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I study the provision of incentives in a continuous time dynamic moral hazard
model with hidden actions and hidden states. I consider a principal-agent model
with linear production and exponential utility, whose explicit solution allows me
to show how allocations are distorted for incentive reasons, and how access to
hidden savings further alters allocations. I solve the model by applying a stochastic
maximum principle, where the co-state variables from the agent’s optimization
problem become state variables for the principal’s problem of choosing an optimal
contract. I show that the main effect of moral hazard is a distortion on the effort
margin, with a smaller effect on the intertemporal consumption allocation. Access
to hidden savings shuts down the intertemporal distortions and increases the effort
distortion. I also show how the optimal contracts can be implemented via a constant
equity share, a constant flow payment, and a constant tax on savings.

1. INTRODUCTION

There are many economic environments where private information is a crucial feature,
and a key question is how to provide incentives in a dynamic setting. However the analysis
of dynamic hidden information models rapidly becomes complex, even more so when some
of the relevant state variables cannot be monitored. In this paper I illustrate how continuous
time methods help to simplify the analysis of models with hidden actions and hidden states.
I study a simple continuous time contracting model where optimal contracts can be solved
explicitly in closed form. This allows me to illustrate the effects of the information frictions,
and to derive a simple implementation of the contract.

In particular, I study a dynamic principal-agent model that is an extension of Holmstrom
and Milgrom (1987). In the model the principal owns a production technology, and hires an
agent whose effort increases output. The proceeds of the production increase the principal’s
assets, out of which he draws funds for the agent’s payment and his own consumption. I
make the particular functional form assumptions that the production technology and asset
accumulation are linear with additive shocks, and that both the principal and agent have
exponential preferences over consumption, and the agent has quadratic financial costs of
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Kocherlakota, Nicola Pavoni, Chris Phelan, Bernard Salanié, Yuliy Sannikov, Ivan Werning, and Xun Yu Zhou
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effort. This exponential-linear structure is useful for simplifying the analysis and allowing
for explicit solutions, but the approach and methods apply more broadly.1

In this environment I study three different information structures. When the principal
has full information, he can monitor the agent’s effort and consumption, and so only must
ensure that the agent be willing to participate in the contract. This case serves as an
efficient benchmark to compare with the private information models. I then turn to the
hidden action case, a classic moral hazard model where the principal cannot observe the
agent’s effort and so cannot distinguish between low effort or adverse shocks to output.
Thus the contract must provide incentives for the agent to put forth effort, but I continue
to assume that the agent’s consumption is observable. As in Williams (2011) and Cvitanic
and Zhang (2012), I apply a stochastic maximum principle to derive my results.2 I rely on the
formulation of Bismut (1973), and consider a change of variables as in Bismut (1978). In this
environment, I show that the first-order approach to contracting is valid. That is, the first
order conditions for the agent’s effort choice facing a given contract completely characterize
the incentive constraints. Thus I can fully characterize the set of implementable contracts,
where the agent participates and carries out the principal’s desired actions. Implementable
contracts incorporate the agent’s first-order conditions and are history-dependent in that
they condition on the agent’s promised utility under the contract. This form of history
dependence is well-known and is analogous to many related results in the literature, starting
with Abreu, Pearce, and Stacchetti (1986)-(1990) and Spear and Srivastrava (1987). It has
also been known at least since Mirrlees (1999) (originally 1975), that the first-order approach
to contracting is not generally valid, but it is in my model.3 Closely related continuous time
models have been studied by Sannikov (2008) and Cvitanic and Zhang (2012), among others,
and Sannikov (2013) provides an overview of the literature. My contribution is in showing
how to explicitly solve for contracts in a fully dynamic environment, a natural state variable
(the assets) and consumption payments occurring continuously throughout the contract.4

I then turn to the case in which the agent has access to hidden savings, and so his
consumption and wealth cannot be monitored. This introduces a hidden state variable,
which is a form of persistent private information. As in Williams (2011), when the agent has
access to a hidden state, the history dependence in the contract is captured by an additional
state variable which summarizes the “shadow value” of the state. In this environment with
hidden savings, that shadow value of additional wealth is the agent’s current marginal utility
of consumption. Again I employ a first-order approach to contracting, which is similar to

1In addition to Holmstrom and Milgrom (1987), other papers making use of the exponential-linear structure
in related models include Fudenberg, Holmstrom, and Milgrom (1990), Mitchell and Zhang (2010), Cvitanic and
Zhang (2012), and Williams (2011). In an earlier version of this paper, Williams (2008), I considered more general
specifications.

2I developed my approach independently of Cvitanic and Zhang (2012), and they cite Williams (2008), the earlier
version of this paper. Williams (2011) builds on Williams (2008).

3Different conditions insuring the validity of the first-order approach in a static setting were given by Mirrlees
(1999), Rogerson (1985), and Jewitt (1988).

4Holmstrom and Milgrom (1987), Schattler and Sung (1993), and Cvitanić, Wan, and Zhang (2009) consider only
a single transfer from the principal to the agent, as do the explicitly solved examples in Cvitanic and Zhang (2012).
Sannikov (2008) considers dynamic payments but has no state variables other than promised utility.
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the approach of Werning (2001), Abraham and Pavoni (2008), Farhi and Werning (2013),
Kapicka (2013), and Pavan, Segal, and Toikka (2014) in discrete time dynamic moral hazard
problems.5 Garrett and Pavan (2015) consider an alternative approach using variational
techniques to deal directly with the full program and characterize the dynamics of average
distortions under optimal contracts. Unlike the hidden action case and Williams (2011),
with hidden savings I cannot provide useful conditions which guarantee the validity of the
first-order approach ex-ante.6 Therefore I derive a candidate optimal contract using the
agent’s (necessary) optimality conditions, and then verify ex-post that the contract is in
fact implementable. Most previous papers in the literature have done this numerically, but
here I am able to do so analytically.7 Similar to Holmstrom and Milgrom (1987) the optimal
contract is linear in my fully dynamic setting with exponential utility. However now the
payment is linear in an endogenous object, the logarithm of the agent’s promised utility
under the contract.

After solving for the optimal contracts, I study some of their implications. I character-
ize how the informational frictions distort the labor/leisure margin (a “labor wedge”) and
the consumption/savings margin (an “intertemporal wedge”).8 Moral hazard in production
leads directly to a wedge between the agent’s marginal rate of substitution and the marginal
product of labor. Moreover, the dynamic nature of the contracting problem leads to a wedge
between the agent’s intertemporal marginal rate of substitution and the marginal product
of capital. If the principal can control the agent’s consumption (or tax his savings), the
contract will thus have an intertemporal wedge. However with hidden savings, the agent’s
consumption cannot be directly controlled by the principal. Thus there is no intertemporal
wedge, but instead a larger labor wedge. Finally, I show how the contracts can be imple-
mented with some rather simple instruments. If the principal provides the agent with a
constant share of output (or equity share), a constant flow payment, and a constant tax
on savings, then the contracts in all of the information structures can be implemented in a
decentralized manner with the agent free to choose his own effort, savings, and consumption.

2. THE MODEL

I consider a model in which a principal hires an agent to manage a risky project, with
the agent’s effort choice affecting the output from the project. Holmstrom and Milgrom
(1987) study a related model where consumption and payments occur only at the end of the
contracting period and output is i.i.d. I extend their environment in several ways. First, I
include intermediate consumption by both the principal and agent. In addition, I study a

5Also see Allen (1985), Cole and Kocherlakota (2001), Kocherlakota (2004a), Doepke and Townsend (2006),
Mitchell and Zhang (2010), and Edmans, Gabaix, Sadzik, and Sannikov (2012) for some alternative formulations
with hidden savings.

6In Williams (2008) I provided some sufficient conditions which proved stringent and difficult to verify. The model
in Williams (2011) has a different structure, which allows for weaker sufficient conditions.

7Mitchell and Zhang (2010) and Edmans, Gabaix, Sadzik, and Sannikov (2012) show that their contracts are
incentive compatible with hidden savings via different methods.

