differentiability, but as with

RI
γ this is a purely technical issue that can be overcome by applying a negligible degree of smoothing at

kink points. In panel (b) of Figure 5.2 we graph RIV
γ for several values of γ. At γ = 0 we see that RIV

γ is a

piecewise affine concave function with two kinks, and in fact we have RIV
0 = RII

.6. When γ > 0 the portion
of the curve between 0.1 and 0.6 bows to the lower-right.

We report rejection rates using a fixed critical value as in Carolan and Tebbs (2005) and Beare and Moon
(2015) as well as the bootstrap critical values proposed here. Test statistics were computed as described
in Section 4.1, using N = 100 gridpoints. For fairness of comparison, we adjusted the fixed critical value
downward so that the rejection rate of the fixed critical value test is exactly equal to the nominal size of .05
when R = I.

Figure 5.3 displays the rejection rates we computed for the families of concave odcs RI
γ and RII

γ . For
each family of concave odcs, we plot the rejection rate with the L1 (p = 1) and the L2 (p = 2) tests against
the parameter γ. We see that in all cases the rejection rates using the fixed critical values drop very rapidly
to zero as γ increases, becoming indistinguishable from zero by at most γ = .2, and staying at that level
as γ rises to one. The rejection rates using the bootstrap critical values are not flat at .05 either. When
p = 1 the bootstrap rejection rates look similar to the fixed critical value rejection rates. When p = 2 the
situation is more interesting: the bootstrap rejection rates drop rapidly to zero as γ rises above zero, but
bounce back somewhat as γ continues to rise; they still remain well below nominal size, however.

Figure 5.4 displays power curves for the families of odcs RIII
γ and RIV

γ . The results for p = 1 and p = 2
are qualitatively similar: power curves for both tests rise as γ increases, with the test using bootstrap critical
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Figure 5.3: Null rejection rates with fixed critical values (dashed) and bootstrap critical values (solid), with sample sizes
m = n = 200.
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Figure 5.4: Power curves with fixed critical values (dashed) and bootstrap critical values (solid), with sample sizes m = n = 200.

values easily outperforming the test using fixed critical values. For example, with RIII
γ and p = 2 at γ = 0.25,

the improvement in power brought about by our bootstrap procedure is about 0.8. Comparing the power
curves for p = 1 and p = 2, we see better performance with p = 2.

Why are the null rejection rates for the bootstrap test plotted in Figure 5.3 not approximately flat at .05,
as suggested by Theorem 3.1? One plausible source of the under-rejection is the fact that the contact set
corresponding to the odcs RI

γ and RII
γ changes discontinuously as γ rises above zero. This causes the limit

distribution of Mm,n to discontinuously shrink toward zero when γ rises above zero (see e.g. Beare and Moon,
2015, Fig. 2). On the other hand, by construction, our contact set estimator should be asymptotically unable
to detect deviations of γ from zero that are of smaller order than the tuning parameter δm,n. This may lead
our bootstrap procedure to deliver critical values that more closely approximate the (much larger) upper
quantiles of the limit distribution of Mm,n at γ = 0 when in fact γ is positive, leading to rejection rates well
below nominal size. While the above reasoning is informal and heuristic, it seems broadly consistent with
findings of Andrews and Guggenberger (2010), who showed that subsampling procedures can fail to achieve
uniform similarity (while still being pointwise similar on the boundary, like our procedure) in situations
where the limit distribution to be approximated varies discontinuously with a nuisance parameter.

6. Final remarks

We have been concerned in this paper with the problem of testing whether a ratio of pdfs is nonincreasing.
We proposed a bootstrap procedure based on preliminary estimation of a contact set that can deliver
substantially greater power than existing tests based on fixed critical values. Numerical simulations indicate
that our procedure remains conservative when p = 1 or p = 2.

It may be possible to adapt the methods developed here to more general hypothesis testing problems
that can be formulated in terms of the concavity of some estimable function R, not necessarily an odc.
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If we have an estimator Rn of R such that n1/2(Rn − R) converges weakly to a continuous limit then,
following the approach taken in this paper, it should be possible to use the functional delta method to
determine the limit distribution of a test statistic Mn := n1/2‖MRn − Rn‖p, and to use Lemma 3.2 to
motivate a bootstrap procedure based on preliminary estimation of a suitable contact set. A recent paper
by Seo (2018) takes this approach to construct a more powerful bootstrap version of a test of stochastic
monotonicity proposed by Delgado and Escanciano (2012). There is an additional level of dimensionality to
her problem, so the relevant contact set turns out to be a subset of the four dimensional unit hypercube.
Similar improvements can presumably be made to a test of conditional stochastic dominance also proposed
by Delgado and Escanciano (2013). More broadly, our results may be relevant in any situation where the
lcm operator is used to construct a statistical test of concavity.
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Appendix A. Proofs

Here we provide proofs of all results stated in Section 3.

