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This paper illustrates and characterizes how adaptive learning can lead to recur-
rent large fluctuations. Learning models have typically focused on the convergence
of beliefs toward an equilibrium. However in stochastic environments, there may be
rare but recurrent episodes where shocks cause beliefs to escape from the equilib-
rium, generating large movements in observed outcomes. I characterize the escape
dynamics by drawing on the theory of large deviations, developing new results
which make this theory directly applicable in a class of learning models. The like-
lihood, frequency, and most likely direction of escapes are all characterized by a
deterministic control problem. I illustrate my results with two simple examples.

1. INTRODUCTION

In this paper I show how learning dynamics can provide an important mechanism
generating recurrent large fluctuations in economic models. There is by now a sub-
stantial literature on adaptive learning in economics, with important work both in
macroeconomics (see Evans and Honkapohja, 2001 and 2009) and game theory (see
Fudenberg and Levine, 1998 and Young, 2004). The central question in this liter-
ature has been whether learning leads to equilibrium behavior. As agents who use
simple learning rules observe more and more data, their beliefs may converge to an
equilibrium. Large movements away from this equilibrium then become increasingly
unlikely, but due to ongoing stochastic shocks they may occasionally occur. In this
paper I develop and apply methods to characterize these rare departures. Following
Sargent (1999), I call these large deviations escape dynamics.

In particular, I focus on situations in which agents are uncertain of their economic
environment. These agents make forecasts and base their actions on subjective models,
which I assume are linear regressions that they update as they observe data. Agents
allow for structural change in their environment, which leads them to discount past
data. I also allow agents’ subjective models to be misspecified, and thus following
Sargent (1999) my equilibrium concept is a self-confirming equilibrium (SCE).1 In an
SCE, agents’ beliefs are correct about outcomes that occur with positive probability,
but may be incorrect about events which happen with probability zero.

* I thank Fernando Alvarez, Jim Bullard, Marco Cagetti, Jeff Campbell, Xiaohong Chen, In-Koo Cho,
Amir Dembo, John Duffy, Dana Heller, Ken Kasa, Andrew Postlewaite, Juha Seppälä, Ted Temzelides,
Harald Uhlig, and especially Lars Peter Hansen and Thomas Sargent for helpful comments, discussions, and
suggestions. I also thank the editor and the anonymous referees for their useful comments.

1See Fudenberg and Levine (1998) for further discussion and background on this equilibrium concept.
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Since agents discount past data, their beliefs do not converge as they obtain more
observations. Thus I study an alternate limit in which the discount rate on past data,
known as the gain, gets small. With small gains, agents average more evenly over
past data and a law of large numbers applies. I show that agents’ beliefs converge to
a differential equation, called the mean dynamics. On average, the mean dynamics
pull agents toward a self-confirming equilibrium. This result parallels much of the
adaptive learning literature, beginning with Marcet and Sargent (1989). My specific
result applies stochastic approximation theory due to Kushner and Yin (1997), and is
analogous to results in Evans and Honkapohja (2001).

Occasionally however, an accumulation of stochastic shocks may induce agents to
change their beliefs, which in turn causes them to change their behavior. This affects
the data they observe, and hence can feed back on their beliefs. In this process, agents
may escape the self-confirming equilibrium. In the limit, the probability of escaping
from the SCE goes to zero, and thus escapes become increasingly unlikely for small
gains. But for any positive gain, escapes may occasionally recur, and when they do,
they have a very particular form. To analyze the escape dynamics, I draw on the
theory of large deviations. When agents’ beliefs escape, with high probability they
closely follow a deterministic path called the most probable escape path. I show how
to find this path, and characterize the likelihood and frequency of escapes.

While my methods can be applied to a variety of models, not all of them will have
prominent escape dynamics. In many models large deviations from an equilibrium
would be infrequent aberrations, and my results characterize these rare tail events.
However, Sargent (1999) demonstrated that escape dynamics may be an important
force generating fluctuations in some classes of models. In this paper I provide two
examples illustrating these different types of applications.

First, I study a learning variant of a Lucas (1978) asset pricing model. Previous
work by Timmermann (1993), Branch and Evans (2011), Benhabib and Dave (2014),
and Adam, Marcet, and Nicolini (2016) has shown how learning can generate ad-
ditional asset price volatility, booms and busts, and predictability in returns, all of
which can improve empirical performance. I follow Benhabib and Dave (2014), who
use a model where agents forecast future asset prices based on their perceived relation
between prices and dividends, and show that beliefs under learning have a fat-tailed
distribution. I apply my results to determine the rate at which large belief fluctuations
decline with decreasing gain, and show that the fluctuations are asymmetric. For small
gain, it is increasingly likely that large fluctuations in prices are triggered by perceived
increases (rather than decreases) in the responsiveness of prices to fundamentals.

My second example shows how escape dynamics may be the most striking feature of
some environments. Escapes can lead to episodes which look like switches in equilibria
or changes in regime, which would not occur absent learning. As in the work of Sargent
(1999), Cho, Williams, and Sargent (2002), McGough (2006), Ellison and Yates (2007),
Ellison and Scott (2013), and Williams (2017), the model I study has a unique self-
confirming equilibrium, but the time series show repeated, regular escapes. As in the
asset pricing model, the escapes are less frequent with smaller gains, but unlike that
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model they retain the same regular character and size. In particular, I study a model
of a monopolist learning its demand curve, subject to both cost and demand shocks.
The model has a unique self-confirming equilibrium, and the firm’s beliefs converge to
it in the small gain limit. However when the cost and demand shocks are correlated,
there are recurrent episodes in which the firm’s beliefs escape from the SCE, and the
firm rapidly raises its price. After such an escape, the beliefs are gradually drawn back
to the SCE and the price falls back to the SCE level. These escapes lead to recurrent
large price fluctuations, which are not present when the cost and demand shocks are
independent. My results explain this difference, and characterize both the frequency
and direction of escapes. I describe how the escapes are due to locally self-reinforcing
dynamics which kick in once stochastic shocks push beliefs away from the SCE, a
feature which is shared by the other models in the literature.

Overall, my main contribution is the derivation of a simple deterministic con-
trol problem whose solution characterizes the escape dynamics in a class of belief-
dependent linear dynamic models. My results build on Dupuis and Kushner (1989),
who develop a theory of large deviations for stochastic approximation models, and
characterize escapes via a variational problem.2 While their results are quite general,
they are difficult to apply in practice. My results simplify the general theory and make
it directly applicable for learning in linear models.

There are two sources of dynamics which govern agents’ beliefs. The mean dynamics
govern the expected behavior of beliefs and drive the convergence toward the SCE.
Escape dynamics are driven by unlikely shock realizations, and I show that they can
be interpreted as a perturbation of the mean dynamics. My key results derive a
cost function which provides a measure of the likelihood of the perturbations. The
most probable escape path can be found by choosing a minimum cost sequence of
perturbations which push agents’ beliefs away from the SCE. I then apply standard
control theory methods to characterize the solution of the cost minimization problem.

While the mean dynamics and convergence have been well-studied in the literature,
until recently there has been much less focus on escape dynamics. The insight that
stochastic shocks may push agents away from an equilibrium has been most extensively
analyzed in evolutionary game theory.3 This literature has analyzed games with mul-
tiple equilibria, using large deviation methods to determine the stochastic transition
rates between equilibria. Although my results can be used to analyze multiplicities,
as in Williams (2014), here I focus on models with a unique equilibrium.

As mentioned above, Sargent (1999) introduced escape dynamics and large devia-
tion theory for settings like mine, and provided much of the motivation for this paper.
Since an earlier version of this paper was first circulated in Williams (2001), the results
developed here have been applied and extended in a variety of settings. My results
were first applied by Cho, Williams, and Sargent (2002) to analyze Sargent’s (1999)
model. Further related papers which build on or apply my results include Sargent and

2Dupuis and Kushner (1989) in turn build on Freidlin and Wentzell (1998), who developed large deviations
for continuous time diffusion processes.

3Important papers in this literature include Kandori, Mailath, and Rob (1993) and Young (1993). See
Section 5.3 below for more discussion.
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Williams (2005), Bullard and Cho (2005), McGough (2006), Ellison and Yates (2007),
Cho and Kasa (2008), Williams (2014), Ellison and Scott (2013), and Kolyuzhnov,
Bogomolova, and Slobodyan (2014). See Section 5.3 for more discussion. This later
literature either applies the results in this paper, or studies special cases or approxi-
mations of my results. None provide as thorough or general a characterization of the
escape dynamics.

The rest of the paper is organized as follows. In Section 2, I introduce the baseline
model, and discuss the equilibrium concept and learning formulation. In Section 3,
I establish the convergence of beliefs, while Section 4 provides the large deviation
results characterizing the escape dynamics. Section 5 then describes and analyzes
the examples discussed above, and relates the results in this paper to the rest of the
literature. The appendix collects proofs and statements of technical results.

2. THE MODEL

In this section I describe the class of models studied in the paper. I focus on linear
models in which agents forecast or make decisions based on estimated models which
they update over time. For simplicity, I focus on a single agent setting.4

2.1. The Basic Setup

Time is discrete n = 0, 1, 2, . . ., and there is state vector yn ∈ R
ny , which follows a

belief-dependent linear stochastic process:

yn+1 = Ā(γ)yn + Σ̄(γ)Wn+1 (1)

where γ ∈ R
nx is a vector of beliefs or regression coefficients, and Wn+1 ∈ R

nw is an
i.i.d. shock vector with distribution F . I mostly focus on the case where F is Gaussian,
but some results are stronger for bounded shocks. As I show below, the specification
(1) is relatively flexible, representing a reduced form where the true state is dependent
on agent’s beliefs, either through expectations or decisions.