8See Chari, Kehoe, and McGrattan (2007) on the role of the labor and intertemporal (or investment) wedges in
fluctuations. Kocherlakota (2004b) shows how intertemporal wedges result form dynamic moral hazard problems.
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system with a natural state variable, where effort adds to the principal’s stock of assets but
consumption is drawn from it, which introduces a source of (observable) persistence.9 I also
consider an extension with hidden savings, where the agent can save or borrow in a risk-free
asset with a constant rate of return. In this case, my results are related to the discrete time
model of Fudenberg, Holmstrom, and Milgrom (1990), who show that the hidden savings
problem is greatly simplified with exponential preferences. Much of the complications of
hidden savings comes through the interaction of wealth effects and incentive constraints,
which exponential utility does away with. However my results are not quite as simple
as theirs, as in my model the principal is risk averse, and asset stocks are persistent.10

Nonetheless, hidden savings affects the contract in a fairly simple way.

2.1. The model

The environment is a continuous time stochastic setting, with an underlying probability
space (Ω,F , P ), on which is defined a standard Brownian motion W . Later I am more
explicit about the probability space that I work with, focusing on the induced distributions
over outcomes on a finite horizon. Information is represented by a filtration {Ft}, which
is generated by the Brownian motion Wt (suitably augmented). I consider a finite horizon
[0, T ] which may be arbitrarily long, and below I let T → ∞.

At date zero, the principal contracts with the agent to manage a production process,
whose cumulative proceeds Yt evolve on [0, T ] as follows:

dYt = Betdt+ σdWt, (1)

here et ∈ A ⊂ R is the agent’s effort choice, B represents the productivity of effort, and
there is an additive shock (due to the Brownian increment) to the output. The proceeds
of the production add to the principal’s assets yt, which earn a risk free return r, and out
of which he pays the agent st ∈ S ⊂ R and withdraws his own consumption (or dividend)
dt ∈ R. Thus the principal’s assets evolve as:

dyt = (ryt +Bet − st − dt) dt+ σdWt. (2)

As is common when working with exponential-linear models, for tractability I do not restrict
yt, st, or dt to be nonnegative, thus their interpretations of may be a bit strained when they
take on negative values. I sometimes refer to yt as “output,” as from the principal’s vantage
point it captures the same information as Yt. In addition, the agent has his own wealth mt,
out of which he consumes ct:

dmt = (rmt + st − ct)dt. (3)

9Holmstrom and Milgrom (1987) also consider time multiplicatively separable preferences, while I use time addi-
tively separable ones.

10Fudenberg, Holmstrom, and Milgrom (1990) show that there are no gains to long term contracting, and that an
optimal contract is completely independent of history. The first result relies on the risk neutrality of the principal,
while the second relies on technology being history independent as well. Neither condition holds in my model, and
I find that the optimal contract is history dependent and that hidden savings alter the contract.
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Thus the agent earns the same rate of return r on his savings, gets income flows due to his
payment st, and draws down his assets to consume. At the terminal date T , the principal
makes a final payment sT and the agent chooses consumption based on this payment and
his terminal wealth mT . I provide more detail on the terminal date below.

I consider three different information structures: full information, hidden actions, and
hidden savings. Full information is self-explanatory, while under hidden actions the principal
observes the assets yt but cannot observe the agent’s effort et or the shocks Wt. Thus the
principal faces a classic moral hazard problem, where he cannot distinguish low effort from
a negative shock. He sets a target êt but cannot directly verify if the agent were to deviate,
and thus must structure the payment {st} to provide incentives for the agent to meet his
effort target. Under both full information and hidden actions, the principal can observe the
agent’s wealth mt and so equivalently can observe consumption ct. In these cases the agent’s
saving is redundant, as only total assets yt +mt matter for determining the allocation. As
in Cole and Kocherlakota (2001), without loss of generality I suppose that the principal
does all the saving, and thus sets mt ≡ 0 and so ct = st.

11 The final information structure
is hidden savings, where the principal observes the agent’s initial wealth m0 but cannot
monitor the agent’s wealth mt or consumption ct for t > 0. In this case, in addition to the
target effort êt, the principal sets targets m̂t ≡ 0 and ĉt = st which are not verifiable. Thus
the payments {st} must provide incentives to put forth effort and not to save (or borrow).

As discussed above, I focus on exponential preferences for both the principal and the
agent, which allows me to obtain explicit solutions for the optimal contracts. The same
general methodology for finding optimal contracts applies more broadly, but typically re-
quires numerical solutions. The agent discounts at rate ρ, has a flow utility u(c, e) =
− exp(−λ(c − e2

2
)) over consumption and effort and a terminal utility v over the terminal

payment and final wealth (which I discuss more below):

V (ē, c̄) = E0

[∫ T

0

e−ρtu(ct, et)dt+ e−ρTv(sT ,mT )

]
.

Here V denotes the expected utility over the processes (ē, c̄). Similarly, the principal dis-
counts at the same rate ρ, has a flow utility U(d) = − exp(−λd) over his own consumption
and has terminal utility L over the terminal payment:

E0

[∫ T

0

e−ρtU(dt)dt+ e−ρTL(yT , sT )

]
. (4)

The assumption of common risk aversion simplifies explicit analytic solutions, but could be
relaxed without much complication.12

2.2. The terminal date

11This relies on risk being additive and hence independent of yt. Otherwise varying mt may affect the risk of the
total asset stock yt +mt, and the principal would face a portfolio problem.

12With differing risk aversion, the same general form of the solution holds, with slightly more complex expressions
and exponents depending on the ratio of the risk aversion parameters.
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In order to find explicit solutions and to extend easily from a finite to an infinite horizon,
it is useful to make particular assumptions about what happens at the terminal date. In
particular, I assume that at the terminal date T , the principal provides the agent with an
amount sT , retaining yT − sT for himself. Then from date T on, no more production takes
place, and both the principal and the agent live off their assets for the infinite future, earning
the same constant rate of return r. That is, both solve consumption-savings problems of
the form:

VT (a0) = max
{bt}

−
∫ ∞

0

exp (−ρt− λbt) dt (5)

with a generic level of assets a0 given and:

dat = (rat − bt)dt.

For the agent bt = ct and a0 = sT +mT , while for the principal bt = dt and a0 = yT − sT .
The Hamilton-Jacobi-Bellman equation for the consumption-savings problem (5) is:

ρVT (a) = max
b

{− exp(−λb) + V ′
T (a)[ra− b]} .

One can easily verify that the solution and optimal policy are:

VT (a) = − exp

(
ρ− r

r
− λra

)
, b(a) =

r − ρ

λr
+ ra. (6)

Thus I set the terminal utility functions for the agent and the principal to:

v(sT ,mT ) = VT (sT +mT ), L(yT , sT ) = VT (yT − sT ).

2.3. Contracts and implementability

I now more formally define contracts and what I mean for a contract to be implementable
(or incentive compatible). Let C be the space of continuous functions mapping [0, T ] into
R. I adopt the convention of letting a bar over a variable indicate an entire time path on
[0, T ]. The time path of output ȳ = {yt : t ∈ [0, T ]} is then a (random) element of C, which
defines the principal’s observation path under hidden actions or hidden savings. I define
the filtration {Yt} to be the completion of the σ-algebra generated by yt at each date. A
contract specifies a set of recommended actions (êt, ĉt) ∈ A and a corresponding payment
st ∈ S for all t as a function of the relevant history. For the hidden savings case, these
recommended actions truly are recommendations, while under hidden actions ĉt = ct = st,
and under full information ĉt = ct = st and êt = et. The set of admissible contracts S
is the set of Yt-predictable functions (s, ê, ĉ) : [0, T ] × C → S × A.13 Thus the contract
specifies a payment and recommendations at date t that depend on the whole past history
of the observations of the state up to that date (but not on the future). Then facing a given

13 See Elliott (1982) for a definition of predictability. Any left-continuous, adapted process is predictable.
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contract, the agent potentially makes his own choices of effort and consumption. Under full
information, the agent has no choices to make, while under hidden actions he chooses effort,
and under hidden savings effort and consumption. Thus the set of admissible controls A
for the agent are those Ft-predictable functions (ē, c̄) : [0, T ]×C → A. To apply maximum
principle results from the literature, I assume that the set A can be written as the countable
union of compact sets. A contract (s, ê, ĉ) is called implementable if the agent agrees to
the contract at date zero and chooses the recommended actions: (ê, ĉ) = (ē, c̄). Under full
information, all contracts that ensure participation are implementable, while under hidden
actions ĉ = c̄, so implementable contracts are those with ê = ē.

