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Abstract

This paper presents finite sample efficiency bounds for the core econometric prob-

lem of estimation of linear regression coefficients. We show that the classical Gauss-

Markov Theorem can be restated omitting the unnatural restriction to linear estima-

tors, without adding any extra conditions. Our results are lower bounds on the vari-

ances of unbiased estimators. These lower bounds correspond to the variances of the

the least squares estimator and the generalized least squares estimator, depending on

the assumption on the error covariances. These results show that we can drop the label

“linear estimator” from the pedagogy of the Gauss-Markov Theorem. Instead of refer-

ring to these estimators as BLUE, they can legitimately be called BUE (best unbiased

estimators).
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1 Introduction

Three central results in core econometric theory are BLUE, Gauss-Markov, and Aitken’s.

The BLUE theorem states that the best (minimum variance) linear unbiased estimator

of a population expectation is the sample mean. The Gauss-Markov theorem states that

in a linear homoskedastic regression model the minimum variance linear unbiased esti-

mator of the regression coefficient is the least squares estimator. Aitken’s generalization

states that in a linear regression model with a general covariance matrix structure the

minimum variance linear unbiased estimator is the generalized least squares estimator.

These results are straightforward to prove and interpret, and thus are taught in intro-

ductory through advanced courses. The theory, however, has a gaping weakness. The

restriction to linear estimators is unnatural. There is no justifiable reason for modern

econometrics to restrict estimation to linear methods. This leaves open the question if

nonlinear estimators could possibly do better than least squares.

One possible answer lies in the theory of uniform minimum variance unbiased (UMVU)

estimation (see, e.g., Chapter 2 of Lehmann and Casella (1998)). Lehmann and Casella

(1998, Example 4.2) demonstrate that the sample mean is UMVU for the class of distri-

butions having a density. The latter restriction is critical for their demonstration, does

not generalize to distributions without densities, and it is unclear if the approach applies

to regression models.

A second possible answer is provided by the Cramér-Rao theorem. In the normal re-

gression model the minimum variance unbiased estimator of the regression coefficient

is least squares. This result removes the restriction to linearity. But the result is limited

to normal regression and so does not provide a complete answer.

A third possible answer is provided by the local asymptotic minimax theorem (see

Hajek (1972) and van der Vaart (1998, Chapter 8)) which states that in parametric mod-

els, estimation mean squared error cannot be asymptotically smaller than the Cramér-

Rao lower bound. This removes the restriction to linear and unbiased estimators, but is

focused on a parametric asymptotic framework.

A fourth approach to the problem is semi-parametric asymptotic efficiency, which

includes Stein (1956), Levit (1975), Begun, Hall, Huang, and Wellner (1983), Chamber-

lain (1987), Ritov and Bickel (1990), Newey (1990), Bickel, Klaassen, Ritov, and Wellner

(1993), and van der Vaart (1998, Chapter 25). This literature develops asymptotic ef-

ficiency bounds for estimation in semi-parametric models including linear regression.
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This theory removes the restriction to linear unbiased estimators and parametric mod-

els, but only provides asymptotic efficiency bounds, not finite sample bounds. This lit-

erature leaves open the possibility that reduced estimation variance might be achieved

in finite samples by alternative estimators.

A fifth approach is adaptive efficiency under an independence or symmetry assump-

tion. If the regression error is independent of the regressors and/or symmetrically dis-

tributed about zero, efficiency improvements may be possible. If the regression er-

ror is fat-tailed, these improvements can be substantial. This literature includes the

quantile regression estimator of Koenker and Bassett (1978), the adaptive regression

estimator of Bickel (1982), and the generalized t estimator of McDonald and Newey

(1988). These improvements are only obtained under the validity of the imposed in-

dependence/symmetry assumptions; otherwise the estimators are inconsistent.