The agent is uncertain about his environment, with γ parameterizing his subjective
beliefs which he updates over time as he observes data. I adopt a relatively flexible
specification for the agent’s beliefs which permits some parts of the environment to be
known with certainty, but yet allows the subjective model to be misspecified. I focus on
the case where the agent learns about a single equation in the state evolution, but the
results generalize to multiple equations without difficulty except in notation. I parse
the state vector yn = [zn, c

′

n]
′ where zn is the scalar state whose evolution is uncertain,

while the agent knows the evolution of cn. For example, if the state yn includes lagged
dynamics, then cn would the lags, whose dynamics known. I also allow the agent’s
model to be misspecified, in that it may omit some relevant variables. Thus instead of
conditioning on the full state vector yn he may only consider a sub-vector xn ∈ R

nx .

4Williams (2017) studies dynamic games using the same approach. But strategic interaction raises some
additional issues which are not essential here.
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The subjective model is then:

zn+1 = γ′xn + ηn+1. (2)

Here ηn+1 is a vector of regression errors which are believed to be orthogonal to the
regressors xn:

Ẽ [xn(zn+1 − γ′xn)
′] = 0. (3)

Here Ẽ represents the agent’s subjective expectation, which may not agree with the
objective expectation, particularly if the agent’s model is misspecified.

2.2. Structures Leading to the Reduced Form

Two different but related structural formulations lead to the belief-dependent linear
model in the reduced form (1): linear expectational models and linear state space
models. These classes of models are widely used in applications, and below I study an
example of each.

Linear expectational models often arise in linearizing the equilibrium conditions of
nonlinear dynamic models. They can be written in the form:

A0yn = A1yn−1 +BẼnyn+1 + ΣWn. (4)

By appropriately defining the matrices (A0, A1, B,Σ) this form can include both ex-
ogenous dynamics (without expectational terms) and endogenous dynamics. Linear
rational expectations models, which take this form and identify Ẽ with the mathemat-
ical expectations operator, have a long history in economics and are widely used in
applied work. But here Ẽ defines the agent’s subjective expectations as in equations
(2)-(3). As above, I assume that expectations only matter for the sub-vector zn and
so simplify:

BẼnyn+1 = B0Ẽnzn+1 = B0γxn = B0γKxyn

where the first equality is by assumption, the second uses the subjective beliefs, and
the third defines xn = Kxyn. In the terminology of Evans and Honkapohja (2001),
equation (2) is the perceived law of motion (PLM), while substituting the expectations
into (4) gives the actual law of motion (ALM) for yn:

[A0 −B0γKx]yn = A1yn−1 + ΣWn.

Assuming that the leading matrix is invertible and shifting forward one period, we get
a version of the belief-dependent reduced form (1) with Ā(γ) = [A0 − B0γKxyn]

−1A1

and Σ̄(γ) = [A0 − B0γKxyn]
−1Σ.

Linear state space models are a related structure which place more emphasis directly
on decisions. Suppose an agent chooses actions an to affect the state yn according to:

yn+1 = Ayn +Ban + Σ̄Wn+1. (5)
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Such models often arise as approximations by linearizing decision problems. The agent
does not know the full state evolution (5), but instead acts based on subjective model
(2) which we now write as:

zn+1 = γ′

yyn + γ′

aan + ηn+1,

which emphasizes that the agent may be uncertain about the impact of his actions.
Thus γ = [γ′

y, γ
′

a]
′ and xn = [y′n, a

′

n]
′, and to allow for misspecification some elements

of γy may be zero. If the agent has quadratic intertemporal preferences over yn and
an, then by standard results his optimal choice is a linear decision rule:

an = h(γ)yn, (6)

where I emphasize the dependence on the beliefs γ. Substituting the rule (6) in the
state evolution (5) gives a version of the reduced form (1) with Ā(γ) = A +Bh(γ).

To implement this structure over time, I follow much of the learning literature in
adopting the Kreps (1998) and Sargent (1999) “anticipated utility” approach: at every
date the agent chooses his actions to maximize his utility given his current beliefs, then
he updates beliefs based on observed outcomes. Under this behavioral assumption,
which is common in the adaptive learning literature, agents treat their current beliefs
as known constants. That is, they treat their current parameter estimates as known
exactly (not accounting for estimation error) and constant for all time (even though
they will be updated in the next period).

2.3. Self-Confirming Equilibrium

Following Fudenberg and Levine (1998) and Sargent (1999), I now define a self-
confirming equilibrium as a matrix of beliefs which are consistent with the agent’s
observations. First, let ξn+1 = [y′n,W

′

n+1]
′ and define g as the function whose expecta-

tion is zero in (3):

g(γ, ξn+1) = xn(zn+1 − γ′xn)
′ (7)

Note that xn and yn+1 are both linear functions of ξn+1, and hence so is zn+1. Thus g
is a quadratic function of ξn+1, a particular structure I will exploit below.

The key orthogonality condition (3) can then be written as Ẽg(γ, ξn+1) = 0. In
a self-confirming equilibrium this orthogonality condition holds under the objective
probability measure induced by (1) as well. That is, the agent’s beliefs are confirmed
by his observations. For the objective expectation to make sense, I assume that given
γ, yn has a stationary distribution denoted π. I later constrain the evolution of beliefs
to ensure that π exists. Thus define ḡ as the unconditional expectation of g:

ḡ(γ) = E[g(γ, ξn+1)] =

∫ ∫

g(γ, y,W )dπ(y)dF (W ). (8)
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Definition 2.1. A self-confirming equilibrium (SCE) is a vector γ̄ ∈ R
nx such

that ḡ(γ̄) = 0.

2.4. Adaptation

So far the agent’s beliefs have been fixed, and now I turn to how he updates them
with observations. I specify that the agent learns via a constant gain recursive least
squares algorithm:

γn+1 = γn + εR−1
n g(γn, ξn+1) (9)

Rn+1 = Rn + εφ (xnx
′

n −Rn) . (10)

Here the scalar ε > 0 is the gain, giving the weight on new information relative to the
past. The new information is summarized by g, whose expectation ḡ is zero in a SCE.
Thus the algorithm adjusts beliefs in a direction that makes ḡ tend toward zero. The
new term Rn is an estimate of the second moments of the regressors. More volatile
regressors convey less information, and so are given less weight. I introduce the factor
φ in (10) to also include the class of generalized stochastic gradient learning rules, as
studied by Evans, Honkapohja, and Williams (2010). These rules set φ = 0 and thus
use a constant weighting matrix Rn = R.

If the gain decreased over time as ε = 1
n+1

, then (9)-(10) would be a recursive repre-
sentation of the standard OLS estimator. A constant gain discounts past observations,
implying that the agent pays more attention to more recent data. Such algorithms
are known to work well in nonstationary environments, and are good predictors even
when the underlying model is misspecified.5 Both motivations are appropriate here, as
the agent’s model is potentially misspecified and the environment effectively changes
as he learns over time.

As noted above, I assume that yn in (1) is stationary. If the agent were to know
the true model (5), then standard assumptions would ensure this. However since the
agent’s model (2) differs from the truth and his beliefs evolve over time, we need to
constrain the learning rule so that it does not induce instability in the state evolution.
The following assumption restricts beliefs γ to guarantee the existence of a unique,
stable invariant distribution π for yn.

Assumption 2.1. Let G ⊂ R
nx be the set of γ such that the eigenvalues of Ā(γ)

have modulus strictly less than one. For each n, we assume γn ∈ G.

One way to ensure this stability in practice is to impose a projection facility on
(9), as in Marcet and Sargent (1989) which restricts the updating rule so that the
estimates stay in the set. I do not explicitly deal with such a facility here, as I assume
that the SCE γ̄ is in interior of G and analyze escapes to points that remain in the

5Sargent and Williams (2005) discuss the performance of the constant gain algorithm for drifting coeffi-
cients. Evans, Honkapohja, and Williams (2010) show that constant gain rules are robust to misspecification.
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interior of G. While I focus on dynamic models, my results also hold for static models,
where instability is not an issue. In that case I allow yn to include a constant, which
implies that Ā has one unit eigenvalue.6

Finally for some purposes it will be convenient to stack the beliefs into a single
vector θn = [γ′

n, col(Rn)
′]′ . Then we can write (9)-(10) as:

θn+1 = θn + εΨ(θn, ξn+1) (11)

where Ψ is a quadratic function of ξn+1, and we define Ψ̄(θ) = EΨ(θ, ξn+1).

3. CONVERGENCE OF BELIEFS

I first show that on average, the agent will be drawn toward a self-confirming
equilibrium, then later I characterize escapes from the SCE. The results in this sec-
tion follow from Kushner and Yin (1997), and are analogous to results in Evans and
Honkapohja (2001), with related results in much of the learning literature.

3.1. Overview

All of the results in the paper consider small gain limits. In time series the gain is
constant, so this limit looks across different series indexed by the gain. I emphasize
this by writing γε

n. As ε → 0 the agent averages more evenly over past data, and the
changes in beliefs become smoother. To see this, define the random variable vεn+1:

vεn+1 = (Rε
n)

−1 [g (γε
n, ξn+1)− ḡ (γε

n)] .