2.4. A change of variables

Under hidden actions or hidden savings, I derive the incentive compatibility conditions
by considering the decision problem of an agent facing a given contract. In general the
payment at any date t is st = s(t, ȳ), which is a function of the entire past history. This
general history dependence means that we cannot use a direct approach to the agent’s
problem, as a function – the entire past history ȳ – would be a state variable.

As in Bismut (1978), I make the problem tractable by taking the key state variable to
be the density of the output process rather than the output process itself. Cvitanic and
Zhang (2012) follow a similar approach. In particular, let W 0

t be a Wiener process on C,
which can be interpreted as the distribution of output resulting from an effort policy which
makes output a martingale. Different effort choices by the agent change the distribution of
output. Thus the agent’s effort choice is a choice of a probability measure over output, and
I take the relative density Γt for this change of measure as the key state variable. Details of
the change of measure are given in Appendix A.1, where I show that the density evolves as:

dΓt = Γtσ
−1(ryt +Bet − s(t, ȳ)− dt)dW

0
t , (7)

with Γ0 = 1.14

When there are hidden states, the covariation between the observable and unobservable
states is also a key factor in the model. Thus is it also useful to take the density-weighted
wealth xt = Γtmt as the relevant unobservable state variable. Simple calculations from (3)
and (7) show that its evolution is:

dxt = Γt(rxt/Γt + s(t, ȳ)− ct)dt+ xtσ
−1(ryt +Bet − s(t, ȳ)− dt)dW

0
t , (8)

with x0 = m0.
By changing variables from (yt,mt) to (Γt, xt) the state evolution is now a stochastic

differential equation with random coefficients. Instead of the key states directly depending
on their entire past history, the coefficients of the transformed state evolution depend on
ȳ which is a fixed, but random, element of the probability space. That is, when analyzing
the agent’s problem I do not take the state variable to be yt, and analyze how the agent’s

14 Similar ideas are employed by Elliott (1982), Schattler and Sung (1993), and Sannikov (2008) who use a similar
change of measure in their martingale methods. Their approach does not apply in the hidden state case however.
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choice off effort affects future values of yt, which in turn persist into the future because of
the state dependence. Instead, I fix an outcome path ȳ, and view the agent as choosing
effort to affect the likelihood of observing that outcome. Changing variables in this way
allows me to deal with the history, as the relevant state variable for the agent’s is now the
current density Γt instead of the whole past history of output.

3. THE FULL INFORMATION PROBLEM

I start with the full information problem which provides a benchmark for the asymmetric
information models considered below. The full information problem is also the easiest to
analyze, as the principal can observe the agent’s effort and consumption, and thus specify
their values directly in a contract. (Recall that the principal also sets mt ≡ 0.) The only
constraint on the contract is that the principal must induce the agent to participate at
date zero, after which both parties remain committed to the contract. I assume that the
agent has an outside reservation utility level V0, and thus the contract must satisfy the
participation constraint V (ē, c̄) ≥ V0.

As the participation constraint only holds at date zero, it would be straightforward to
impose it via standard Lagrangian methods. However from the literature starting with
Abreu, Pearce, and Stacchetti (1986)-(1990) and Spear and Srivastrava (1987), we know
that in a dynamic moral hazard setting a contract should condition on the agent’s promised
utility. Thus it is natural that promised utility should appear in the private information
cases studied below, so I introduce it here as a way of imposing the participation constraint.
Thus I define the agent’s promised utility qt as the expected discounted utility for remaining
in the contract from date t forward:

qt = E

[∫ T

t

e−ρ(s−t)u(cs, es)ds+ e−ρ(T−t)v(sT , 0)

∣∣∣∣Ft

]
. (9)

Via the martingale representation theorem, its evolution can be written:

dqt = [ρqt − u(ct, et)]dt+ γtσdWt, qT = v(sT , 0). (10)

Thus promised utility follows a backward stochastic differential equations (BSDE), as it has
a specified terminal conditions but an unknown initial value.15 Here γt gives the sensitivity
of the agent’s promised utility to the fundamental shocks, and is the key for providing
incentives under moral hazard. Under full information, the principal can freely choose γt
as part of the contract, as long as it implies a solution of (10) which is consistent with the
participation constraint q0 ≥ V0.

Thus under full information, the principal’s problem is to choose (ct, dt, et, γt) for all t
and the terminal payment sT in order to maximize his own utility (4), subject the evolution
of assets (2) and promised utility (10), and the participation constraint. I define J(t, y, q) as

15In particular, these BSDEs depend on forward SDEs, as described in Ma and Yong (1999) and Cvitanic and
Zhang (2012).
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the principal’s value function, capturing his maximal expected discounted value as of date
t when the current assets are yt = y and the agent’s utility promise is qt = q. This value
function satisfies the Hamilton-Jacobi-Bellman (HJB) equation for 0 < t < T :

ρJ(t, y, q)− Jt(t, y, q) = max
c,d,e,γ

{− exp(−λd) + Jy(t, y, q) [ry +Be− c− d]

+Jq(t, y, q)[ρq + exp(−λ(c− e2/2))] +
1

2
Jyy(t, y, q)σ

2 + Jyq(t, y, q)γσ
2 +

1

2
Jqq(t, y, q)γ

2σ2

}
,

with the terminal condition J(T, yT , qT ) = VT (yT − sT ) where qT = VT (sT ). Suppressing
arguments of functions, the first order conditions for (d, c, e, γ) are then:

λ exp(−λd) = Jy

λ exp(−λ(c− e2/2)) = −Jy/Jq

λe exp(−λ(c− e2/2)) = −BJy/Jq

γ = −Jyq/Jqq

Taking ratios of the conditions for (c, e) gives e = B. Thus it is optimal for the principal
to require the agent to supply a constant effort, equal to his productivity B. This is simply
a manifestation of the standard efficiency condition equating the agent’s marginal rate of
substitution between effort and consumption (which here is equal to e) to the marginal
productivity of effort (which here is equal to B).

Due to the exponential preferences and linear evolution, I can explicitly solve for the
optimal contract. First, the terminal condition and the specification of terminal preferences
(6) gives the following:

sT = − log(−qT/η)

λr

where η = exp
(
ρ−r
r

)
/r. Thus we have:

J(T, yT , qT ) = VT (yT − sT ) =
η2

qT
exp(−λryT ).

The solution for any date t has a similar form, and can be written:

J(t, y, q) =
j0(t)

q
exp(−λry),

for some function j0(t). Substituting this into the HJB equation yields the ODE:

j′0(t) = j0(t)[r log j0(t)− α]

where:

α = 2(r − ρ)− λrB2

2
+

σ2λ2r2

4
− 2r log r
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and j0(T ) = η2. The solution of this ODE is thus:

j0(t) = exp (α/r + [2 log η − α/r] exp [−r(T − t)]) .

The optimal policies are therefore:

efi = B, γfi(q) = −λrq

2
,

cfi(q) =
B2

2
− log r

λ
− log(−q)

λ
,

dfi(t, y, q) = − log(rj0(t))

λ
+

log(−q)

λ
+ ry.

Since both the principal and agent are risk averse, they share the production risk. The
agent’s optimal effort is constant and his consumption does not depend directly on output,
but instead is linear in the log of the utility process (which however is a function of output).
The principal’s consumption is linear in the log of the agent’s utility process and also linear
in current output. The principal’s consumption is the only time-dependent policy function,
capturing the finite horizon nature of the problem.

To ease some comparisons, I now consider the infinite horizon limit of the contract. In
the full information case, the infinite horizon problem could be solved directly. However
my theoretical results on private information models only apply to finite horizon cases, so
I study the limit of these solutions as T → ∞. Here we have limT→∞ j0(t) = exp(α/r),
and one can verify directly that the solution of the infinite horizon problem is J(y, q) =
exp(α/r)/q exp(−λry). In the infinite horizon limit, the state variables evolve as follows:

dyt =

[
2(r − ρ)

rλ
+

σ2λr

4

]
dt+ σdWt

dqt = (ρ− r)qtdt−
σλr

2
qtdWt.