Our paper extends the above literatures by providing finite sample variance lower

bounds for unbiased estimation of linear regression coefficients without the restriction

to linear estimators and without the restriction to parametric models. Our results are

semi-parametric, imposing no restrictions on distributions beyond the existence of the

first two moments and no restriction on estimators beyond unbiasedness. Our lower

bounds generalize the classical BLUE and Gauss-Markov lower bounds, as we show that

the same bounds hold in finite samples without the restriction to linear estimators. Our

lower bounds also update the asymptotic semi-parametric lower bounds of Chamber-

lain (1987), as we show that the same bounds hold in finite samples for unbiased esti-

mators.

The results in this paper are a finite-sample version of the insight by Stein (1956)

that the supremum of Cramér-Rao bounds over all regular parametric submodels is a

lower bound on the asymptotic estimation variance. Our twist turns Stein’s insight into

a finite-sample argument, thereby constructing a lower bound on the finite-sample vari-

ance. Stein’s insight lies at the core of semi-parametric efficiency theory. Thus, our result

provides a bridge between finite-sample and semi-parametric efficiency theory.

Our primary purpose is to generalize the Gauss-Markov Theorem, providing a finite-

sample yet semi-parametric efficiency justification for least squares estimation. A by-

product of our result is the observation that it is impossible to achieve lower variance

than least squares without incurring estimation bias. Consequently, the simultaneous

goals of unbiasedness and low variance are incompatible. If estimators are low variance

(relative to least squares) they must be biased. This is not an argument against non-
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parametric, shrinkage, or machine learning estimation, but rather is a statement that

these estimation methods should be acknowledged as biased and the latter is necessary

to achieve variance reductions.

Our results (similarly to BLUE, Gauss-Markov, Aitken, and Cramér-Rao) focus on un-

biased estimators, and thereby are restricted to the special context where unbiased esti-

mators exist. Indeed, the existence of an unbiased estimator is a necessary condition for

a finite variance bound. Doss and Sethuraman (1989) showed that when no unbiased

estimator exists, then any sequence of estimators with bias tending to zero will have

variance tending to infinity. A related literature (Zyskind and Martin (1969), Harville

(1981)) concerns conditions for linear estimators to be unbiased when allowing for gen-

eral covariance matrices.

A caveat is that the class of nonlinear unbiased estimators is small. As shown by

Koopmann (1982) and discussed in Gnot, Knautz, Trenkler, and Zmyslony (1992), any

unbiased estimator of the regression coefficient can be written as a linear-quadratic

function of the dependent variable Y . Koopmann’s result shows that while nonlinear

unbiased estimators exist, they constitute a narrow class.

The literature contains papers which generalize the Gauss-Markov theorem to allow

nonlinear estimators, but all are restrictive on the class of allowed nonlinearity, and all

are restrictive on the class of allowed error distributions. For example, Kariya (1985) al-

lows for estimators where the nonlinearity can be written in terms of the least squares

residuals. Berk and Hwang (1989) and Kariya and Kurata (2002) allow for nonlinear es-

timators which fall within certain equivariant classes. Each of these papers restricts the

error distributions to satisfy a form of spherical symmetry. In contrast, the results pre-

sented in this paper do not impose any restrictions on the estimators other than unbi-

asedness, and do not impose any restrictions on the error distributions.

The proof of our main result (presented in Section 6) is not inherently difficult, but

is not elementary either. It might be described as nuanced. It is based on a trick used

by Newey (1990, Appendix B) in his development of an asymptotic semi-parametric ef-

ficiency bound for estimation of a population expectation.

2 Gauss-Markov Theorem

Let Y be an n × 1 random vector and X an n × m full-rank regressor matrix with

m < n. We will treat X as fixed, though all the results apply to random regressors by
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conditioning on X .

The linear regression model is

Y = Xβ+e (1)

E [e] = 0 (2)

var[e] = E[
ee ′]=σ2Σ<∞ (3)

where e is the n ×1 vector of regression errors. It is assumed that the n ×n matrix Σ> 0

is known while the scalar σ2 > 0 is unknown.