Then we can re-write (9) as:

γε
n+1 − γε

n

ε
= (Rε

n)
−1ḡ (γε

n) + vεn+1. (12)

Note that (12) is similar to a finite-difference approximation of a time derivative,
on a time scale where ε is the increment between observations. Letting ε → 0, this
approximation becomes arbitrarily good. Along this same limit, a law of large numbers
ensures that vεn converges to zero. Thus in the limit we obtain the differential equations:

γ̇ = R−1ḡ(γ) (13)

Ṙ = φ[M̄(γ)−R] (14)

Equation (14) carries out a similar limit for (10), where we use the notation M̄(γ) =
E(xnx

′

n). I call these ODEs the mean dynamics, as they govern the expected evolution
of the agent’s beliefs. Theorem 3.1 below makes this formal. Note that an equilibrium
point γ̄ of (13) is a self-confirming equilibrium, and let M(γ̄) = R̄. Thus if the SCE
is stable under the ODE, as ε → 0 the agent’s beliefs (9)-(10) converge to (γ̄, R̄).

6Even in the dynamic case, when yn contains a constant term, only ny − 1 eigenvalues of the state matrix
in (1) need be less then one.
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3.2. Formal Results

To proceed with the analysis more formally, I define a time scale to convert the
discrete time belief evolution into a continuous time process. Let the ε be the contin-
uous time interval and interpolate between the discrete iterations in the learning rule
(9)-(10):

γε(t) = γε
n, t ∈ [nε, (n+ 1) ε)

Rε(t) = Rε
n, t ∈ [nε, (n + 1) ε)

This defines the continuous time processes as piecewise constant functions of t ∈
[0,+∞), which are right-continuous with a left-limit (RCLL). The results in this sec-
tion establish the weak convergence of these processes on the Skorohod spaceD[0,+∞)
of RCLL functions. Note that as ε → 0 the time interval between observations shrinks,
and the process becomes smoother. That is, the constant segments become shorter
and there are more observations in any given (continuous) time interval. The next
theorem shows that as ε → 0 the interpolated processes converge to the solution of
the ODEs derived informally in (13)-(14).

In Appendix A.1 I provide a proof of the following theorem, and list its necessary
conditions as Assumptions A.1. They consist of regularity conditions on the algorithm
and the error distribution, and I show there that many of the conditions are satisfied
in the baseline model. The remaining conditions require that ḡ(γ) and M̄(γ) be
continuous and that the system of ODEs (13)-(14) have an asymptotically stable point
(γ̄, R̄). I show below how to verify these conditions in practice.

Theorem 3.1. Under Assumptions A.1, as ε → 0, (γε(·), Rε(·)) converge weakly
to (γ(·), R(·)), where:

γ(t) = γ(0) +

∫ t

0

R(s)−1ḡ(γ(s))ds,

R(t) = R(0) +

∫ t

0

φ[M̄(γ(s))− γ(s)]ds.

As the ODEs have a stable point at the SCE, the theorem shows that as ε → 0 over
time (t → ∞) agents’ beliefs converge weakly to the SCE. The same limiting ODE
characterizes decreasing gain algorithms, such as the recursive least squares algorithm
studied by Marcet and Sargent (1989) which sets ε = 1

n+1
in (9)-(10). But with

decreasing gain the beliefs typically converge with probability one as n → ∞, while
we obtain weak convergence with constant gain. The weaker notion of convergence
here means that for any given gain ε, occasional departures from the SCE may persist
over time.

4. ESCAPE DYNAMICS
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The convergence results above show that any event in which beliefs get far from
the SCE must have a probability converging to zero with ε. However, for a fixed ε > 0
we may observe such rare escapes, and large deviation theory allows us to characterize
them. I now show that when escapes happen, they are very likely to happen in a
particular most probable way with a calculable frequency.

4.1. Large Deviations and Escape Dynamics

The theory of large deviations deals with calculating bounds on the asymptotic
probabilities of rare events. These events have probabilities that converge to zero
exponentially fast, and large deviation results identify the exponential rate of conver-
gence. As such, large deviations can be viewed as refinements of classical laws of large
numbers and central limit theorems.

First I define the key objects of interest. To simplify the presentation, I initialize
all paths at the SCE.7 The results use the same time scale as (12) where ε is the time
increment between n and n + 1, and the stacked beliefs θn as in (11). Define θ̄ =
[γ̄′, col(R̄)′]′, and recalling that G is the set of stable beliefs γ, let θ = [γ′, col(R)′]′ ∈ T
if γ ∈ G.

Definition 4.1. Fix an ε > 0, a time horizon n̄ < ∞ (which may depend on ε),
and a compact set G ⊂ T with non-empty interior and θ̄ ∈ G. Let θε(t), t ∈ [0, n̄ε] be
the piecewise linear interpolation of {θεn}.

1. An escape path from G is a sequence {θεn}
n̄
n=0 solving (11) such that θε0 = θ̄ and

θεm /∈ G for some m ≤ n̄. Let Γε(G, n̄) be the set of escape paths.
2. For any sequence {θεn}

n̄
n=0 solving (11) with γ0 = γ̄, define the (first) escape time

from G as:

τ ε({θεn}) = ε inf {m : θεm /∈ G} ∈ R ∪ {∞}.

3. A regular escape path from G is an escape path for which ∃µ2 > µ1 > 0 with
{θ : ‖θ − θ̄‖ < µ2} ∈ G such that there is no t′′ > t′ where ‖θε(t′) − θ̄‖ > µ2 and
‖θε(t′′)− θ̄‖ ≤ µ1. Let Γ̄

ε(G, n̄) be the set of regular escape paths.

For small gains, any path {θεn} spends most of its time near the SCE θ̄, and if noise
pushes it away, it tends to be drawn back. While with unbounded shocks eventually
all paths leave the set G, an escape path exits before the terminal date n̄. A regular
escape path is one which upon escaping from a µ2 neighborhood of the SCE does not
return to a smaller µ1 neighborhood of it. That is, once a regular escape path starts
to escape, it does not turn back.

My key results characterize bounds on the probability of escape, the mean escape
time, and the most probable escape path.8 I show that almost all escape paths exit
the set G at the end of the most probable escape path, and almost all regular escape
paths are close to the most probable path while they are still in the set G.

7These results can be easily extended to allow for initialization in a neighborhood of the SCE.
8The definition of a regular escape path follows Freidlin and Wentzell (1998) and Dupuis and Kushner

(1987). The notion of the most probable escape path follows Maier and Stein (1997). Cho, Williams, and
Sargent (2002) call this a dominant escape path.
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I characterize escapes as arising due to a perturbation v of the mean dynamics:

γ̇ = R−1ḡ(γ) + vγ (15)

Ṙ = φ[M̄(γ)−R] + vR. (16)

Note the similarity of (15) to (12): for the mean dynamics the perturbation vanishes,
but it resurfaces to govern the escape dynamics. That is, the perturbation vεn in (12)
has a zero mean, so it typically becomes negligible for small gains and the beliefs track
the mean dynamics. Unlikely sequences of shocks lead to an escape, which I analyze
by introducing the perturbations (vγ, vR) in (15)-(16). Alternative escape paths are
associated with alternative perturbations, and I evaluate the likelihood of alternative
escape paths by a cost function which penalizes more unlikely perturbations.

I now work with the composite beliefs θ, collecting the perturbations from (15)-(16)
into v = [v′γ, col(vR)

′]′. The “cost” of a particular perturbation depends on its size
relative to the volatility of beliefs, as bigger perturbations will more naturally occur
with more volatility. If the beliefs were normally distributed, then their variance would
be a natural measure of volatility. However recall that g is a quadratic function of a
linear stochastic process, so we need a measure of its volatility which appropriately
captures the tail behavior of beliefs. For a general i.i.d. random variable, we can
summarize its distribution by its moment generating function, or equivalently the log
of it, which is also known as the cumulant generating function. For an i.i.d random
variable ξn+1, define the log moment generating function of beliefs for α ∈ R

nθ as:

H(θ, α) = logE exp 〈α,Ψ(θ, ξn+1)〉 (17)

=
〈

α, Ψ̄(θ)
〉

+ logE exp 〈α, v〉 ,

where the second line uses (15)-(16), and 〈·, ·〉 denotes an inner product. Define the
Legendre transform of this function as:

L(θ, v) = sup
α

[

〈α, Ψ̄(θ) + v〉 −H(θ, α)
]

(18)

= sup
α

[〈α, v〉 − logE exp 〈α, v〉] .

The function L plays the role of the instantaneous cost function for the belief per-
turbations v. As Dembo and Zeitouni (1998) emphasize, it captures the tail behavior
of the distribution of Ψ(θ, ξn+1), which is crucial for analyzing the escape dynamics.
If v were distributed normally with mean zero and variance Σv we would have:

H(θ, α) =
〈

α, Ψ̄(θ)
〉

+
1

2
α′Σvα, and: L(θ, v) =

1

2
v′Σ−1

v v.

The cost function L would weight the perturbations v by the covariance matrix, just
as we discussed above. However in our case v is a quadratic form, so the calculations
are a bit more complex, even when ξn is i.i.d.