Thus output follows an arithmetic Brownian motion with constant drift, while the utility
process follows a geometric Brownian motion. The expected growth rate of utility is constant
and equal to the difference between the subjective discount rate ρ and the rate of return r.

4. THE HIDDEN ACTION CASE

I now turn to the first model with private information: a dynamic moral hazard setting
where the principal can observe the assets yt but cannot observe the agent’s effort et (or the
shocks Wt). I continue to assume that the agent’s consumption and wealth are observable,
and thus set ct = st and mt ≡ 0. Thus the principal must provide incentives for the agent
to put forth the desired amount of effort. I solve this problem by first deriving the agent’s
optimality conditions facing a given history-dependent contract, then showing that the first
order conditions from the agent’s problem are sufficient to ensure implementability. Then I
explicitly solve for the optimal contract.
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4.1. The agent’s problem

The first step in designing an incentive compatible contract is to see what effort level
the agent would choose when facing a given contract. However, as discussed in Section 2.4,
the history dependence in the contract makes a change of variables useful, so I take the
density process (7) as the relevant state variable. With ct = s(t, ȳ) we can write the agent’s
preferences as:

V (ē, s̄) = Eē

[∫ T

0

e−ρtu(s(t, ȳ), et)dt+ v(sT , 0)

]
= E

[∫ T

0

Γte
−ρtu(s(t, ȳ), et)dt+ ΓTv(sT , 0)

]
.

Here the first line uses the expectation with respect to the measure Pē over output induced
by the effort policy ē, as discussed in Appendix A.1. The second line uses the density process
defined above, which effectively averages over the state dependence which is inherited from
the contract. The agent’s problem is to solve:

sup
ē∈A

V (ē, s̄)

subject to (7), given s̄.
Under the change of variables, the agent’s problem is one of control with random coeffi-

cients. As in Williams (2011), I apply a stochastic maximum principle due to Bismut (1973)
to characterize the agent’s optimality conditions.16 Similar to the deterministic Pontryagin
maximum principle, the stochastic maximum principle defines a Hamiltonian, expresses op-
timality conditions as differentials of it, and derives “co-state” or adjoint variables. However
since now the state variable is stochastic, the adjoint variable consists of a pair of processes,
one which multiplies the drift of the state and another the diffusion. The pair of adjoint
processes together solve a a BSDE. In particular, the Hamiltonian H for the agent’s problem
with state Γt and adjoint (qt, γt) can be defined as:

H = ΓH(y, e, c, d, γ) = Γ[u(c, e) + γ (ry +Be− c− d)] (11)

Since there is no drift in Γ, the level of the adjoint q does not enter. In addition, since
Γt > 0, we can define the conditions on the (reduced) Hamiltonian H rather than H.

As in the deterministic theory, optimal controls maximize the Hamiltonian, and the
evolution of the adjoint (or co-state) variables is governed by differentials of the Hamiltonian.
In particular, the drift of the co-state is −∂H

∂Γ
and a term reflecting the discounting, and we

16 The basic maximum principle is further exposited in Bismut (1978), and more recent contributions are detailed
in Yong and Zhou (1999). Cvitanic and Zhang (2012) use a similar approach.
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add a diffusion term:

dqt = [ρqt − u(ct, et)− γt (ryt +Bet − ct − dt)] dt+ σγtdW
0
t

= [ρqt − u(ct, et)]dt+ σγtdW
ē
t , (12)

qT = v(yT , 0).

Here the second line carries out the change of measure, and shows that the co-state associ-
ated with the density of the change of measure Γt is the promised utility qt as in (10). In
the full information case we introduced this variable for convenience, but here it arises as
an element of the agent’s optimality conditions, capturing the shadow value of the change
in the likelihood of different output processes.

In the following, I say that a process Xt ∈ L2 if E
∫ T

0
X2

t dt < ∞. The first result gives
the necessary conditions for optimality. The proofs of it and all results to follow are in
Appendix A.2.

Proposition 4.1. Let (e∗,Γ∗) be an optimal control-state pair. Then there exists an
Ft-adapted process (qt, γt) in L2 that satisfies (12) with e = e∗. Moreover the optimal choice
e∗ satisfies for almost every t ∈ [0, T ] almost surely:

H(yt, e
∗
t , ct, dt, γt) = max

e∈A
H(yt, e, ct, dt, γt) (13)

Thus if A is convex an optimal control e∗ must satisfy for all e ∈ A, almost surely:

He(yt, e
∗
t , ct, dt, γt)(e− e∗t ) ≤ 0 (14)

I stress that these are only necessary conditions for the agent’s problem, and thus the
set of implementable contracts may be smaller than that characterized by the first order
conditions alone. However, I establish the validity of my first-order approach in the next
section.

4.2. Implementable contracts

I focus on interior target effort policies ê, and build in the incentive constraints via the
first order condition (14), which thus reduces to an equality at ê:

γtB = −ue(ct, êt) = λet exp(−λ(ct − ê2t/2)). (15)

This equation can then define the target volatility γ̂t implied by the consumption and target
effort under the contract. Notice as well that γ̂t > 0, so that promised utility increases with
a positive shock (positive increment to the Brownian motion Wt).

I now characterize the set of implementable contracts. I define a contract as locally
incentive compatible if it satisfies the first order condition (15). This condition ensures that
if an agent faced a contract (ĉ, ê) with associated volatility γ̂, the target effort ê would in
fact be his optimal response:

H(yt, êt, ĉt, dt, γ̂t) = max
e∈A

H(yt, e, ĉt, dt, γ̂t).
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In the model, the Hamiltonian H is concave in e, so the first order condition (15) is nec-
essary and sufficient for this local optimality. In addition, I say that a contract satisfies
promise-keeping if it implies a solution of (12). Not all contracts satisfy this condition,
as they may not guarantee that the terminal condition is satisfied. A contract satisfies
the participation constraint if this solution has q0 ≥ V0. The next result shows that these
conditions completely characterize the set of implementable contracts.

Proposition 4.2. A contract (ĉ, ê) ∈ S is implementable in the hidden action case if
and only if it: (i) satisfies the participation constraint, (ii) satisfies promise-keeping, and
(iii) is locally incentive compatible.

Thus in the setting of this paper, the first order approach is valid and the global optimality
conditions can be reduced to the local first order condition.17

4.3. The optimal contract

I now consider the principal’s choice of a contract and show how to solve the problem
explicitly. Defining the value function J(t, y, q) as above, the principal’s problem is to choose
a contract that satisfies participation, promise-keeping, and incentive constraints. Relative
to the full information constraint, the volatility variable γ is no longer a free choice, but
instead is pinned down via (15) as a function of consumption and effort, γ(c, e). The
principal’s HJB equation for 0 < t < T now becomes:

ρJ(t, y, q)− Jt(t, y, q) = max
c,d,e

{− exp(−λd) + Jy(t, y, q) [ry +Be− c− d] +

Jq(t, y, q)[ρq + exp(−λ(c− e2/2))] +
1

2
Jyy(t, y, q)σ

2 + Jyq(t, y, q)γ(c, e)σ
2 +

1

2
Jqq(t, y, q)γ(c, e)

2σ2

}
,

again with the terminal condition J(T, yT , qT ) = VT (yT − sT ) where qT = VT (sT ). The first
order conditions for (d, c, e), using the form of γ(c, e) from (15) and suppressing function
arguments, are:

λ exp(−λd) = Jy,

−Jy − Jqλ exp(−λ(c− e2/2))− Jyqσ
2λγ(c, e)− Jqqσ

2λγ(c, e)2 = 0,

JyB + Jqλe exp(−λ(c− 1/2e2)) + Jyqσ
21 + λe2

e
γ(c, e) + Jqqσ

21 + λe2

e
γ(c, e)2 = 0.