Proof of Lemma 3.1. Linearity is obvious, so we have sup |Sf1−Sf2| = sup |S(f1−f2)| for f1, f2 ∈ `∞([0, 1]).
Let g = f1− f2. Since Sg(u, v, w) is a convex combination of g(v) and g(w), it is bounded in absolute value
by max{|g(v)|, |g(w)|} ≤ sup |g|. And since Sg(u, u, u) = g(u), we have g(u) ≤ sup |Sg|. Consequently,
sup |Sg| = sup |g|, and our claim is proved.

Proof of Lemma 3.2. Suppose first that R is affine in a neighborhood of u. In this case Lemma 2.1 implies
that M′Rh(u) = M[aR,u,bR,u]h(u). Applying a result of Carolan (2002, Lemma 1) expressing the lcm as a
supremum of secant segments, we may write

M[aR,u,bR,u]h(u) = sup
aR,u≤v≤u

sup
u≤w≤bR,u

Sh(u, v, w).

Since R is concave, the rectangle [aR,u, u] × [u, bR,u] is precisely the cross-section B(u), and our claim is
proved. Next suppose that R is not affine in a neighborhood of u. Since R is concave, for all (v, w) ∈ B(u)
we must have either v = u or w = u, or both, and so sup(v,w)∈B(u) Sh(u, v, w) = h(u). But Lemma 2.1
implies that M′Rh(u) = h(u), and so our claim is proved in this case also.

Proof of Lemma 3.3. Since Bm,n ⊆ B′m,n by construction, it suffices to show that P (B′m,n ⊆ Bε) → 1 and

that P (B ⊆ Bm,n)→ 1. We first show that P (B′m,n ⊆ Bε)→ 1. Since S̃R is continuous and is equal to zero

precisely on the contact set B, we have infa∈A\Bε |S̃R(a)| > 0. The operator S̃ is continuous, so Lemma 2.2

and the continuous mapping theorem imply that S̃Rm,n converges uniformly in probability to S̃R, yielding

sup
a∈B′

m,n

|S̃R(a)| = sup
a∈B′

m,n

|S̃Rm,n(a)|+ op(1) ≤ δm,nη1/2u + op(1) = op(1),

the last equality following from Assumption 3.1. It follows that

P

{
sup

a∈B′
m,n

|S̃R(a)| < inf
a∈A\Bε

|S̃R(a)|
}
→ 1.

Consequently, P (B′m,n ∩ (A \Bε) = ∅)→ 1, and so P (B′m,n ⊆ Bε)→ 1.
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We next show that P (B ⊆ Bm,n) → 1. Using the linearity of S̃ and the fact that S̃R(a) = 0 for all
a ∈ B, we find that

sup
a∈B
|S̃Rm,n(a)| = c−1m,n sup

a∈B
|S̃ (cm,n(Rm,n −R)) (a)|.

Therefore, since S̃(cm,n(Rm,n−R)) S̃T by Lemma 2.2 and the continuous mapping theorem, we conclude

in view of Assumption 3.1 that supa∈B |S̃Rm,n(a)| = op(δm,n). This shows that P (B ⊆ B′m,n)→ 1. Further,
since R is concave, we may use the triangle inequality to write

sup
u∈[0,1]

|MRm,n(u)−Rm,n(u)| ≤ sup
u∈[0,1]

|MRm,n(u)−MR(u)|+ sup
u∈[0,1]

|Rm,n(u)−R(u)|.

Both terms on the right-hand side of this inequality are op(δm,n) under Assumption 3.1, and so P (MRm,n(u) ≤
Rm,n(u) + δm,n) → 1 for every u ∈ [0, 1]. Combined with the fact that P (B ⊆ B′m,n) → 1, this shows that
P (B ⊆ Bm,n)→ 1.

The proof of Lemma 3.4 makes use of the following lemma establishing Hadamard differentiability of the
quantile-quantile transformation. We provide a short proof applying lemmas of van der Vaart and Wellner
(1996) and van der Vaart (1998) for convenience, but the result is not really new, and can be traced back
to a doctoral thesis of Reeds (1976); see Dudley (1992, p. 405).