12 NOAH WILLIAMS

When, as in our baseline model, ξn is not i.i.d., we need a more general cost function
for perturbations. This is based on taking H to be the long run moment generating
function of ξn. Conditional on an arbitrary ξ0, define:

H(θ, α) = lim
T→∞

1

T
logEξ0 exp

〈

α,
T
∑

n=1

Ψ(θ, ξn)

〉

. (19)

This more general H averages over the temporal dependence in ξn. Once again we
define L as its Legendre transform as in the first line of (18), which is the cost function
in the dynamic model. While calculating it is not always an easy task, Section 4.3
below shows how to explicitly compute H and thus L in our model.

4.2. Characterizing the Escape Dynamics

We analyze escapes on a fixed continuous time horizon T̄ < ∞, and set n̄ =
T̄ /ε. Thus n̄ → ∞ as ε → 0. To characterize escapes from a set G, we choose
the perturbations v in (15) which push beliefs to the boundary ∂G in the most cost
effective way:

S̄ = inf
v(·),T

∫ T

0

L(θ(s), v(s))ds (20)

where the minimization is subject to (14), (15), (16) and:

θ(0) = θ̄, θ(T ) ∈ ∂G for some 0 < T ≤ T̄ . (21)

If v ≡ 0 then the beliefs follow the mean dynamics. The cost is zero, but the beliefs
do not escape. To find the most probable escape path, we find a least cost path of
perturbations that pushes beliefs from θ̄ to the boundary of G.

The following theorem shows how the control problem (20) characterizes escapes.
It compiles and applies results from Dupuis and Kushner (1989), Kushner and Yin
(1997), and Dembo and Zeitouni (1998). Below I derive the explicit form of the control
problem in (20) for our class of models, which makes the theory directly applicable.
We fix a set G and horizon T̄ as above, and recall that τ ε is an escape time, with the
escape taking place at θε(τ ε). We say that the minimized cost S̄ is continuous in G if
we obtain the same value when we change the terminal condition in (21) to an interior
point arbitrarily close to the boundary of G.9 The additional necessary conditions A.1
and A.2 are in Appendix A.1 and A.2, respectively. A proof is given in Appendix A.2.

A similar result was stated in Cho, Williams, and Sargent (2002), who applied a
version of our Theorem 4.1. In fact, Cho, Williams, and Sargent (2002) used the
results from an earlier version of this paper, Williams (2001), which had a different
characterization of the rate function S̄. The result in Williams (2001) improperly used
a theorem of Worms (1999) to simplify the calculation of H , but this result does not

9More precisely, let S̄δ be the value obtained in (20) when we change (21) to require that ‖θ(T )− θ∗‖ < δ
for some θ∗ ∈ ∂G. Then S̄ is continuous in G if limδ→0 S̄δ = S̄.



ESCAPE DYNAMICS IN LEARNING MODELS 13

apply in our setting.10 In practice, this discrepancy only matters for dynamic models,
not the static model Cho, Williams, and Sargent (2002) focused on where ξn is i.i.d.
and H can be calculated directly. In that paper, the results for the static model used
direct calculations as we do below.

Theorem 4.1. Suppose that Assumptions 2.1, A.1, and A.2 hold, let θε(·) be the
piecewise linear interpolation of {θεn}, and let θ(·) : [0, T̄ ] → R

nθ solve (20).

1. Suppose that the shocks Wn are i.i.d. and unbounded (but have exponential tails).
Then we have:

lim sup
ε→0

ε logP
(

θε(t) /∈ G for some 0 < t ≤ T̄ |θε(0) = θ̄
)

≤ −S̄.

2. Suppose that the shocks Wn are i.i.d. and bounded, and S̄ is continuous in G.
Then we have:

lim
ε→0

ε logP
(

θε(t) /∈ G for some 0 < t ≤ T̄ |θε(0) = θ̄
)

= −S̄.

3. Under the assumptions of part 2, for all δ > 0:

lim
ε→0

P
[

exp
(

(S̄ + δ)/ε
)

> τ ε > exp
(

(S̄ − δ)/ε
)]

= 1,

and: lim
ε→0

ε logE(τ ε) = S̄.

4. Under the assumptions of part 2, for any θε(τ ε) and δ > 0:

lim
ε→0

P (‖θε(τ ε)− γ(T )‖ < δ| {θεn} ∈ Γε(G, n̄)) = 1.

Moreover: lim
ε→0

P
(

‖θε(t)− θ(t)‖ < δ, t < τ ε({θεn})| {θ
ε
n} ∈ Γ̄ε(G, n̄)

)

= 1.

Proof. See Appendix A.2.

Part (1) shows that the probability of observing an escape on a bounded time
interval is exponentially decreasing in the gain ε, with the rate given by the minimized
cost function S̄. The next three parts establish stronger results for bounded shocks.11

Part (2) shows that in this case the asymptotic inequality in part (1) becomes an
equality. Part (3) shows that for small ε the escape times from the SCE become close
to exp(S̄/ε).12 The log mean escape time also converges to this value. Finally, part
(4) shows that the minimizing path from (20) is the most probable escape path. This

10In particular, rather than large deviations (with a fixed interval of deviation) Worms (1999) characterized
moderate deviations (with an interval which slowly shrinks). In practice the results were similar, but the
characterization is different.

11Although we focus mainly on Gaussian shocks, our results are sharpest in the bounded case. An appli-
cation of these results in Cho, Williams, and Sargent (2002) obtained nearly identical results with bounded
and unbounded shocks. Thus many results may carry over for some unbounded cases.

12But notice that δ is fixed, and thus as ε → 0 the interval around exp(S̄/ε) expands.
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means that with probability approaching one, all escapes occur near the end of this
path, and all regular escape paths remain near it.

4.3. Calculating the Cost Function

While Theorem 4.1 offers a characterization of the large deviation properties of
beliefs and the most probable escape path, it is difficult to derive useful insights from
the minimization problem (20) itself. Additionally, because of the complicated nature
of H and S̄, analysis of the escape dynamics appears to be a daunting task. In this
section I provide provide a simple expression for the H function in our model with
normally distributed shocks. This allows me to implement the theory in practice.

First, recall that Ψ(θ, ξn+1) is a quadratic function of ξn+1 = [y′n,W
′

n+1]
′. Then we

can write the following:

〈α,Ψ(θ, ξn)〉 = −
1

2

(

y′nVyyyn + 2y′nVywWn+1 +W ′

n+1VwwWn+1

)

for some matrices Vyy, Vyw, Vww, where Vyy and Vww are symmetric. Clearly the matri-
ces depend on the beliefs θ as well as the vector α.

I first focus on the simpler case where ξn = [1,W ′

n], which happens for instance in
static models (and is used in an example below). In this case we only need to compute
the simpler version of H in (17). The proof of this result is in Appendix A.3.

Lemma 4.1. Assume that Wn ∼ N(0, I) and ξn = [1,W ′

n]. Then under the as-
sumptions of Theorem 4.1, the H function defined in (17) is given by:

H(θ, α) = −
1

2
log |Vww + I|+

1

2

(

Vyw(Vww + I)−1V ′

yw − Vyy

)

(22)

The H function in the static case is given by a relatively simple expression de-
pending on the V matrices, but this can imply some rather complex dependence on
the underlying beliefs θ. In the fully dynamic model, we need to compute the more
complex H function in (19) above, which averages over the temporal dependence in ξn.
The next result, whose proof is in Appendix A.3, is a key contribution of this paper.
For this result we need some standard conditions from linear optimal control theory,
controllability and detectability, which us allow to calculate the limit in (19).13

Lemma 4.2. Assume that Wn ∼ N(0, I) and that the assumptions of Theorem 4.1
hold. In addition, suppose that (Ā, Σ̄, Vyw) is controllable and detectable. Then the H
function defined in (19) is given by:

H(θ, α) = −
1

2
log |Vww + Σ̄′ΘΣ̄ + I|, (23)

13Kwakernaak and Sivan (1972) say that the n-dimensional system (A,B,C) is controllable if the
column vectors of (B,AB,A2B, . . . , An−1B) span the whole n-dimensional space. The definition of
detectability is more involved (see p. 465), but a sufficient condition is that the row vectors of
[C′, (CA)′, (CA2)′, . . . , (CAn−1)′]′ span the whole n-dimensional space.
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where Θ solves the discrete algebraic Riccati equation:

Θ = Ā′ΘĀ+ Vyy − (Vyw + Ā′ΘΣ̄)(Vww + Σ̄′ΘΣ̄ + I)−1(Vyw + Ā′ΘΣ̄)′. (24)

The general form of the H function in (23) is the same as in the static model (22),
with the first term capturing the variance of the beliefs. In the dynamic case, this is
a long-run variance, computed by solving a Riccati equation of the same form that
appears in linear-quadratic control problems. The second term in the static expression
(22) represents the contribution of the constant. The corresponding component in the
dynamic case would capture the effects of the initial condition y0, but such effects
vanish once we take the limit in (19).

4.4. Solving the Minimization Problem

The deterministic control problem (20) can be solved in a standard by applying a
maximum principle. The minimized Hamiltonian for (20) with state θ, co-state λ, and
control β = Ψ̄(θ) + v is:

H(θ, λ) = inf
β
{L(θ, β) + 〈λ, β〉}

= inf
β

{

sup
α

[〈α, β〉 −H(θ, α)] + 〈λ, β〉

}

= −H(θ,−λ),

where the second equality carries out the minimization and maximization, noting the
convex duality of L and H . If we parameterize α = −λ, then by taking derivatives
of the Hamiltonian, we see that the most probable escape path solves the differential
equations:

θ̇ = Hα(θ, α) (25)

α̇ = −Hθ(θ, α)

subject to the boundary conditions (21).
In some special cases, the differential equations are explicitly solvable, but in general

we must rely on numerical solutions. Given an initial condition for the co-states α(0),
it is easy to integrate the ODEs until θ hits the boundary of the set G or reaches the
terminal time T̄ . Paths which do not escape are assigned arbitrarily large cost values.
For paths which do escape, this procedure determines T, θ(·) and we can evaluate the

cost function
∫ T

0
L(θ(s), v(s))ds as in (20). We then solve the minimization problem

(20) by minimizing over the initial co-state α(0).