Let F2 be the set of joint distributions F of random vectors Y satisfying (1)-(3). This

is the set of random vectors whose expectation is a linear function of X and has a finite

covariance matrix. Equivalently, F2 consists of all distributions which satisfy a linear

regression.

The homoskedastic and serially uncorrelated linear regression model adds the as-

sumption

Σ= I n . (4)

Let F0
2 ⊂ F2 be the set of joint distributions satisfying (1)-(4). The standard estimator of

β in model F0
2 is least squares

β̂ols =
(

X ′X
)−1 (

X ′Y
)

.

For all F ∈ F2, β̂ols is unbiased for β, and for all F ∈ F0
2, β̂ols has variance var

[
β̂ols

] =
σ2

(
X ′X

)−1. The question of efficiency is whether there is an alternative unbiased esti-

mator with reduced variance.

The classical Gauss-Markov Theorem applies to linear estimators of β, which are

estimators that can be written as β̂ = A(X )Y , where A(X ) is an m ×n function of X .

Linearity in this context means “linear in Y ”.

Theorem 1 (Gauss-Markov). If β̂ is a linear estimator, and unbiased for all F ∈ F2, then

var
[
β̂
]≥σ2 (

X ′X
)−1

for all F ∈ F0
2.

In words, no unbiased linear estimator has a finite sample covariance matrix smaller
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than the least squares estimator. As this is the exact variance of the least squares esti-

mator, it follows that in the homoskedastic linear regression model, least squares is the

minimum variance linear unbiased estimator.

Part of the beauty of the Gauss-Markov Theorem is its simplicity. The only assump-

tions on the distribution concern the first and second moments of Y . The only assump-

tions on the estimator are linearity and unbiasedness. The statement in the theorem

that β̂ “is unbiased for all F ∈ F2” clarifies the context under which the estimator is re-

quired to be unbiased. The requirement that β̂ must be unbiased for any distribution

means that we are excluding estimators such as β̂ = 0, which is “unbiased” when the

true value satisfies β= 0. The estimator β̂= 0 is not unbiased in the general set of linear

regression models F2 so is not unbiased in the sense of the theorem.

An unsatisfying feature of the Gauss-Markov Theorem is that it restricts attention to

linear estimators. This is unnatural as there is no reason to exclude nonlinear estimators.

Consequently, when the Gauss-Markov Theorem is taught it is typically followed by the

Cramér-Rao Theorem.

Let Fφ2 ⊂ F0
2 be the set of joint distributions satisfying (1)-(4) plus e ∼ N(0, I nσ

2).

Theorem 2 (Cramér-Rao). If β̂ is unbiased for all F ∈ Fφ2 , then

var
[
β̂
]≥σ2 (

X ′X
)−1

for all F ∈ Fφ2 .

The Cramér-Rao Theorem shows that the restriction to linear estimators is unnec-

essary in the class of normal regression models. To obtain this result, in addition to

the Gauss-Markov assumptions, the Cramér-Rao Theorem adds the assumption that

the observations are independent and normally distributed. The normality assumption

is restrictive, however, so neither the Gauss-Markov nor Cramér-Rao Theorem is fully

satisfactory. Consequently, the two are typically taught as a pair with the joint goal of

justifying the variance lower bound σ2
(

X ′X
)−1 and hence least squares estimation.

Closely related to the Gauss-Markov Theorem is the generalization by Aitken (1935)

to the context of general covariance matrices. In the linear regression model with non-

scalar covariance matrix Σ, Aitken’s generalized least squares (GLS) estimator is

β̂gls =
(

X ′Σ−1X
)−1 (

X ′Σ−1Y
)

.
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For all F ∈ F2, β̂gls is unbiased for β and has variance var
[
β̂gls

] = σ2
(

X ′Σ−1X
)−1

. The

question of efficiency is whether there is an alternative unbiased estimator with smaller

variance. Aitken’s Theorem follows Gauss-Markov in restricting attention to linear esti-

mators.