A special feature of the exponential-linear environment is that the value functions and
the optimal policies have the same form under private information as full information, albeit
with different constants. In particular, the value function is of the same form:

J(t, y, q) =
j1(t)

q
exp(−λry),

17In an earlier version of this paper, Williams (2008), I considered more general preferences u and production
technologies f . There I showed that the first order approach was valid if u and f were concave in e and ue < 0 and
fe > 0. These natural assumptions, with effort lowering utility but increasing output, are clearly satisfied here.
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for some function j1(t). The optimal policies are:

eha = e∗, γha(q) = −λe∗kq

B
,

cha(q) =
(e∗)2

2
− log k

λ
− log(−q)

λ
,

dha(t, y, q) = − log(j1(t)r)

λ
+

log(−q)

λ
+ ry,

where (e∗, k) are constants. Using the value function and the fact that u(cha(q), e∗) = kq in
the first order conditions for (e, c), we see that e∗ and k must satisfy:

r − k + σ2rλ2e∗k/B − 2σ2λ2(e∗)2k2/B2 = 0, (16)

−Br + λe∗k − σ2rλ(1 + λ(e∗)2)k/B − 2σ2λe∗(1 + λ(e∗)2)k2/B2 = 0.

These can be solved to get e∗(k):

e∗(k) =
B3r + σ2λBrk

B2r + 2σ2λk2
, (17)

then substituting this back into the first equation in (16) gives an implicit expression for k.
The function j1(t) is determined from the HJB equation after substituting in the optimal

policies. The function satisfies an ODE of the same form as under full information:

j′1(t) = j1(t)[r log j1(t)− β]

where:

β = r + k − 2ρ− r
[
Bλe∗ − λ(e∗)2/2 + log(rk)

]
+ rλ2σ2(r − e∗k/B + λ(e∗)2k2/B2)

and j1(T ) = η2. The solution of this ODE is thus:

j1(t) = exp (β/r + [2 log(η)− β/r] exp [−r(T − t)]) .

While the form of the policy functions is the same as in the full information case, the
constants defining them differ. Solving for the values of the constants is a simple numerical
task, but explicit analytic expressions are not available. For σ2 = 0 the policies collapse to
the full information solution with e∗ = B and k = r, which is natural as there is clearly no
information asymmetry when there are no shocks to output. For small σ2 we have e∗ ≈ B
and k ≈ r, so γha ≈ −λrq = 2γfi. In order to provide incentives, moral hazard requires
that the agent’s utility be more responsive (here twice as much) to incoming information
than would be optimal under full information.

To gain some additional insight into the optimal contract, I expand e∗ and k in σ2 around
zero. From (16) and (17) I have the following approximations:

e∗ = B − σ2λr

B
+ o(σ4)

k = r − σ2λ2r2 + o(σ4).
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In turn, substituting these approximations into cha(q) gives:

cha(q) = cfi(q) + o(σ4).

Thus the first order effects (in the shock variance) of the information frictions are a reduction
in effort put forth, but no change in consumption. I show below that k is the agent’s effective
rate of return under the contract, and can be implemented as an after-tax return on savings.
Thus this return decreases with more volatility. Moreover, effort varies with the parameters
in a simple way: a greater rate of return parameter r or risk aversion parameter λ or smaller
productivity values B lead to larger reductions in effort. Below I plot the exact solutions
for a parameterized version of the model and show that the results are in accord with these
approximations. Thus the information friction leads to a reduction in effort, but has little
effect on consumption.

As discussed above, the theoretical results only apply to finite horizon cases, and there
are important technical issues involved in carrying out the change of measure on an infinite
horizon. But the limit of the finite horizon solution is well defined. Similar to the full
information case, we have limT→∞ j1(t) = exp(β/r). In the infinite horizon limit, the state
variables evolve as follows:

dyt =

[
(r + k − 2ρ)

rλ
+ σ2λ

(
r

2
− e∗k

B
+

(e∗)2k2

rB2

)]
dt+ σdWt

dqt = (ρ− k)qtdt−
σλe∗k

B
qtdWt.

Thus output again follows an arithmetic Brownian motion with constant drift, while the
utility process follows a geometric Brownian motion. Relative to full information, moral
hazard increases the expected growth rate of promised utility, as (at least for small σ2)
k < r, and at the same time increases its volatility as γha > γfi.

5. THE HIDDEN SAVINGS CASE

I now turn to the case when the agent is able to save and borrow in an account that
the principal cannot monitor. As discussed above, this means that the agent’s wealth mt

evolves as in (3), and the principal can no longer guarantee that the agent consumes his
payment. The principal tries to deter savings, and thus targets m̂ ≡ 0 and ĉ = s, but
he must now structure the contract so that the agent has no incentive to save. As under
hidden actions, I solve this problem by first deriving the agent’s optimality conditions facing
a given history-dependent contract. However unlike the hidden action case, I can no longer
show that the agent’s optimality conditions characterize the set of implementable contracts.
Thus I solve for a candidate optimal contract using the necessary optimality conditions, then
show ex-post that the contract is truly incentive compatible and therefore implementable.
Werning (2001), Abraham and Pavoni (2008), and Farhi and Werning (2013) follow the
same approach, and here I am able to verify incentive compatibility analytically. In general
with hidden state variables, the contract must condition on an additional endogenous state
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variable, capturing the shadow value (in terms of the agent’s marginal utility) of the hidden
state. But in my the environment the additional variable is redundant.

5.1. The agent’s problem

As under hidden actions, I first derive the agent’s optimality conditions facing a given
contract. Now the agent chooses consumption as well as effort, so his problem is to solve:

sup
(ē,c̄)∈A

V (ē, c̄)

subject to (7)-(8), given s̄. Again, I apply stochastic maximum principle, and the additional
state variable necessitates an additional adjoint. The HamiltonianH for the agent’s problem
with states (Γt, xt) and adjoints (qt, γt) and (pt, Qt) can be written as H = ΓH with:

H(y,m, e, c, d, s, γ, p,Q) = u(c, e) + (γ +Qm) (ry +Be− s− d) + p(rm+ s− c), (18)

where I use x = Γm. Differentiating the Hamiltonian gives the evolution of the co-states,
with qt again following (10), now with the terminal condition qT = v(sT ,mT ). Again qt is
the promised utility and γt is its sensitivity. The co-state variable pt with sensitivity Qt is
associated with the (scaled) wealth xt and follows:

dpt = (ρ− r)ptdt+QtσdW
ē
t , pT = vm(sT ,mT ). (19)

This is derived by differentiating H with respect to x and then changing measure. The
stochastic maximum principle then gives necessary conditions for the agent’s optimal choice.

Proposition 5.1. Let (e∗, c∗,Γ∗, x∗) be an optimal control-state pair. Then there exist
Ft-adapted process (qt, γt) and (pt, Qt) in L2 that satisfy (10) and (19) with (e, c) = (e∗, c∗).
Moreover the optimal control (e∗, c∗) satisfies for almost every t ∈ [0, T ] almost surely:

H(yt,m
∗
t , e

∗
t , c

∗
t , dt, st, γt, pt, Qt) = max

(e,c)∈A
H(yt,m

∗
t , e, c, dt, st, γt, pt, Qt). (20)

Suppose in addition that A is convex, then an optimal control (e∗, c∗) must satisfy for all
(e, c) ∈ A, almost surely:

He(yt,m
∗
t , e

∗
t , c

∗
t , dt, st, γt, pt, Qt)(e− e∗t ) ≤ 0 (21)

Hc(yt,m
∗
t , e

∗
t , c

∗
t , dt, st, γt, pt, Qt)(c− c∗t ) ≤ 0

For interior optima, the first order conditions are:

(γ +Qm)B = λe exp(−λ(c− e2/2))

p = λ exp(−λ(c− e2/2)).

Thus pt = uc(ct, et), the agent’s marginal utility of consumption. This is intuitive, as with
a little additional wealth the agent could increase his current consumption marginally. The
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solution to (19) can be written:

pt = E
[
e(r−ρ)(T−t)vm(sT ,mT )

∣∣Ft

]
. (22)

By the law of iterated expectations, this implies that a standard consumption Euler equation
holds, as for s > t:

uc(ct, et) = E
[
e(r−ρ)(s−t)uc(cs, es)

∣∣Ft

]
.

The agent’s optimality conditions pin down the expected evolution of the marginal utility
of consumption, while the contract influences the volatility of marginal utility Qt.

5.2. Necessary conditions for implementability

In general, an implementable contract would need to condition on this marginal utility pt
as well as the promised utility qt under the target policy (ê, ĉ) and m̂ ≡ 0. But in our setting,
the additional co-state variable is redundant. This is a consequence of the proportionality
of utility and marginal utility with exponential preferences. To see this, note that at the
terminal date T we have:

pT = vm(sT , 0) = V ′
T (sT ) = −λrVT (sT ) = −λrqT ,

so pT is proportional to qT . In addition, pt = uc(ct, et) = −λu(ct, et) so (22) implies:

u(ĉt, êt) = E
[
e(r−ρ)(T−t)v(sT , 0)

∣∣Ft

]
.