Lemma A.1. Let D ⊂ `∞([0, 1]) be the collection of all restrictions to [0, 1] of cdfs assigning probability
one to (0, 1]. Consider the map φ : D ×D → `∞([0, 1]) defined by

φ(F,G) = F ◦G−1, (F,G) ∈ D ×D,

where G−1(u) = inf{x ∈ [0, 1] : G(x) ≥ u}. This map is Hadamard differentiable tangentially to C([0, 1])×
C([0, 1]) at any (F,G) ∈ D ×D such that F has continuous derivative f and G is the uniform distribution
on [0, 1]. Its derivative is

φ′(F,G)(h1, h2) = h1 − f · h2, (h1, h2) ∈ C([0, 1])× C([0, 1]).

Proof of Lemma A.1. The map D × D 3 (F,G) 7→ (F,G−1) ∈ D × `∞([0, 1]) is Hadamard differentiable
tangentially to `∞([0, 1]) × C([0, 1]) at any (F,G) ∈ D × D such that G is the uniform distribution on
[0, 1] by Lemma 21.4(ii) of van der Vaart (1998), with derivative (h1, h2) 7→ (h1,−h2). And the map
D× `∞([0, 1]) 3 (F,G) 7→ F ◦G ∈ `∞([0, 1]) is Hadamard differentiable tangentially to C([0, 1])× `∞([0, 1])
at any (F,G) ∈ D × `∞([0, 1]) such that F has continuous derivative f by Lemma 3.9.27 of van der Vaart
and Wellner (1996), with derivative (h1, h2) 7→ h1 ◦ G + (f ◦ G) · h2. Since φ is the composition of these
two maps, our desired result follows from Lemma 3.9.3 of van der Vaart and Wellner (1996), a chain rule
for Hadamard derivatives.

Proof of Lemma 3.4. The odcs Rm,n and R∗m,n are unaffected with probability one if we replace our obser-
vations Xi and Yj with G(Xi) and G(Yj), due to the fact that G is continuous and strictly increasing on the
common support of F and G. We may therefore assume without loss of generality that G is the uniform
distribution on [0, 1]. Let B1 and B2 denote independent standard Brownian bridges on [0, 1]. Due to the
independence of the Xi’s and Yj ’s and our assumption that n/(m+ n)→ λ, we have

cm,n ((Fm, Gn)− (F,G)) 
(
λ1/2B1 ◦ F, (1− λ)1/2B2 ◦G

)
(A.1)

in `∞([0, 1])× `∞([0, 1]) by Donsker’s theorem, and

cm,n ((F ∗m, G
∗
n)− (Fm, Gn)) 

(
λ1/2B1 ◦ F, (1− λ)1/2B2 ◦G

)
(A.2)

in `∞([0, 1])× `∞([0, 1]) conditional on the data in probability by Theorem 2.6 of Kosorok (2008). Let φ be
the map defined in Lemma A.1, established there to be Hadamard differentiable at (F,G) tangentially to
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C([0, 1])× C([0, 1]). The functional delta method for the bootstrap (Kosorok, 2008, Thm. 2.9) allows us to
deduce from this Hadamard differentiability and the convergences (A.1) and (A.2) that

cm,n (φ(F ∗m, G
∗
n)− φ(Fm, Gn)) φ′(F,G)

(
λ1/2B1 ◦ F, (1− λ)1/2B2 ◦G

)
in `∞([0, 1]) conditional on the data in probability. Our desired result now follows by observing that

T ∗m,n = cm,n (φ(F ∗m, G
∗
n)− φ(Fm, Gn)) ,

and that
T = φ′(F,G)

(
λ1/2B1 ◦ F, (1− λ)1/2B2 ◦G

)
in law when G is the uniform distribution on [0, 1].

Proof of Theorem 3.1. By Lemma 3.3 there exists a sequence εn ↓ 0 such that

P (B ⊆ Bm,n ⊆ Bεn)→ 1.

Let gn : `∞([0, 1]) → R be the map gn(f) = ‖ sup(v,w)∈Bεn (·) S̃f(·, v, w)‖p, and let g = A′R, so that in view
of Lemma 3.2 we have

P (g(T ∗m,n) ≤M∗m,n ≤ gn(T ∗m,n))→ 1. (A.3)

We will show that, for any sequence fn in `∞([0, 1]) with fn → f∞ ∈ C([0, 1]), we have

gn(fn)→ g(f∞). (A.4)

The convergence (A.4) is the result of the following argument:

|gn(fn)− g(f∞)| ≤ |gn(fn)− gn(f∞)|+ |gn(f∞)− g(f∞)|
≤ sup
a∈Bεn

|S̃fn(a)− S̃f∞(a)|+ |gn(f∞)− g(f∞)|

≤ 2‖fn − f∞‖∞ + |gn(f∞)− g(f∞)|
≤ 2‖fn − f∞‖∞ + sup

(an,a′n)∈B×Bεn :‖an−a′n‖≤εn
|S̃f∞(an)− S̃f∞(a′n)| → 0.