Theorem 3 (Aitken). If β̂ is a linear estimator, and unbiased for all F ∈ F2, then

var
[
β̂
]≥σ2 (

X ′Σ−1X
)−1

for all F ∈ F2.

Aitken’s Theorem is less celebrated than the traditional Gauss-Markov Theorem, but

perhaps is more illuminating. It shows that, in general, the variance lower bound equals

the covariance matrix of the GLS estimator. Thus, in the general linear regression model,

generalized least squares is the minimum variance linear unbiased estimator. Aitken’s

theorem, however, rests on the restriction to linear estimators just as the Gauss-Markov

Theorem. In the context of independent observations, Aitken’s bound corresponds to

the asymptotic semi-parametric efficiency bound established by Chamberlain (1987).

The development of least squares and the Gauss-Markov Theorem involved a series

of contributions from some of the most influential probabilists of the nineteenth thru

early twentieth centuries. The method of least squares was introduced by Adrien Marie

Legendre (1805) as essentially an algorithmic solution to the problem of fitting coeffi-

cients when there are more equations than unknowns. This was quickly followed by

Carl Friedrich Gauss (1809), who provided a probabilistic foundation. Gauss proposed

that the equation errors be treated as random variables, and showed that if their den-

sity takes the form we now call “normal” or “Gaussian” then the maximum likelihood

estimator of the coefficient equals the least squares estimator. Shortly afterward, Pierre

Simon Laplace (1811) justified this choice of density function by showing that his central

limit theorem implied that linear estimators are approximately normally distributed in

large samples, and that in this context the lowest variance estimator is the least squares

estimator. Gauss (1823) synthesized these results and showed that the core result only

relies on the first and second moments of the observations and holds in finite samples.

Andreı̆ Andreevich Markov (1912) provided a textbook treatment of the theorem, and

clarified the central role of unbiasedness, which Gauss had only assumed implicitly. Fi-

nally, Alexander Aitken (1935) generalized the theorem to cover the case of arbitrary but
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known covariance matrices. This history, and other details, are documented in Plackett

(1949) and Stigler (1986).

3 Modern Gauss-Markov

We now present our main result. We are interested if Aitken’s version of the Gauss-

Markov Theorem holds without the restriction to linear estimators.

Theorem 4 If β̂ is unbiased for all F ∈ F2, then

var
[
β̂
]≥σ2 (

X ′Σ−1X
)−1

for all F ∈ F2.

We provide a sketch of the proof in Section 4 and a full proof in Section 6.

Theorem 4 is identical to Theorem 3, but without the limitation to linear estimators.

Theorem 4 is a strict improvement, as no additional condition is imposed. This shows

that the GLS estimator is the minimum variance unbiased estimator (MVUE) of β.

We can specialize to the context of homoskedastic and serially uncorrelated obser-

vations.

Theorem 5 If β̂ is unbiased for all F ∈ F2, then

var
[
β̂
]≥σ2 (

X ′X
)−1

for all F ∈ F0
2.

Theorem 5 is identical to Theorem 1, but without the limitation to linear estimators.

Again, this is a strict improvement. The implication is that in the homoskedastic linear

regression model, ordinary least squares is the MVUE of β.

Theorem 5 is also an improvement on Theorem 2 as it lifts the normality assump-

tion of the normal regression model. It is not a strict improvement, however, as the

Cramér-Rao Theorem only requires the estimator to be unbiased in the class of normal

regression models, while Theorem 5 requires unbiasedness for all regression models.

An important special case of Theorem 5 is estimation of the population expectation.

This is the linear regression model where X only contains a vector of ones.
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Assume that the elements of Y have a common expectationµwith covariance matrix

Σσ2. Equivalently, assume E [Y ] = 1nµ and var[Y ] = Σσ2, where 1n is a vector of ones.