Therefore we can write (9) as:

qt = E

[∫ T

t

e−ρ(s−t)u(ĉs, ês)ds+ e−ρ(T−t)v(sT , 0)

∣∣∣∣Ft

]
= E

[
r

∫ T

t

e−ρ(s−t)E
[
e(r−ρ)(T−s)v(sT )

∣∣Fs

]
ds+ e−ρ(T−t)v(sT , 0)

∣∣∣∣Ft

]
= E

[(
r

∫ T

t

e−ρ(s−t)+(r−ρ)(T−s)ds+ e−ρ(T−t)

)
v(sT , 0)

∣∣∣∣Ft

]
= E

[
e(r−ρ)(T−t)v(sT , 0)

∣∣Ft

]
= − 1

λr
E
[
e(r−ρ)(T−t)V ′

T (sT )
∣∣Ft

]
= − 1

λr
pt.

Therefore pt = −λrqt for all t ∈ [0, T ], and the marginal utility state pt provides no addi-
tional information beyond promised utility qt.

With m = 0 and p = −λrq the agent’s optimality conditions determine the following
functions:

γ(e, q) =
−λreq

B
, c(e, q) =

e2

2
− log(−rq)

λ
,
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and in addition u(c(e, q), e) = rq. A contract is now locally incentive compatible if it
is consistent with these conditions. As in the hidden action case, these ensure that if
the agent were to have no wealth (mt = 0) then the target controls would satisfy his
optimality conditions. However to establish full incentive compatibility I also must rule out
cases where the agent would accumulate a different amount of wealth and choose different
actions. As discussed in Williams (2008), a sufficient condition for implementability is for
the Hamiltonian to be concave in (m, e, c). This is analogous to the condition which ensures
the sufficiency of the maximum principle in Zhou (1996). Unfortunately, this concavity
assumption is difficult to verify, and is too strong for the model in this paper. Instead
I focus on necessary conditions for implementability, find a candidate contract optimal
contract from this potentially larger set, and then establish that the contract is indeed
incentive compatible. The necessary conditions are:

Proposition 5.2. An implementable contract (s, ê, ĉ) ∈ S in the hidden savings case
with target wealth m̂ ≡ 0 satisfies (i) the participation constraint, (ii) promise-keeping, and
(iii) is locally incentive compatible.

5.3. The optimal contract

Once again defining the value function J(t, y, q), the principal’s problem is to choose a
contract that satisfies participation, promise-keeping, and incentive constraints. Relative to
the hidden action case, consumption is now pinned down by the function c(e, q), in addition
to the volatility being determined by γ(e, q). The principal’s HJB equation for 0 < t < T
now becomes:

ρJ(t, y, q)− Jt(t, y, q) = max
d,e

{− exp(−λd) + Jy(t, y, q) [ry +Be− c(e, q)− d] +

Jq(t, y, q)(ρ− r)q +
1

2
Jyy(t, y, q)σ

2 + Jyq(t, y, q)γ(e, q)σ
2 +

1

2
Jqq(t, y, q)γ(e, q)

2σ2

}
,

again with the terminal condition J(T, yT , qT ) = VT (yT − sT ) where qT = VT (sT ). The first
order conditions for (d, e), again suppressing function arguments, are:

λ exp(−λd) = Jy,

Jy(B − e)− Jyqσ
2λrq

B
+ Jqqσ

2λ
2r2q2e

B2
= 0.

The value function and the optimal policies have the same form as the previous cases,
albeit with different constants. Once again the value function is of the form:

J(t, y, q) =
j2(t)

q
exp(−λry),
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for some function j2(t). The optimal policies are:

ehs = ě, γhs(q) = γ(ě, q) = −λěrq

B
,

chs(q) = c(ě, q) =
(ě)2

2
− log r

λ
− log(−q)

λ
,

dhs(t, y, q) = − log(j2(t)r)

λ
+

log(−q)

λ
+ ry,

where ě is a constant. Given e = ě, the policies γhs and chs are determined by the agent’s
optimality conditions. The function j2(t) satisfies an ODE of the same form as before:

j′2(t) = j2(t)[r log j2(t)− δ]

where:

δ = 2(r − ρ)− r
[
Bλě− λ(ě)2/2 + 2 log(r)

]
+ λ2r2σ2(1− ě/B + λ(ě)2r/B2)

and j2(T ) = η2. The solution of this ODE is thus:

j2(t) = exp (δ/r + [2 log(η)− δ/r] exp [−r(T − t)]) .

In addition, recalling the optimal effort choice e∗(k) from (17) we have:

ě = e∗(r) =
B3 + σ2λBr

B2 + 2σ2λr
, (23)

If k = r then all of the results with hidden savings agree with the hidden action case. As
discussed in more detail below, hidden savings limits the ability of the principal to provide
intertemporal incentives. When the agent has access to un-monitored assets which yield the
risk free return r, the principal cannot distort the allocation intertemporally to make the
effective return k ̸= r, as he could with hidden actions but observable wealth.

In the infinite horizon limit, the state variables evolve as follows:

dyt =

[
2(r − ρ)

rλ
+ σ2λr

(
1

2
− ě

B
+

(ě)2

B2

)]
dt+ σdWt

dqt = (ρ− r)qtdt−
σλrě

B
qtdWt.

Thus output again follows an arithmetic Brownian motion with constant drift, while the
utility process follows a geometric Brownian motion. Thus the expected growth rate of
promised utility is the same under hidden savings as full information, and is greater than
under hidden actions. This is a consequence of the inability of the principal to affect the
agent’s intertemporal incentives with hidden savings.

5.4. Verifying incentive compatibility
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The optimal contract above was derived only using the necessary optimality conditions
from the agent’s problem, and so is potentially not incentive compatible. I now verify that
the contract is indeed implementable by explicitly solving the agent’s problem facing the
contract.

Under the contract, the agent receives a history dependent payment st = chs(qt), which
depends on promised utility qt. For the agent, qt is simply part of the specification of the
contract, and from his vantage point it evolves as:

dqt = (ρ− r)qtdt−
σλěr

B
qtdW

ě
t

= (ρ− r)qtdt−
σλěr

B
qt

(
dyt − (ryt +Bě− chs(qt)− dhs(t, qt, yt))dt

σ

)
= [ρ− r − λěr(et − ě)] qtdt−

σλěr

B
qtdWt,

with qT = v(sT , 0). Here I use the fact that W ě
t is the driving Brownian motion under

the optimal contract for the principal’s information set. Shirking and setting et < ě thus
increases the expected growth rate of promised utility, as the principal would interpret it as
a negative shock. Note also that the terminal condition determines sT (qT ) as the inverse of
the VT function.

Without loss of generality, I assume that the agent’s initial wealth is m0 = 0, as initial
wealth is observable and can be taxed away by the principal. Wealth then evolves as:

dmt =
(
rmt + chs(qt)− ct

)
dt.

Thus the agent’s value function V (t, q,m) solves the HJB equation:

ρV (t, q,m)− Vt(t, q,m) = max
c,e

{
− exp(−λ(c− e2/2)) + Vm(t, q,m)

[
rm+ chs(q)− c

]
+Vq(t, q,m)q[ρ− r − λěr(e− ě)] +

1

2
Vt,qq(q,m)q2

σ2λ2ě2r2

B2

}
with the terminal condition V (T, qT ,mT ) = VT (sT (qT ) +mT ) = qT exp(−λrmT ).

It is easy to verify that the agent’s value function is given by V (t, q,m) = q exp(−λrm)
for all t. Substituting this into the HJB equation, and taking first order conditions for (c, e)
gives:

λ exp(−λ(c− e2/2)) = Vm = −λrq exp(−λrm),

λe exp(−λ(c− e2/2)) = −λěrqVq = −λěrq exp(−λrm).

Taking ratios of the two equations gives e = ě, and thus the target effort level is imple-
mentable. Effort is independent of m so the prospective “double deviations” of shirking and
saving, which typically cause problems for incentive schemes with hidden savings, are not
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TABLE 1.