5. EXAMPLES

I now discuss two simple examples which illustrate escape dynamics in the two
different frameworks discussed above: expectational and state space models. The first
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is a simple asset pricing model, where learning gives rise to occasional large fluctuations
in beliefs and asset prices. I show that for smaller gains these fluctuations become less
frequent, and they also become asymmetric. My results describe both the frequency
and the asymmetry of the escapes. The second example shows how escape dynamics
may be a dominant feature of a mode, as in other applications of escape dynamics
discussed in Section 5.3 below. The model has a unique self-confirming equilibrium
which is stable under learning. In one parameterization, the model behaves like the
first example, with escapes being rare large movements away from the SCE. However
under a different parameterization, the model has recurrent escapes from the SCE
which are a prominent feature of the time series and always lead in the same direction.
My results characterize the escapes and explain these differences.

5.1. An Asset Pricing Model
5.1.1. Setup

My first example is an asset pricing model that was analyzed by Benhabib and
Dave (2014). The model illustrates the role of expectations in a simple univariate en-
vironment, focusing on agents’ forecasts of future prices. Benhabib and Dave (2014)
used different but related large deviation results to show that the tail of the belief
distribution under learning follows a power law, and thus is subject to large fluctu-
ations.14 Relative to their paper, I analytically characterize the rate of fluctuations
and asymmetries in the distribution of beliefs, and show that the predictions explain
behavior observed in simulations.

The model can be derived from the equilibrium conditions of a Lucas (1978) asset
pricing model. The exogenous driving process in the model is the scalar dividend xn,
which follows a stationary AR(1) process:

xn+1 = ρxn + σWn+1,

where Wn+1 is an i.i.d. standard normal random variable. The asset price, which we
denote zn, is determined by the linear expectational equation:

zn = bẼnzn+1 + axn, (26)

with the current price determined by dividends and expectations of future prices.
However the agent does not know (26) but instead has the subjective model as in (2):

zn+1 = γxn + ηn+1.

This is a simple special case of the linear expectational model in Section 2.2 above,
with yn = [zn, xn]. Using the subjective model for expectations gives the actual law of
motion for the price:

zn+1 = (bγ + a)ρxn + (bγ + a)σWn+1.

14Benhabib and Dave (2014) apply results for the limiting distribution of scalar multiplicative processes.
Thus they consider large time limits which hold for any gain setting, but only apply for this class of scalar
models which are linear in beliefs. By contrast, my results are small gain limits and apply more broadly to
multidimensional models that are nonlinear in beliefs, but are only approximate for small gains.
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FIGURE 1. Simulated price series for different gain settings. The red dashed lines show the SCE mean
price of zero.

Together with the law of motion for dividends, this yields the belief-dependent evo-
lution (1). However since the asset price zn is a linear function of xn and Wn+1 and
has no dynamics of its own, we do not need to track it, so can simplify and define
ξn+1 = [xn,Wn+1]

′.
Similar to Benhabib and Dave (2014), I assume that agents learn with a constant

gain generalized stochastic gradient rule. Thus I set φ = 0 in (10) and I use the

constant weight R = E(x2
n) =

σ2

1−ρ2
. The key belief function g is then:

g(γ, ξn+1) = ((bρ− 1)γ + aρ) x2
n + (bγ + a)σxnWn+1.

Taking (unconditional) expectations gives the mean dynamics:

γ̇ = R−1ḡ(γ) =
1− ρ2

σ2
((bρ− 1)γ + aρ)

σ2

1− ρ2
= (bρ− 1)γ + aρ.

This function is linear, hence the unique SCE is γ̄ = aρ/(1 − bρ) is globally stable,
and it is also the rational expectations equilibrium. Since there is no misspecification
in this model, the agent could eventually learn to forecast rationally. As the dynamics
only come through the exogenous dividends xn, Assumption 2.1 ensuring stability is
satisfied for 0 ≤ ρ < 1.

Figure 1 plots three representative simulated time series of prices zn from the model
for different values of the gain ε.15 In each case, the price fluctuates around the SCE
value of zero, but there are periods of large booms and crashes. For smaller gain
settings, the price volatility declines (note the scale of the vertical axis) and the extreme

15I choose parameters in line with Benhabib and Dave’s (2014) estimates: ρ = 0.9, σ = 0.2, b = 0.9 and
a = (1− b− 3)ρ+ 3 = 0.39.
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FIGURE 2. Simulated slope coefficient series γn. The red dashed lines show the SCE slope.
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FIGURE 3. Left panel: Escape distribution for the slope coefficient (γε(τ ε)) for different gains (ε).
Right panel: Log escape times, showing the log mean time (blue dot-lines) and 90% band (black dashed lines)
of the simulated distribution, along with the predicted log times (red solid line).

events become less frequent. Figure 2 plots the simulated beliefs γε
n underlying these

price series. The large spikes in asset prices (either positive or negative) correspond
to large movements in beliefs. The belief distribution is biased for ε > 0, as γε

n

typically below the SCE value (shown with red dashed lines), but this bias shrinks as
ε → 0. For smaller gain settings, beliefs spend more time near the SCE value, just
as the results suggest. In addition, large asset price movements tend to be driven by
movements away from the SCE in the positive direction, reflecting an over-estimation
of the relationship between prices and dividends.

5.1.2. Escape Dynamics



ESCAPE DYNAMICS IN LEARNING MODELS 19

I now apply my results to characterize the large movements in beliefs and prices as
due to escape dynamics. The key terms in the calculations are:

Vyy = −2α((bρ− 1)γ + aρ), Vyw = −α(bγ + a)σ, Vww = 0

In addition, since we only need track the scalar dynamics of xn, the Riccati equation
(24) is simply a quadratic equation in Θ whose solution is:

Θ =
ρ2 − 1 + σ2Vyy − 2ρσVyw +

√

(ρ2 − 1 + σ2Vyy − 2ρσVyw)2 − 4σ2(V 2
yw − Vyy)

2σ2
.

I then solve the control problem (20), obtaining the minimized cost S̄ and the most
probable escape path γ(·). For the escape set G, I choose the interval |γε

n − γ| < 1.5,
and similar results held for intervals of different length.

Figure 3 illustrates the escape distribution as well as the predictions from Theorem
4.1. In solving (20), I find that the most probable path exits the interval in the positive
direction, γ(T ) = γ̄+1.5. Part (4) of the theorem says that as ε → 0 the distribution of
escape points should concentrate at this point. This is documented in the left panel of
Figure 3, which shows a histogram of the slope coefficient at the time of escape (γε(τ ε))
from 20,000 simulated escapes for three different gain settings. For larger gains, the
escape distribution is relatively symmetric, with escapes at both ends of the interval.
However as the gain decreases, the escapes become increasingly concentrated at the
upper end, as the theorem predicts. In addition, part (3) of Theorem 4.1 predicts that
for small gain the mean escape times (on the continuous time scale τ ε = nε) increase
exponentially in 1/ε at rate S̄. The right panel of Figure 3 plots the log mean escape
times from the simulations along with our prediction, and bands covering 90% of the
simulated distribution. Note that theorem only predicts the slope of the line shown,
giving the exponential rate of increase.16 For relatively large gains, the escapes occur
more rapidly than the results suggest, but for small gains the predictions match the
simulations quite well.

Finally, part (4) of Theorem 4.1 states that in the limit all regular escapes remain
close to the most probable path. I define regular paths by setting µ1 = 0.01. That
is, I run 20,000 simulations which terminate when the beliefs are 1.5 units from the
SCE γ̄. Many of these escape paths have small sojourns away from γ̄ before returning
to a neighborhood of it. I extract the regular part of the path by finding the last
time the beliefs were within 0.01 units of the SCE, and keep the escape path from
that time forward. Figure 4 summarizes the escape path distribution, showing the
most probable path resulting from our calculation (20), a path from the simulations
with length closest to the mean, and paths with lengths corresponding to the 5% and
95% quantiles of the simulated escape time distribution. The plots use a logarithmic
discrete time scale, so that the most probable path is scaled as log(t/ε). The figure
shows that all the escape paths are characterized by period close to the SCE, followed
by a rapid increase in the slope. The shape of all the regular paths is quite similar,
and the predicted most probable escape path is quite close to the mean from the

16The theorem states that logEτ ε ≈ S0 + S̄/ε for some constant S0. In the figure the constant was chosen
to give a good fit.
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FIGURE 4. Simulated and predicted regular escape paths with ε = 1

300
. Shown are the path closest to

the mean time (blue solid line) and 90% band (black dashed lines) of the simulated distribution along with
the predicted escape path (red dashed lines).

simulations. Thus my results accurately predict the entire time path of beliefs during
an escape.