Here, the first and second inequalities follow from the triangle inequality, the third inequality holds by
Lemma 3.1, the fourth inequality holds by the definition of gn and g, and the convergence to zero holds
because fn → f∞, εn ↓ 0 and S̃f∞ is uniformly continuous. Lemma 3.4 together with (A.4) allows us to apply
the extended continuous mapping theorem (see e.g. Dümbgen, 1993, p. 136) to obtain gn(T ∗m,n) g(T ) and
g(T ∗m,n) g(T ) conditional on the data in probability. In view of (A.3) and the definition of g, we conclude
that M∗m,n  A′RT conditional on the data in probability.

It is clear from Theorem 3.1 of Beare and Moon (2015) that when R is not strictly concave the distribution
function of A′RT is continuous everywhere and strictly increasing on [0,∞). Continuity everywhere combined
with the weak convergence M∗m,n  A′RT conditional on the data in probability implies (Kosorok, 2008,
Lemma 10.11(i)) that

sup
x∈R

∣∣P (M∗m,n ≤ x | X1, . . . , Xm, Y1, . . . , Yn)− P (A′RT ≤ x)
∣∣ = op(1). (A.5)

Let µ(α) = inf{x : P (A′RT ≤ x) ≥ 1−α}, the (1−α)-quantile ofA′RT . Since the distribution function ofA′RT
is strictly increasing at µ(α), the continuous mapping theorem applied to (A.5) yields µm,n(α) = µ(α)+op(1).
It now follows from the weak convergence Mm,n  A′RT ensured by Theorem 2.1, and the continuity of the
distribution function of A′RT at µ(α), that P (Mm,n > µm,n(α))→ α as claimed.

The proof of Theorem 3.2 makes use of Lemmas A.2, A.3, and A.4 below, which are local alternative
versions of Lemmas 2.2, 3.3 and 3.4 respectively. The setting is that of Section 3.4.
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Lemma A.2. Under the sequence (R(m) : m ≥ 1), as m ∧ n → ∞ with n/(m + n) → λ ∈ (0, 1), we have
cm,n(Rm,n −R) T + λ1/2∆, where T is the process given in Lemma 2.2.

Proof. Without loss of generality we again normalize G to be the uniform distribution on [0, 1] and set
F = R and F (m) = R(m) for each m. A version of Donsker’s theorem applicable under drifting sequences of
distributions (van der Vaart and Wellner, 1996, Lem. 2.8.7) ensures that

√
m(Fm − F (m)) B1 ◦ F and

√
n(Gn − I) B2, (A.6)

where I(u) = u for all u ∈ [0, 1]. The two convergences hold jointly and B1 and B2 are independent from
each other because the empirical cdfs are constructed from independent samples. Since

√
m(F (m)−F ) = ∆,

we thus obtain √
m(Fm − F ) B1 ◦ F + ∆ and

√
n(Gn − I) B2 (A.7)

jointly. In view of the Hadamard differentiability of the quantile-quantile transform established in Lemma
A.1, we may now apply the functional delta method to obtain

cm,n(Rm,n −R) λ1/2(B1 ◦R+ ∆)− (1− λ)1/2R′ ·B2. (A.8)

We conclude by observing that the weak limit in (A.8) is equal in law to T + λ1/2∆.

Lemma A.3. Suppose Assumption 3.1 is satisfied. Under the sequence (R(m) : m ≥ 1), as m ∧ n → ∞
with n/(m+ n)→ λ ∈ (0, 1), we have P (B ⊆ Bm,n ⊆ Bε)→ 1 for any ε > 0.

Proof. The proof is the same as that of Lemma 3.3, but with Lemma A.2 invoked in place of Lemma 2.2,
and T + λ1/2∆ used in place of T .

Lemma A.4. Under the sequence (R(m) : m ≥ 1), as m ∧ n → ∞ with n/(m + n) → λ ∈ (0, 1), we have
T ∗m,n  T conditional on the data in probability.

Proof. Without loss of generality we again normalize G to be the uniform distribution on [0, 1] and set
F = R and F (m) = R(m) for each m. The joint weak convergence

√
m(F ∗m − Fm) B1 ◦ F and

√
n(G∗n −Gn) B2 (A.9)

conditional on the data in probability that obtained when ∆ = 0 continues to hold under our drifting se-
quence of distributions due to the uniform Donsker property of the collection of indicators of half-intervals
(Giné and Zinn, 1991). Therefore, in view of the Hadamard differentiability of the quantile-quantile trans-
form established in Lemma A.1, we may deduce the desired conditional weak convergence T ∗m,n  T by
applying the functional delta method for the bootstrap (for a version that applies under drifting sequences of
distributions, see e.g. the second part of Proposition 1 of Dümbgen (1993) applied to Hadamard differentiable
maps).