Comparison of the policies for the optimal contracts under full information, hidden actions, and hidden savings.

Full Information Hidden Action Hidden Saving

Effort, e B e∗(k) = B3r+σ2λBrk
B2r+2σ2λk2 e∗(r) = B3+σ2λBr

B2+2σ2λr

Consumption, c B2

2
− log r

λ
− log(−q)

λ
e∗(k)2

2
− log k

λ
− log(−q)

λ
e∗(r)2

2
− log r

λ
− log(−q)

λ

Dividend, d − log(j0(t)r)
λ

+ log(−q)
λ

+ ry − log(j1(t)r)
λ

+ log(−q)
λ

+ ry − log(j2(t)r)
λ

+ log(−q)
λ

+ ry

problematic here. The optimality condition for c then gives:

c =
ě2

2
− log(−rq)

λ
+ rm = chs(q) + rm.

Substituting this into the wealth equation gives dmt = 0. If the agent begins with m0 = 0,
then he will remain at zero wealth, will consume the optimal amount under the contract
c = chs(q), and will attain the value V (0, q, 0) = q. Therefore the optimal contract is indeed
implementable, even though we could not guarantee it ex-ante.

6. IMPLICATIONS OF THE OPTIMAL CONTRACTS

6.1. Comparing the Different Cases

Table 1 summarizes the optimal contracts under full information, hidden actions, and
hidden savings. As we’ve seen, the policy functions bear a strong resemblance to each other.
In each case, effort is constant, consumption is linear in the log of the promised utility q,
and the principal’s dividend is linear in log(−q) and the current assets y. The consumption
policies also depend negatively on the agent’s effective rate of return on assets, which is r
with full information, k with hidden actions, and r with hidden savings. As we’ve already
seen, the main effect of the hidden action case relative to full information is the reduction
of effort. We’ve also seen that to first order there is no effect on consumption. This can be
seen in the consumption policies, as effort falls but so does the effective return as k < r,
leading to at least partially offsetting effects.

The main difference between the hidden saving and the hidden action cases is the effective
rate of return on the agent’s savings. If the return on the agent’s saving were k then the
optimal policies in the hidden action and hidden savings cases would coincide. But access
to hidden saving limits the ability of the principal to provide intertemporal incentives. If
k < r < 4k then effort is decreasing in k, and hence consumption is as well.18 Since for small
shocks we’ve seen that k is smaller than r by a term proportional to the shock variance,
this will certainly hold for small shocks. Moreover cha is decreasing in k if e∗(k) is, as effort

18Simple calculations give

de∗(k)

dk
=

σ2B3rλ(r − 4k)− 2σ4Brλ2k

(B2r + 2σ2λk2)2
,

which is clearly negative if r < 4k.
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FIGURE 1. The agent’s effort and consumption policies for different noise levels σ.

falls but the effective return rises. Thus at least for small enough σ, with hidden savings
the agent puts forth less effort and consumes less than with hidden actions alone.

The analytic results are also borne out numerically. Figure 1 plots the functions for
effort and consumption in the full information, hidden action, and hidden savings cases for
a particular parameterization of the model. I set r = 0.15, B = 0.5, ρ = 0.1, λ = 2, and
show the results for varying σ. In particular, the left panel plots effort versus σ, while the
right panel plots consumption (evaluated at q = −1) versus σ. Clearly as σ → 0 the cases
all agree, as the information friction vanishes. Compared to full information, both effort and
consumption fall under hidden actions. Moreover, for small σ effort falls but consumption is
relatively unaffected, as the approximations suggest. When the agent has access to hidden
savings, consumption and effort fall further. In addition, these effects are all monotone in
σ.

The policy functions also provide explicit expressions for the inefficiency “wedges,” dis-
cussed by Kocherlakota (2004b) and others. These measure how the information frictions
distort the consumption and labor allocations for incentive reasons. In particular, suppose
that the agent were able borrow and lend at the same risk free rate r as the principal. When
the agent’s saving is observable, the principal can tax it and drive its return down to k.
Thus in the hidden action case, the contract introduces an intertemporal wedge τK , a gap
between the intertemporal marginal rate of substitution and the marginal return on assets.
This is simply given by the tax rate which drives the after-tax rate of return down to k:

τK(k) = 1− k

r
.

But if the principal cannot observe the agent’s savings, he cannot tax it, so τK(r) = 0.
By varying the payment to the agent for incentive reasons, the optimal contract also

induces a labor wedge τL, a gap between the marginal productivity of effort and the marginal
rate of substitution between effort and consumption. As the marginal product of effort is
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FIGURE 2. The labor and intertemporal wedges for different noise levels σ.
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FIGURE 3. Reduction in the principal’s dividend relative to the full information case for different noise levels
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B and the marginal rate of substitution is e∗(k), the labor wedge is simply:

τL(k) = 1− e∗(k)

B
.

Thus in the hidden saving case, the labor wedge increases relative to the hidden action case,
as τL(r) > τL(k) for k < r < 4k.

Both the intertemporal and labor wedges are constant, and are shown in Figure 2 for
varying σ. The labor wedge is especially significant for this parameterization, as for σ > 1.5
it is comparable to labor income tax rates of more than 30% under hidden actions and
roughly 40% under hidden savings. The intertemporal wedge is smaller, being identically
zero under hidden savings and flattening out for large σ near an effective tax rate of 13%
under hidden actions.
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Finally, reductions in the principal’s consumption provide a measure of the cost of the
information frictions. As Table 1 shows, the different informational assumptions affect
d only through the additive, time-dependent constants. Thus for each level of promised
utility q and assets y, at each date the principal’s consumption differs by a constant amount
depending on the information structure. Figure 3 plots the reduction (relative to the full
information case) in the principal’s dividend under hidden actions and hidden savings in
the infinite horizon limit. The costs are relatively low, flattening out near 0.025 units of
consumption under hidden actions and 0.03 units under hidden savings. As an example,
with y = 0 and q = −1 the dividend is exactly equal to the constant term, and these level
reductions imply a 1.5-2% fall in the principal’s dividend. Of course with greater output or
lower levels of promised utility, the proportional decline is much lower.

6.2. Implementing the optimal allocations

Thus far I have focused on a direct implementation of contracts, with the principal
assigning consumption to the agent. I now show how the same outcomes can be achieved by
giving the agent a share of the proceeds of the production, providing a constant flow payment
(positive or negative depending on parameters), and then allowing the agent to invest in a
risk-free asset (with a particular interest rate) and thus to choose his own consumption. The
same implementation, with different parameters, works for all of the information structures.
The agent’s share of production is equal to one minus the labor wedge, his effective after-
tax wage. In addition to providing direct compensation for putting forth effort, the equity
stake makes the agent shares in the production risk. The risk-free rate the agent faces is
one minus the intertemporal wedge, ensuring the appropriate dynamic incentives. Finally,
the flow payment compensates the agent for risk and the difference between the effective
interest rate and his rate of time preference.

In particular, suppose that we want to implement a contract which has shadow interest
rate r̂ and target effort ê. From our results above, the full information case is ê = B, r̂ = r,
the hidden action case is ê = e∗(k), r̂ = k, and the hidden savings case is ê = e∗(r), r̂ = r.
In addition, Table 1 shows that the consumption policies in each case can be written:

c∗(q; ê, r̂) =
ê2

2
− log(−r̂q)

λ
.

I now show how to implement the allocation from this contract. I focus on the infinite
horizon limit for simplicity, but the same implementation works in the infinite horizon
case, as only the principal’s consumption is time-dependent. First, recall the proceeds of
production Yt from (1) above, and now suppose that the agent receives a share 1− τL = ê

B

of this. In other words, the agent gets that equity stake in the firm. In addition, suppose
that the agent has initial wealth z0 = − log(r̂q0)/(λr̂). This includes any initial assets m0

(which recall are observable even in the hidden state case) and a transfer from the principal.
In addition to his production share, the agent receives a constant flow payment θ at each
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date, and he can borrow or lend at risk-free rate r̂. Thus the agent’s assets zt evolve as:

dzt = [r̂zt + θ − ct]dt+ (1− τL)dYt

= [r̂zt + êet + θ − ct]dt+ σ
ê

B
dWt.