5.2. A Monopoly Model

The previous example illustrated how escape dynamics can generate large fluctu-
ations around a self confirming equilibrium. I now show how escape dynamics in
learning models can generate time series which differs qualitatively from the SCE,
with recurrent, regular periods of extended deviations from the SCE. I study a model
of a monopoly firm facing an unknown linear demand curve, which is subject to a
shock. The firm produces at a constant expected cost per unit in each period, with
the realized cost depending on a shock. The correlation between cost and demand
shocks is a key parameter. For simplicity, the model is static, with the only dynamics
coming through learning.

5.2.1. Setup

The state vector consists of output zn and a constant: yn = [zn, 1]
′, and the shock

vector Wn = [W1n,W2n]
′ is a 2 dimensional standard normal random vector. For

simplicity I set the expected marginal cost to zero, so effectively the firm chooses its
markup an over marginal cost, with the cost shock determining the realized price pn:

pn = an + σaW2,n+1.

Output is given by the static linear demand curve:

zn+1 = b0 + b1pn + σyW1,n+1 + ρσaW2,n+1.
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Note the dating convention: zn+1 is the current period’s output, which depends on the
current price pn. When ρ 6= 0, the shocks to costs and demand are correlated. This is
a special case of the state space model in Section 2.2 above.

The firm does not know its demand curve, but instead sets its price based on its
subjective model (2), which here takes the form:

zn+1 = γ0 + γ1pn + ηn+1 (27)

thus xn = [1, pn]
′. Note that when ρ 6= 0, the belief equation (27) is misspecified as pn

and zn+1 are driven by correlated shocks. The firm maximizes expected profits based
on (27), which can be written as:

Ẽn[pnzn+1] = Ẽn[γ0pn + γ1p
2
n],

where I use (3). Since there are no dynamics in the model, static profit maximization
problem gives the optimal markup as in (6):

an = h(γ) ≡ −
γ0
2γ1

.

As above, I assume the firm learns with a generalized stochastic gradient rule with
weighting matrix R = E(xnx

′

n) = M(γ̄). The key function g = [g1, g2]
′ from (7) is

given explicitly here by:

g1(γ, ξn) = b0 − γ0 − (b1 − γ1)
γ0
2γ1

+ (b1 + ρ− γ1)σaW2n + σyW1n

g2(γ, ξ) = g1(γ, ξ)

(

−
γ0
2γ1

)

+

(

b0 − γ0 − (b1 − γ1)
γ0
2γ1

)

σaW2n +

(b1 + ρ− γ1)σ
2
aW

2
2 + σaσyW1nW2n.

Since ξn = [1,W1n,W2n]
′ is i.i.d., taking expectations gives ḡ = [ḡ1, ḡ2]

′ as in (8):

ḡ1(γ) = b0 − γ0 − (b1 − γ1)
γ0
2γ1

ḡ2(γ) = ḡ1(γ)

(

−
γ0
2γ1

)

+ (b1 + ρ− γ1)σ
2
a

Since the model is static, Assumption 2.1 which ensures stability is satisfied.17 It is
straightforward to show that there is a unique self-confirming equilibrium, given by:

γ̄ = [γ̄0, γ̄1]
′ =

[

2b0(b1 + ρ)

2b1 + ρ
, b1 + ρ

]

′

.

17Some of our results are simplified if prices are guaranteed to be positive. In practice we require the firm’s
estimated demand curve to slope downward, that is γ0 ≥ 0 and γ1 < K < 0 for some small K. Such a
constraint was never binding in our calculations or simulations.
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FIGURE 5. Simulated price series pn for two parameterizations of the model: ρ = 0 (top panel) and
ρ = −1 (bottom panel). The red dashed lines show the SCE expected prices when ρ = 0 (an = 5) and when
ρ = −1 (an = 3 1
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FIGURE 6. Simulated slope coefficient series γ1n for two parameterizations of the model: ρ = 0 (top
panel) and ρ = −1 (bottom panel). The red dashed lines show the SCE slopes when ρ = 0 (γ̄1 = b1 = −1)
and when ρ = −1 (γ̄1 = b1 + ρ = −2).

Note that when ρ 6= 0 the SCE beliefs are biased estimates of the true intercept and
slope (b0, b1). The results above show that as ε → 0 the beliefs converge to the SCE
γ̄.18 Thus we expect that for small ε, beliefs will remain near the SCE γ̄, and the price
will exhibit small fluctuations around the expected price h(γ̄).

18Appendix A.4 provides formal detail and verifies all necessary assumptions for the example.
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FIGURE 7. Rate function S̄ for different escape radii r under two parameterizations of the model:
ρ = −1 (black solid line) and ρ = 0 (red dashed line).

However we find that the model exhibits striking behavior, as shown in Figures 5
and 6, which plot some simulated outcomes from the model for different settings of ρ.
Figure 5 plots simulated time paths of prices pn for ρ = 0 and ρ = −1, while Figure 6
plots the estimated slope coefficients γ1n from the same simulations.19 Each figure also
plots two different gain settings when ρ = −1. When ρ = 0, and thus the model (27)
is correctly specified, the price and belief series behave as expected. The price and
slope coefficients are near the SCE levels throughout, with movements away following
no regular pattern.

But when ρ = −1, there are recurrent episodes in which the firm raises its price
sharply, during which the slope coefficient increases from its SCE level of b1+ρ = −2 to
a value near the true slope of b1 = −1. The higher price and lower slope are sustained
for a relatively short time, as they gradually are drawn back to the SCE levels. As
our results suggest, for smaller gain settings the escapes become less frequent and the
model spends an increasing fraction of time near the SCE. But escapes do recur, and
the escape paths have a very regular pattern, leading to increases in the slope and the
price. I now show that this is precisely what my results predict.

5.2.2. Escape Dynamics

In solving the control problem (20) to characterize the escapes, I consider sets of
the form:

G(r) =

{

γ : ‖γ − γ̄‖ < |r|,
r

|r|
γ1 >

r

|r|
γ̄1

}

.

That is with r > 0, G(r) is the half-ball of radius r around γ̄ with increases in the
slope, while G(−r) is the half-ball with decreases in slope. The minimized cost S̄ as

19The other parameters in the model are: b0 = 10, b1 = −1, σa = σy = 0.2.
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FIGURE 8. Escape distributions for the slope coefficient (γε
1(τ

ε)) for different gains (ε), different radii
(r), and two settings of ρ. Each panel considers a different (ρ, r) combination and plots the distribution for
ε = 0.1 (blue bars) and ε = 0.01 (red bars). The black dotted lines show the terminal point of the most
probable escape (γ1(T )).

a function of r is shown in Figure 7 for ρ = 0 and ρ = −1. When ρ = 0, the cost
is symmetric, increasing rapidly in both directions. Thus escapes become quite rare
for small gains, and are equally likely to result in increases or decreases of the slope
coefficient. But when ρ = −1 the minimized cost function increases rapidly in the
negative direction, but in the positive direction it has a long, nearly flat section. Thus
even though escapes are rare, once beliefs do escape they are likely to move quite a
distance (nearly 3 units) in the positive direction. This reflects what we observed in
Figure 6, where escapes with ρ = 0 followed no definite pattern, while with ρ = −1
there were recurrent increases in the slope of roughly the same magnitude.

Figure 8 further illustrates the differences in escapes. Each panel of the figure fixes
(r, ρ) and shows a histogram of the slope coefficient at the time of escape (γε

1(τ
ε)) from

5,000 simulated escapes for each of two different gain settings, ε = 0.1 and ε = 0.01.
Also shown in each figure is the predicted escape point γ1(T ) from the most probable
escape path associated with that particular (r, ρ) setting. The top two panels show
that for relatively small escapes, r = ±0.5, the distributions are relatively symmetric,
with escapes in both the positive and negative directions. As the gain decreases, the
escapes become more concentrated near the predicted points. The asymmetries we
observed in Figure 7 are clear with the larger escape sets of r = ±1.5 and r = ±3 in
the bottom panels of Figure 8. The figure only considers ρ = −1, as in the simulations
we never (up to millions of periods) observed escapes of this magnitude for ρ = 0. For
small gains, the escape distributions become highly concentrated around the predicted
positive escape point. Thus the asymmetries in the rate functions are borne out in
the simulations.

As above, the predictions of Theorem 4.1 are shown in Figure 9, which plots the
escape distributions and escape times when ρ = −1 and r = 3.1 for varying gains,
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FIGURE 9. Escape distributions and escape times. The left panels plot the escape distribution of the
coefficient (γε

0(τ
ε), γε

1(τ
ε)) for different gains (ε), fixing r = 3.1 and ρ = −1. Each panel plots the median

(blue dot-lines) and 90% band (black dashed lines) of the simulated distribution along with the predicted
escape point (red solid lines). The right panel plots the log escape times, showing the log mean time (blue
dot-lines) and 90% band (black dashed lines) of the simulated distribution, along with the predicted log times
(red solid line).

with 10,000 simulations for each gain setting. The left panels plot the predicted escape
point for both the intercept (top panel) and slope coefficient (bottom panel), along
with the median and bands covering 90% of the simulated distribution. As ε → 0 the
distribution tightens substantially around the prediction, and the median converges
up to near the predicted level. The right panel of Figure 9 plots the log mean escape
times from the simulations along with our prediction, and bands covering 90% of the
simulated distribution. The slope of the line representing the log mean times decreases
as the gain shrinks, but is approximately linear over the range of gains shown with
slope close to our prediction. Overall, as in the first example, for small gains the
predictions match the simulations quite well.