Let G2 be the set of joint distributions F of random vectors Y satisfying these conditions,

and let G0
2 be the subset with Σ = I n . G0

2 is the set of uncorrelated random variables

with a common variance. The standard estimator of µ is the sample mean Y , which is

unbiased and has variance var[Y ] =σ2/n for F ∈ G0
2.

Theorem 6 If µ̂ is unbiased for all F ∈ G2, then var
[
µ̂
]≥σ2/n for all F ∈ G0

2.

As the lower bound σ2/n equals var[Y ], we deduce that the sample mean is the

MVUE of µ. Equivalently, the sample mean is the best unbiased estimator (BUE) – there

is no need for the classical “linear” modifier.

Essentially, Theorems 4, 5, and 6 show that we can drop the label “linear estima-

tor” from the pedagogy of the Gauss-Markov Theorem. Instead, GLS, OLS, and sample

means are the best unbiased estimators of their population counterparts.

4 A Sketch of the Proof

In this section we give an simplified proof of Theorem 4, deferring a complete argu-

ment to Section 6.

For simplicity, suppose that the joint distribution F (y) of the n ×1 random vector Y

has a density f (y) with bounded support Y . Without loss of generality assume that the

true coefficient equals β0 = 0 and that σ2 = 1. We use here the assumption of bounded

support to simplify the proof; it is not used in the complete proof of Section 6.

Because Y has bounded support Y there is a set B ⊂Rm such that
∣∣y ′Σ−1Xβ

∣∣< 1 for

all β ∈ B and y ∈Y . For such values of β, define the auxiliary density function

fβ(y) = f (y)
(
1+ y ′Σ−1Xβ

)
. (5)

Under the assumptions, 0 ≤ fβ(y) ≤ 2 f (y), fβ(y) has support Y , and
∫
Y fβ(y)d y = 1. To

see the later, observe that
∫
Y y f (y)d y = Xβ0 = 0 under the normalization β0 = 0, and

thus ∫
Y

fβ(y)d y =
∫
Y

f (y)d y +
∫
Y

f (y)y ′d yΣ−1Xβ= 1

because
∫
Y f (y)d y = 1. Thus fβ is a parametric family of density functions with an as-

sociated distribution function Fβ. Evaluated at β0 we see that f0 = f , which means that
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Fβ is a correctly-specified parametric family with true parameter value β0 = 0.

To illustrate, take the case of a single observation with X = 1. Figure 1(a) displays an

example density f (y) = (3/4)(1− y2) on [−1,1] with auxiliary density fβ(y) = f (y)
(
1+ y

)
.

We can see how the auxiliary density is a tilted version of the original density f (y).

β0 β

f(y)
fβ(y)

(a) True and Auxiliary Densities

F2

F0

Fβ

(b) Space of Distribution Functions

Figure 1: Illustrations

Let Eβ denote expectation with respect to the auxiliary distribution. Because
∫
Y y f (y)d y =

0 and
∫
Y y y ′ f (y)d y =Σ, we find

Eβ [Y ] =
∫
Y

y fβ(y)d y =
∫
Y

y f (y)d y +
∫
Y

y y ′ f (y)d yΣ−1Xβ= Xβ.

This shows that Fβ is a regression model with regression coefficient β.

In Figure 1(a), the means of the two densities are indicated by the arrows to the x-

axis. In this example we can see how the auxiliary density has a larger expected value,

because the density has been tilted to the right.