Thus the agent’s HJB equation can be written:

ρV (z) = max
c,e

{
− exp(−λ(c− e2/2)) + V ′(z) [r̂z + êe+ θ − c] +

1

2
V ′′(z)σ2 ê

2

B2

}
Calculations similar to those above show that the solution of this problem can be written

V (zt) = −Va exp(−λr̂zt), where Va is given by:

Va =
1

r̂
exp

(
r̂ − ρ

r̂
− λ

(
ê2

2
+ θ

)
+

1

2
σ2λ2r̂2

ê2

B2

)
,

with the optimal policies:

e = ê, c =
ê2

2
− log(−r̂Va)

λ
+ r̂z.

Therefore the target effort is implementable and if we set the constant payment to:

θ =
r̂ − ρ

λr̂
− ê2

2
+

1

2
σ2λ2r2

ê2

B2

then V (zt) = −1
r̂
exp(−λr̂zt) = qt, and:

c =
ê2

2
+ r̂z =

ê2

2
− log(−r̂q)

λ
= c∗(q; ê, r̂).

Thus this system of giving the agent a constant equity share of output, a constant flow
payment, and a constant tax on his savings implements the optimal contract.

7. CONCLUSION

In this paper I have shown how to explicitly solve for optimal contracts under different
information structures in a dynamic principal-agent model. By working in a continuous time
setting, I was able to take advantage of powerful results in stochastic control. In addition
by making exponential and linear functional form assumptions, I was able to derive explicit
solutions and a simple implementation.

I showed that as in Holmstrom and Milgrom (1987) the optimal contract is linear in a
fully dynamic setting with exponential utility. However now the payment is linear in an
endogenous object, the logarithm of the agent’s promised utility under the contract. More-
over, I showed that the main effect of hidden actions is to reduce effort, with a smaller effect



26 NOAH WILLIAMS

on the agent’s implicit rate of return under the contract, which in turn affects consump-
tion. Introducing hidden savings eliminates this second distortion, and increases the effort
distortion. I also showed how the optimal contracts could be implemented with the simple
(and constant) instruments of an equity share, a tax on savings, and a flow payment.

APPENDIX

A.1. DETAILS OF THE CHANGE OF MEASURE

Here I provide technical detail associated with the change of measure in Section 2.4. I start by working with

the induced distributions on the space of continuous functions, which I take to be the underlying probability space.

Thus I let the sample space Ω be the space C, and let W 0
t = ω(t) be the family of coordinate functions, and

F0
t = σ{W 0

s s ≤ t} the filtration generated by W 0
t . I let P be the Wiener measure on (Ω,F0

T ), and let Ft be the

completion of F0
t with the null sets of F0

T . This defines the basic (canonical) filtered probability space, on which is

defined the Brownian motion W 0
t . Since σ > 0 is constant, it clearly is continuous, invertible, and bounded. Thus

it satisfies the regularity conditions required by Elliott (1982) to ensure that there exists a unique strong solution

to the stochastic differential equation:

dyt = σdW 0
t , (A.1)

with y0 given. This is the evolution of output under an effort policy ē0 which makes the drift of output zero at each

date. Different effort choices alter the evolution of output by changing the distribution over outcomes in C.

Now define the drift of output under a given contract s(t, ȳ) with the principal’s consumption dt = d(t, ȳ) as:

f(t, ȳ, et) = ryt −Bet − s(t, ȳ)− d(t, ȳ)

This drift is linear, and thus it satisfies the predictability, continuity, and linear growth conditions assumed by Elliott

(1982). Then for ē ∈ A I define the family of Ft-predictable processes:

Γt(ē) = exp

(∫ t

0

σ−1f(v, ȳ, ev)dW
0
v − 1

2

∫ t

0

|σ̄−1f(v, ȳ, ev)|2dv
)
.

Γt is an Ft-martingale (as the form of f ensures that Novikov’s condition is satisfied) with E[ΓT (ē)] = 1 for all

ē ∈ A. Thus by the Girsanov theorem, I can define a new measure Pē via:

dPē

dP
= ΓT (ē),

and the process W ē
t defined by:

W ē
t = W 0

t −
∫ t

0

σ̄−1f(v, ȳ, ev)dv

is a Brownian motion under Pē. Thus from (A.1), it’s clear that the state follows the SDE:

dyt = f(t, ȳ, et)dt+ σdW ē
t .

Hence each effort choice ē results in a different Brownian motion. Γt defined above (suppressing ē) satisfies Γt =

E[ΓT |Ft], and thus is the relative density process for the change of measure.

A.2. PROOFS OF RESULTS

Proof (Proposition 4.1 and 5.1). I condense the optimality conditions in the hidden action and hidden state

cases into a single result, which follows by applying the results in Bismut (1973)-(1978). The result requires some

basic regularity conditions on the fundamentals of the problem. Since σ > 0 is constant, it clearly is continuous,

invertible, and bounded. We have already defined f as the drift of y and now let b = rm+ s− c be the drift of m.

Both f and b are linear, and thus are continuous and satisfy a linear growth condition. In addition, the period utility
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u and terminal utility v are continuously differentiable, as are the drift functions. Thus all the required conditions

hold. I apply the maximum principle to the system with (Γ, x) as state variables. I now illustrate the calculations

leading to the Hamiltonian and the evolution of the adjoint equations (12) and (19). I first define the stacked system:

Xt =

[
Γt

xt

]
, Θt =

[
qt
pt

]
, Λt =

[
γt
Qt

]
.

Then note from (7)-(8) that Xt satisfies (suppressing arguments):

dXt = Γt

[
0

b

]
dt+ Γt

[
σ−1f

mtσ
−1f

]
dW 0

t

= Mdt+ΣdW 0
t

Thus, as in Bismut (1978), the Hamiltonian for the problem is:

H = ΘM + tr(Λ′Σ) + Γu = ΓH,

where H is from (18). As Γ > 0, the optimality condition (20) is the same with H or H. The adjoint variables follow

the BSDE:

dΘt =

(
ρΘt −

∂H̃

∂X

)
dt+ ΛtdW

0
t ,

ΘT =
∂(ΓT v(sT ,mT ))

∂XT
.

By carrying out the differentiation and simplifying I arrive at (12) and (19).

Proof (Proposition 4.2). The result is an extension of Theorem 4.2 in Schattler and Sung (1993). The necessity of

the conditions follow directly from my results above: if the contract is implementable then it clearly must satisfy the

participation constraint, and by Proposition 4.1 it must satisfy promise-keeping and be locally incentive compatible.

To show the converse, I verify that ê is an optimal control when the agent faces the contract (s, ê). Recall that

the expected utility from following ê is given by V (ê) = q̂0, and any contract (s, ê) which satisfies promise-keeping

(and so has a sensitivity variable γ̂) has the following representation:

v(yT , 0) = qT = q̂0 −
∫ T

0

e−ρtu(st, êt)dt+

∫ T

0

γ̂tσdW
ê
t , (A.2)

which simply integrates (12) forward. Then for any ē ∈ A the following holds:

V (ē)− V (ê) = Eē

[∫ T

0

e−ρt[u(st, et)− u(st, êt)]dt+

∫ T

0

γ̂tσdW
ê
t

]
= Eē

[∫ T

0

e−ρt[u(st, et)− u(st, êt)]dt+

∫ T

0

γ̂tσdW
ē
t +

∫ T

0

γ̂t B(et − êt)dt

]
= Eē

[∫ T

0

[H(yt, et, st, dt, γ̂t)−H(yt, êt, st, dt, γ̂t)]dt+

∫ T

0

γ̂tσdW
ē
t

]
≤ Eē

[∫ T

0

γ̂tσdW
ē
t

]
= 0.

Here the first equality uses (A.2), the second equality uses the definitions of the change of measure between W ê

and W ē, the third equality uses the definition of the Hamiltonian function H, the inequality follows from the local

incentive constraint, and the final result uses the fact that the stochastic integral is a martingale due to the square

integrability of the γ̂t process. Thus since ē was arbitrary, the agent can achieve at most the utility V (ê) which is

greater than his reservation level by assumption. Thus ê is an optimal control, and so the contract is implementable.

Proof (Proposition 5.2). The necessity of the conditions follows directly as in Proposition 4.2 above, as it is a con-

sequence of Proposition 5.1.
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