Finally, Figure 10 shows a summary of 10,000 simulated regular escape paths with
r = 3.1, ρ = −1, ε = 1

300
, and µ1 = 0.01. The top panel plots the time paths of

the intercept coefficient along an escape, while the bottom panel plots the slope. As
above, the figure shows the predicted most probable path, and the paths closest to the
mean, 5% and 95% quantiles of the simulated escape time distribution. All the escape
paths are characterized by a relatively long period near the SCE, followed by a rapid
increase in the slope and decrease in the intercept. As above, my results characterize
the escape paths quite well, with the predicted most probable escape path being quite
close to the mean from the simulations.

5.3. Interpretation and Relation to the Literature

The monopoly model exhibits strikingly different behavior depending on the value
of ρ. When ρ = 0 escapes are symmetric, but when ρ = −1 escapes are asymmetric,
leading to regular increases in the slope coefficient from γ1 = b+ρ to γ1 = b, and these
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escapes recur with small gain (albeit less often). As we noted above, when ρ 6= 0 the
estimate of the slope coefficient in the SCE is biased, due to the correlation between
prices and output. This misspecification plays a key role in generating the prominent
escape dynamics we observe. Even though the shocks W1n and W2n are independent
processes, there will occasionally be a sequence of correlated realizations. With ρ < 0,
during such an episode output will have a smaller response to price changes than is
typical. The firm interprets these outcomes as representing a decrease in the elasticity
of its demand curve, and responds by raising its markup an = h(γ), and hence the
mean price. As the firm increases its markup, it gets more influential observations and
hence obtains a better estimate of the true slope of its demand curve, which indeed is
more inelastic than the SCE suggests. This process is thus self-reinforcing and leads
to an escape, but it takes an unlikely sequence of shock realizations in order for it
to start. The escapes end when the firm learns the correct slope γ1 = b, and then
does not increase its markup any further. Eventually, there are sufficient uncorrelated
realizations of the shocks Wn, which allow the firm to once again pick up on the
correlation between prices and demand, drawing the firm back to the SCE. As this
process repeats over time, it generates the episodes of rapidly rising and gradually
falling prices we observed in the simulations.

Setting ρ = 0 eliminates the misspecification and hence the mechanism leading to
the escapes. A correlated string of shock realizations will still cause the firm to lower
its estimated demand elasticity, and hence raise its markup. Again this leads to a
better estimate of the true slope, which in this case is equal to the SCE, and is more
elastic than the atypical string of shocks suggested. This counteracts the initial effects
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of the shocks, and leads the firm back to the SCE. Thus the model with ρ = 0 lacks
the self-reinforcing dynamics which drive the escapes.

Locally self-reinforcing dynamics have been a crucial feature of models with promi-
nent escape dynamics. Most directly, models with multiple equilibria have locally
reinforcing dynamics around each equilibrium. These models experience escapes when
shocks push beliefs from the basin of attraction of one equilibrium to another. Notable
examples include evolutionary games, such as Kandori, Mailath, and Rob (1993) and
Young (1993) and much subsequent literature, and macroeconomic models with mul-
tiple stable equilibria, such as Kasa (2004). Williams (2014) uses the methods of this
paper to study multiple equilibria. Similarly, the models of Marcet and Nicolini (2003)
and Sargent, Williams, and Zha (2009) feature one stable equilibrium and an explosive
region, with escapes occasionally causing beliefs to enter the explosive region.

More closely related to this paper are the learning models with a with a unique
(self-confirming) equilibrium, where prominent escape dynamics have gone along with
misspecifications. A notable example is Sargent (1999), which was analyzed by Cho,
Williams, and Sargent (2002) using the results from an earlier version of this paper.
In that model a government sets monetary policy using a misspecified model which
does not account for the role of inflation expectations. Kolyuzhnov, Bogomolova, and
Slobodyan (2014) study the same model using a continuous time approximation. They
argue that in that model the large deviation results only capture the rate of escape for
very small gains, and propose an alternative approach for larger gain settings. As we
showed above, for the examples in this paper the large deviation results do characterize
escapes for plausible gain settings.

Related models include Bullard and Cho (2005), McGough (2006), Ellison and
Yates (2007), Sargent, Williams, and Zha (2006), Cho and Kasa (2008), several of
which use the methods developed in earlier versions of this paper. Similarly, Williams
(2017) considers a duopoly version of the example here, in which firms do not account
for the actions of their competitors, and escapes lead to episodes resembling price
wars. Ellison and Scott (2013) build on this model to study volatility in oil prices. In
all of these cases, the escape dynamics are driven by occasional sequences of shocks
which trigger actions that allow agents to temporarily overcome the misspecification
of their models.

6. CONCLUSION

In this paper I have analyzed two sources of dynamics that govern adaptive learning
models: mean dynamics which pull an agent’s beliefs toward a limit point, and escape
dynamics which push them away. I have provided a precise characterization of these
dynamics, and have illustrated how they can arise in examples. As the gain decreases
to zero (across sequences), the beliefs converge in a weak sense to a self-confirming
equilibrium. However ongoing stochastic shocks may occasionally lead beliefs to es-
cape from the self-confirming equilibrium. I developed new theoretical methods to
characterize the escape dynamics, and showed how to apply them in two simple eco-
nomic models. I also showed how misspecification may generate locally self-reinforcing
dynamics, which lead to recurrent large deviations from the self-confirming equilib-
rium.
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The methods that I have developed have potentially broad applications. The results
in this paper have already been applied to analyze recurrent inflations and stabiliza-
tions (by Cho, Williams, and Sargent (2002) among others), deflationary liquidity
traps (by Bullard and Cho (2005)), currency crises (by Cho and Kasa (2008)), fluc-
tuations in prices resembling price wars (by Williams (2016)), and oil price volatility
(by Ellison and Scott (2013)). Further, my results are not necessarily limited to learn-
ing models. The same methods can be applied to filtering and recursive estimation
problems, which could have interesting implications for the performance of estimators.
However, absent in standard estimation problems is the feedback between estimates
and observations which drove much of our results. Learning models thus provide a
natural framework in which escape dynamics can play an important role.

APPENDIX A

A.1. CONVERGENCE RESULTS

For these results, we stack (γ,R) into a the vector θ as in (11) and write (9)-(10) compactly as:

θn+1 = θn + εΨ(θn, ξn+1).

Then we define Ψ̄(θ) = EΨ(θ, ξn) and vn+1 = Ψ(θn, ξn+1)− Ψ̄(θn). The following are the necessary assump-
tions for Theorem 3.1 above. We include an ε superscript on θεn and vεn to emphasize their dependence on
the gain.

Assumptions A.1.

1. The random sequence {θεn; ε, n} is tight.1

2. For each compact set A,
{

Ψ(θεn, ξn+1)1{θε
n
∈A}; ε, n

}

is uniformly integrable.2

3. The ODE
.

θ= Ψ̄(θ) has a point θ̄ which is asymptotically stable.3

4. The function Ψ̄(θ) is continuous.

5. For each δ > 0, there is a compact set Aδ such that infn,ε P (υε
n ∈ Aδ) ≥ 1− δ.

Proof (Theorem 3.1). The result follows directly from Theorem 8.5.1 in Kushner and Yin (1997). The
theorem requires their additional assumptions (A8.1.9), (A8.5.2), (A8.5.3) and (A8.5.5) which hold trivially
here, since EΨ(θεn, ξn+1) = Ψ̄(θεn) is independent of ξn+1. This implies that the limit in (A8.1.9) is identically
zero and that the βε

n terms in (A8.5.2) and (A8.5.5) are also identically zero. Further, their conditions (A8.5.1)
and (A8.5.3) are then equivalent and given by part 2 above. The theorem is also stated under a weaker condi-

tion which is implied by part 3 above.
Note that parts 1, 2, and 5 of Assumptions A.1 hold in our model with i.i.d. Gaussian shocks Wn. (The

conditions are even easier to verify with bounded shocks.) The tightness in part 1 follows because for each
θ, Ψ(θ, ξn+1) is a quadratic function of standard normal random variables. Therefore P (|Ψ(θ, ξn+1)| ≥ K) =
f(K) for some function f that goes to zero as K goes to infinity. Since the one-step transitions satisfy this
property, any finite number of steps does as well. Further, since the property holds for all θ, we have that

1 A random sequence {Xn} is tight if

lim
K→∞

sup
n

P (|Xn| ≥ K) = 0.

2 A random sequence {Xn} is uniformly integrable if

lim
K→∞

sup
n

E
(

|Xn| 1{|Xn|≥K}

)

= 0.

3 A point x̄ is asymptotically stable for an ODE if any solution x(t) → x̄ as t → ∞, and for each δ > 0
there exists an ε > 0 such that if |x(0)− x̄| ≤ ε, then |x(t)− x̄| ≤ δ for all t.
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P (|θεn| ≥ K) → 0 as K → ∞, and so the sequence is tight. For part 2, note that |Ψ(θn, ξn+1)|2 consists of
normally distributed random variables up to the fourth order, and so has finite expectation, which implies
the uniform integrability. Finally part 5 holds because vn consists of normally distributed random variables
up to the second order, and thus can be bounded to arbitrary accuracy on an appropriate compact set. The
remaining conditions 3 and 4 must be verified in particular settings.

A.2. LARGE DEVIATIONS

This section collects assumptions and proofs for the results in Section 4. First we state the additional
assumptions necessary for the large deviation principle.