Proof of Theorem 3.2. Since Mm,n = cm,n(ARm,n−AR), part (a) follows from Lemma A.2 by applying the
functional delta method. Part (b) can be proved in the same way as Theorem 3.1, but with Lemmas A.3
and A.4 invoked in place of Lemmas 3.3 and 3.4 respectively. Part (c) is trivial when R is strictly concave
because Mm,n converges in probability to zero, implying that lim supP (Mm,n > µ(α)) = 0. When R is not
strictly concave, by appealing to part (b) for the conditional weak convergence M∗m,n  A′RT and arguing
as in the final paragraph of the proof of Theorem 3.1, we deduce that µm,n(α) = µ(α) + op(1). It then
follows from the weak convergence Mm,n  A′R(T + λ1/2∆) established in part (a) that

P (Mm,n > ν(α))→ P (A′R(T + λ1/2∆) > ν(α)) (A.10)

and
P (Mm,n > µm,n(α))→ P (A′R(T + λ1/2∆) > µ(α)). (A.11)
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Theorem 4.1 of Beare and Moon (2015) implies that µ(α) ≤ ν(α), so we deduce that part (c) is satisfied,
with the limits superior and inferior being proper limits.

It remains to verify that the limit in (A.10) is strictly less than the limit in (A.11) when we have neither
R strictly concave nor R = I. This will be the case if µ(α) < ν(α). The proof of Theorem 4.1 of Beare and
Moon (2015) constructs a random variable Z equal in law to A′RT such that Z ≤ A′IB. One step in that
proof applies a collection of inequalities between geometric and arithmetic means. All inequalities hold with
equality if and only if all affine segments of R have slope one. But inequality (A.10) in the proof of Theorem
4.1 of Beare and Moon (2015) holds with equality if and only if R is comprised purely of affine segments.
Thus if R 6= I then at least one of the aforementioned inequalities must be strict, implying that Z < A′IB.
Consequently, all interior quantiles of A′RT lie strictly below the corresponding quantiles of A′IB, and hence
µ(α) < ν(α).

Appendix B. Variance formula used in threshold construction

As discussed in Section 3.2, to construct the threshold in the estimated contact set it is advisable to use
an estimator of the variance of cm,nS̃Rm,n(u, v, w). From the covariance kernel of the process T appearing in

Lemma 2.2, we derive the following expression for the limiting variance of cm,nS̃Rm,n(u, v, w) when v < w:

V (u, v, w) =
λ(w − u)2

(w − v)2
(R(u)−R(v)) +

λ(u− v)2

(w − v)2
(R(w)−R(u))

+
(1− λ)(w − u)2

(w − v)2
(R′(v)2v +R′(u)2u− 2R′(u)R′(v)v)

+
(1− λ)(u− v)2

(w − v)2
(R′(w)2w +R′(u)2u− 2R′(u)R′(w)u)

+
2(1− λ)(w − u)(u− v)

(w − v)2
(R′(w)−R′(u))(R′(v)v −R′(u)u).

When v = w, we instead have V (u, v, w) = 0. We estimate V (u, v, w) with Vm,n(u, v, w), which has the
same formula as V (u, v, w) except that λ is replaced by n/(m+ n), R by Rm,n, and R′ by

R′m,n(u) =
Rm,n(min{1, u+ bn})−Rm,n(max{0, u− bn})

min{1, u+ bn} −max{0, u− bn}
,

where bn = [n1/3]/n with [·] rounding up to the nearest integer.

Appendix C. Additional numerical simulations

We repeated the numerical simulations reported in Section 5 with larger sample sizes. Specifically, we
increased m and n from 200 to 400. Figures C.1 and C.2 are the counterparts to Figures 5.3 and 5.4 with
m = n = 400 instead of m = n = 200. The null rejection rates with m = n = 400 reported in Figure C.1
are similar to those with m = n = 200 reported in Figure 5.3. In particular, we again see that the rejection
rates drop rapidly to zero as γ rises above zero. With p = 2, the rejection rates tend to be a little higher
at γ values further away from zero when the sample sizes are larger. Comparing Figures 5.4 and C.2, we
see that the power of all tests is larger when the sample sizes are larger, as expected. Our bootstrap tests
continue to be much more powerful than the fixed critical value tests at the larger samples sizes.
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