The parametric family Fβ over β ∈ B has the following properties: its expectation

is Xβ, its variance is finite, the true value β0 lies in the interior of B , and the support

of the distribution does not depend on β. To visualize, Figure 1(b) displays the space of

finite-variance distributions F2 by the large circle. The dot indicates the true distribution

F = F0. The curved line represents the distribution family Fβ. This family Fβ is a sliver in

the space of distributions F2 but includes the true distribution F .
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The likelihood score of the auxiliary density function is

S = ∂

∂β
log fβ(Y )

∣∣∣∣
β=0

= ∂

∂β

(
log f (Y )+ log

(
1+Y ′Σ−1Xβ

))∣∣∣∣
β=0

= X ′Σ−1Y . (6)

Therefore the information matrix is

I = E[
SS′]= X ′Σ−1E

[
Y Y ′]Σ−1X = X ′Σ−1X .

By assumption, β̂ is unbiased for all finite-variance distributions (the large circle in

Figure 1(b)). This means that β̂ is unbiased in the subset Fβ (the curve in Figure 1(b)).

The Cramér-Rao lower bound states that

var
[
β̂
]≥I−1 = (

X ′Σ−1X
)−1

.

This is the variance lower bound, completing the proof.

Some explanation may help as the argument may appear to have pulled the prover-

bial “rabbit out of the hat”. Somehow we deduced a general variance lower bound, even

though we only examined a rather artificial-looking auxiliary model. A key insight due

to Stein (1956) is that the supremum of Cramér-Rao bounds over all regular parametric

submodels is a lower bound on the variance of any unbiased estimator. Stein’s insight

focused on asymptotic variances, but the same argument applies to finite sample vari-

ances, because the Cramér-Rao bound is a finite sample result. A corollary of Stein’s

insight is that the Cramér-Rao bound of any single regular parametric submodel is a

valid lower bound on the variance of any unbiased estimator. If this submodel is se-

lected judiciously, its Cramér-Rao bound will equal the supremum over all submodels,

and this holds when this Cramér-Rao bound equals the known finite-sample variance of

a candidate efficient estimator, which in our case is the GLS estimator.

Another way of looking at this is as follows. Because Fβ ⊂ F2, estimation over Fβ

cannot be harder than estimation over the full set F2. Thus the variance from estimation

over Fβ cannot be larger than estimation over F2. This means that Cramér-Rao bound

for Fβ is a lower bound for the full set F2.

This raises the question: How was the density (5) constructed? The trick is to con-

struct a density which (i) includes the true density as a special case, (ii) is a regression

model, and (iii) its Cramér-Rao bound equals the variance of the GLS estimator. The

key is (6), which shows that the likelihood score of (5) is proportional to the score of the
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normal regression model with covariance matrix Σ. This was achieved by constructing

(5) to be proportionate to the normal regression score.

5 Conclusion

A core question in econometric methodology is: Why do we use specific estimators?

Why not others? A standard answer is efficiency: the estimators are best (in some sense)

among all estimators (in a class) for all data distributions (in some set). The Gauss-

Markov Theorem is a core efficiency result but restricts attention to linear estimators –

and this is an inherently uninteresting restriction. The present paper lifts this restric-

tion without imposing additional cost. Henceforth, least squares should be described

as the “best unbiased estimator” of the regression coefficient; the “linear” modifier is

unnecessary.

6 Proof of Theorem 4

We provide a proof of Theorem 4. Theorems 5 and 6 are special cases, so follow as

corollaries.

Proof of Theorem 4: Our approach is to calculate the Cramér-Rao bound for a carefully

crafted parametric model. This is based on an insight of Newey (1990, Appendix B) for

the simpler context of a population expectation.

Without loss of generality, assume that the true coefficient equals β0 = 0 and that

σ2 = 1. These are merely normalizations which simplify the notation.

Define the truncation function Rn →Rn

ψc (y) = y1
{∥∥y

∥∥≤ c
}−E [Y 1 {‖Y ‖ ≤ c}] . (7)

Notice that it satisfies E
[
ψc (Y )

]= 0,

∥∥ψc (y)
∥∥≤ 2c, (8)

and

E
[
Y ψc (Y )′

]= E[
Y Y ′1 {‖Y ‖ ≤ c}

] def= Σc .
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As c → ∞, Σc → E
[
Y Y ′] = Σ. Pick c sufficiently large so that Σc > 0, which is feasible

because Σ> 0.