Assumptions A.2.

1a. The sequence {|Ψ(θn, ξn+1)|} is almost surely bounded by some constant K < ∞.

1b. There exist a σ−algebra Fn ⊃ σ(θi, i ≤ n) and constants κ > 1, B < ∞ such that for all n and s ≥ 0:

P (|Ψ(θn, ξn+1)| ≥ s||Fn) ≤ B exp(−sκ) a.s.

For Assumptions A.2, we require either part 1a or 1b to hold.

Proof (Theorem 4.1). (1): The result follows from Dupuis and Kushner (1989), Theorem 3.2, which
requires that paper’s assumptions 2.1-2.3 and 3.1. Their assumption 2.2 is a stability condition satisfied by
part 3 of Assumptions A.1. Their assumption 2.3 is not necessary in the constant gain case, as we restrict our
analysis to a finite time interval. Assumption 3.1 is satisfied by our definition of S above. All that remains
is 2.1. Under the exponential tail condition given in 1b of Assumptions A.2, Dupuis and Kushner (1989)
Theorem 7.1 (with special attention to the remarks following it) and their Example 7.1 show that 2.1 holds.

(2): The result is an application of Kushner and Yin (1997) Theorem 6.10.1, whose assumptions follow
directly under the boundedness condition of 1a of Assumptions A.2. The identification of the H function
follows from Dupuis and Kushner (1989), Theorems 4.1 and 5.3.

(3): Kushner and Yin (1997) establish an upper bound on mean escape times in Theorem 6.10.6. After
establishing part 2 of the theorem, the results follow from Dembo and Zeitouni (1998), Theorem 5.7.11.

(4): The first part also follows from Theorem 5.7.11 in Dembo and Zeitouni (1998), which is analogous
to Theorem 2.1 in Freidlin and Wentzell (1998). The second part follows from Theorem 2.3 in Freidlin and
Wentzell (1998). Our phrasing of the result follows Dupuis and Kushner (1987).

A.3. CALCULATIONS FOR THE COST FUNCTIONS

A.3.1. Proof of Lemma 4.1
For use in the proof of Lemma 4.2 below, we develop the main calculations for a one-step version of H ,

then simplify to the static case. That is, we evaluate:

H1(θ, α, y0) = logEy0 exp 〈α,Ψ(θ, ξ1)〉
where y1 = Āy0 + Σ̄W1. For later use, we also assume here W1 ∼ N(0,Λ), although in practice Λ = I . Using
the definitions of the V matrices, we can write:

exp(H1) = exp(−1

2
y′
0Vyyy0)Ey0 exp(−y′

0VywW1 − 1

2
W ′

1VwwW1)

=
1√
2π

|Λ|− 1

2 exp(−1

2
y′
0Vyyy0)

∫

exp(−y′
0VywW1 − 1

2
W ′

1VwwW1 − 1

2
W ′

1Λ
−1W1)dW1.

We now use a completing the square argument. We would like the terms inside the exponential to read
− 1

2
(W1−µ1)

′Ω−1

1 (W1−µ1) for some µ1 and Ω1, in which case we would just be integrating a normal density
and the integral would simply be unity. This holds if we set:

Ω−1

1 = Vww + Λ−1, µ1 = −Ω1V
′
ywy0.
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Making this substitution, adding and subtracting − 1

2
µ′
1Ω

−1

1 µ1, and multiplying and dividing by |Ω1|−
1

2 gives:

exp(H1) = exp(−1

2
y′
0Vyyy0 +

1

2
µ′
1Ω

−1

1 µ1)|Ω1|
1

2 |Λ|− 1

2 ·
1√
2π

|Ω1|−
1

2

∫

exp(−1

2
(W1 − µ1)

′Ω−1

1 (W1 − µ1))dW1.

The terms in the second line are thus the normal density, so we have:

H1 = −1

2
y′
0Vyyy0 +

1

2
µ′
1Ω

−1

1 µ1 +
1

2
log |Ω1| − 1

2
log |Λ| (A.1)

= −1

2
log |Λ| − 1

2
log |Vyy + Λ−1| − 1

2
y′
0[Vyy − Vyw(Vww + Λ−1)−1V ′

yw]y0. (A.2)

Setting Λ = I and y0 = 1 gives the result (22).

A.3.2. Proof of Lemma 4.2
We follow the proof of Lemma 4.1 and proceed by induction. We already have determined the one-step

version H1. Now we proceed by induction to determine the T step version HT . That is, we suppose that HT

can be written:

HT (θ, α, y0) =
1

T
logEy0 exp

〈

α,
T
∑

n=1

Ψ(θ, ξn)

〉

=
1

2T

T
∑

n=1

log |Ωn| − 1

2T
y′
0ΘT y0

for some sequences of matrices {Ωn,Θn}. Note that this holds for H1 with:

Ω1 = (Vww + Λ−1)−1, Θ1 = Vyy − Vyw(Vww + Λ−1)−1V ′
yw.

Now we evaluate HT+1:

HT+1 =
1

T + 1
logEy0 exp

〈

α,

T+1
∑

n=1

Ψ(θ, ξn)

〉

=
1

T + 1
logEy0 exp

〈

α,R−1g(γ, ξ1)
〉

Ey1 exp

〈

α,

T+1
∑

n=2

Ψ(θ, ξn)

〉

,

where the second line uses the law of iterated expectations. But notice that the second term is simply THT

with the time indices simply shifted forward one period. Thus we can write:

exp((T + 1)HT+1) =
T
∏

n=1

|Ωn|
1

2 exp(−1

2
y′
0Vyyy0)Ey0 exp(−y′

0VywW1 − 1

2
W ′

1VwwW1 − 1

2
y′
1ΘT y1)

=

T
∏

n=1

|Ωn|
1

2 exp(−1

2
y′
0(Vyy + Ā′ΘT Ā)y0) ·

Ey0 exp(−y′
0(Vyw + Ā′ΘT Σ̄)W1 −

1

2
W ′

1(Vww + Σ̄′Θ1Σ̄)W1)

where in the first line we note that for the matrices the subscript indexes the number of steps in the iterations,
not the date, and the second line uses the evolution of yn. We then use the same complete the square argument
as in the proof of Lemma 4.1, now setting:

Ω−1

T+1 = Vww + Σ̄′ΘT Σ̄, µT+1 = −ΩT+1(Vyw + Ā′ΘT Σ̄).

Making these substitutions and doing the same manipulations as above, we now have:

exp((T + 1)HT+1) =

T+1
∏

n=1

|Ωn|
1

2 exp(−y′
0[Vyy + Ā′ΘT Ā− (Vyw + Ā′ΘT Σ̄)ΩT+1(Vyw + Ā′ΘT Σ̄)

′]y0)

Thus we have:

HT+1 =
1

2(T + 1)

T+1
∑

n=1

log |Ωn| −
1

2T + 1
y′
0ΘT+1y0,
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where Θn is determined recursively as:

Θn+1 = Vyy + Ā′ΘnĀ− (Vyw + Ā′ΘnΣ̄)Ωn+1(Vyw + Ā′ΘnΣ̄)
′ (A.3)

with Ωn+1 a function of Θn as above. This proves the induction step and shows how to compute {Ωn,Θn}.
To determine H we then take limits. Under the standard detectability and controllability conditions (see

Kwakernaak and Sivan (1972)), Θn in (A.3) converges to a matrix Θ which satisfies the algebraic Riccati
equation (24). This also implies Ωn converges and so does the average in HT+1. Noting as well that the effect
of the initial condition y0 dies out in the limit, we have the result.

A.4. VERIFYING THE ASSUMPTIONS IN THE MONOPOLY

EXAMPLE

In this section, we formally verify the necessary conditions of our theorems above for our example. Since
the model is static and there is no time dependence in the beliefs, Assumption 2.1 is immediately satisfied as
long as there is a finite solution to the firm’s problem. Thus we require that the firm’s perceived demand curve
slope downward, and to simplify our results below we assume that the slope is bounded away (negatively)
from zero. Similarly for prices to be positive, we require that the firm’s intercept be positive. Thus we take
the feasible set to be:

G = {γ : γ0 ≥ 0, γ1 ≤ δ < 0} .
Notice that the self-confirming equilibrium we identify in the text is strictly within this set (as long as
b1 < δ < 0 and b0 > 0), and the escape sets G we analyze are within this set as well.

Then we need to verify Assumptions A.1 and A.2. Following our discussion after the proof of Theorem
3.1 above, we know that parts 1, 2, and 5 of Assumptions A.1 hold. Further, part 1b of Assumptions A.2
is immediate since we assume that the shocks are Gaussian. Since we consider an algorithm with Rn fixed,
part 4 of Assumptions A.1 simply requires the continuity of ḡ(γ). From the expressions in the text we see
clearly that ḡ(γ) is continuous on G, so part 4 of Assumptions A.1 holds.

The only remaining condition is part 3 of Assumptions A.1, the asymptotic stability of the ODE. Note
again that for the algorithm here we can consider just the ODE for γ. We have identified the self-confirming
equilibrium γ̄ above, which is the unique equilibrium point of the ODE. Further, one can show that the
eigenvalues of the Jacobian matrix of ḡ evaluated at γ̄ all have strictly negative real parts, so that it is locally
asymptotically stable. Global stability is more difficult to establish explicitly. However numerical analysis
of the ODE suggests that (at least for the parameterizations we consider) the ODE is in fact asymptotically
stable on G.
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