Define the auxiliary joint distribution function Fβ(y) by the Radon-Nikodym deriva-

tive
dFβ

(
y
)

dF
(

y
) = 1+ψc (y)′Σ−1

c Xβ

for parameters β in the set

Bc =
{
β ∈Rm :

∥∥Σ−1
c Xβ

∥∥≤ 1

4c

}
. (9)

The Schwarz inequality and the bounds (8) and (9) imply that for β ∈ Bc and all y

∣∣ψc (y)′Σ−1
c Xβ

∣∣≤ ∥∥ψc (y)
∥∥∥∥Σ−1

c Xβ
∥∥≤ 1

2
.

This implies that Fβ has the same support as F and satisfies the bounds

1

2
≤ dFβ

(
y
)

dF
(

y
) ≤ 3

2
. (10)

We calculate that ∫
dFβ

(
y
)= ∫

dF
(

y
)+∫

ψc (y)′Σ−1
c XβdF

(
y
)

= 1+E[
ψc (Y )

]′
Σ−1

c Xβ

= 1 (11)

the last equality because E
[
ψc (Y )

] = 0. Together, these facts imply that Fβ is a valid

distribution function, and over β ∈ Bc is a parametric family for Y . Evaluated at β0 = 0,

which is in the interior of Bc , we see F0 = F . This means that Fβ is a correctly-specified

parametric family with the true parameter value β0.

Let Eβ denote expectation under the distribution Fβ. The expectation of Y in this
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model is

Eβ [Y ] =
∫

ydFβ
(

y
)

=
∫

ydF
(

y
)+∫

yψc (y)′Σ−1
c XβdF

(
y
)

= E [Y ]+E[
Y ψc (Y )′

]
Σ−1

c Xβ

= Xβ (12)

because E [Y ] = 0 and E
[
Y ψc (Y )′

]=Σc . Thus, distribution Fβ is a linear regression with

regression coefficient β.

The bound (10) implies

Eβ
[‖Y ‖2]= ∫ ∥∥y

∥∥2 dFβ
(

y
)≤ 3

2

∫ ∥∥y
∥∥2 dF

(
y
)= 3

2
E
[‖Y ‖2]= 3

2
tr(Σ) <∞.

This means that Fβ ∈ F2 for all β ∈ Bc .

The likelihood score for Fβ is

S = ∂

∂β
log

dFβ (Y )

dF (Y )

∣∣∣∣
β=0

= ∂

∂β
log

(
1+ψc (Y )′Σ−1

c Xβ
)∣∣∣∣
β=0

= X ′Σ−1
c ψc (Y ).

The information matrix is

Ic = E
[
SS′]

= X ′Σ−1
c E

[
ψc (Y )ψc (Y )′

]
Σ−1

c X

≤ X ′Σ−1
c X , (13)

where the inequality is

E
[
ψc (Y )ψc (Y )′

]=Σc −E [Y 1 {‖Y ‖ ≤ c}]E [Y 1 {‖Y ‖ ≤ c}]′ ≤Σc .

By assumption, the estimator β̂ is unbiased for β for all F ∈ F2, which implies that it

is unbiased for all F ∈ Fβ. The model Fβ is regular (it is correctly specified as it contains
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the true distribution F , the support of Y does not depend on β, and the true value β0 = 0

lies in the interior of Bc ). Thus by the Cramér-Rao Theorem (see, for example, Theorem

10.6 of Hansen (2022))

var
[
β̂
]≥I−1

c ≥ (
X ′Σ−1

c X
)−1

where the second inequality is (13). Because this holds for all c, and Σc →Σ as c →∞,

var
[
β̂
]≥ limsup

c→∞
(

X ′Σ−1
c X

)−1 = (
X ′Σ−1X

)−1
.

This is the variance lower bound. ■
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