Corrections to *Population Games and Evolutionary Dynamics* (MIT Press, 2010)

p xxi fig 1 “Sec. 12.5 only” → “Sec. 12.6 only”
p 17 l16 “chapter 5” → “chapter 4”
p 37 fig 2.9 the axis labels should be x_H and x_D
p 64 l8 \mathbb{R}_+^n → X
p 64 l16&17 this should say “...a potential game with a concave potential function, whose set of Nash equilibria is therefore convex.”
p 94 l-5 the line should end with $x, y \in X$
p 94 l-1 the first $\hat{\Sigma}$ should be $\tilde{\Sigma}$
p 99 l2 $j \min b(x) \rightarrow j = \min b(x)$
p 123 l-2 $F \rightarrow F$
p 134 $e \rightarrow e$ (twice)
p 141 l3 “interpretation” → “interpretation”
p 166 l10 $\pi_i^p(x) \rightarrow \pi_i^p$
p 172 l-14 after the comma, add “let $F(x)$ denote the distribution function of ϵ_i, and”
p 208 l8 $|y_s - x_s| \rightarrow |y_s - x_s|^2$
p 227 l-10 “That \hat{f}” → “That \check{f}”
p 235 l-16 end this with “dynamics with protocols of the form”
p 236 l12 end this with “for this dynamic with $\varepsilon = \frac{1}{10}$”
p 262 l4 $t_n \rightarrow t_k$
p 262 l5 $\sum_{j=1}^k t_i \rightarrow \sum_{i=1}^k t_i$; also, $x_j \rightarrow x_i$
p 262 l-10 replace this with “...embed this flow in the plane as an asymptotically stable homoclinic orbit whose rest point is attracting but not asymptotically stable.”
p 269 l8 “also they” → “they also”
p 281 l-12 “equilibrium” → “equilibrium”
p 310 l7 in the bottom row of the last matrix, ξ_1 should be ξ_2
p 329 l16 “important” → “importantly”
p 333 l4 “sufficently” → “sufficently”
p 337 l-11 $\hat{V}(y) = h(V(h^{-1}(y))) \rightarrow \hat{V}(y) = MV(h^{-1}(y))$
p 353 l-6 omit “and the Poincaré-Bendixson Theorem”
p 389 l-10 $X^N \rightarrow X^N_t$
p 395 l-14 “Sahdholm” → “Sandholm” (!)

-1-
the summand should be \((F_N^1(i/N, N-i/N) - F_N^0(i-1/N, N-i+1/N))\)

\(f \rightarrow f^N\); \(\tilde{f} \rightarrow \tilde{f}^N\)

the last paragraph of the proof of Theorem 12.2.2 can be replaced by the observation that \(\log \mu_{N,\eta}^{x}\) is always nonpositive (since \(\mu_{N,\eta}^{x}\) is a probability)

\(\Delta_f \rightarrow F_\Delta\)

\([0, \varepsilon] \rightarrow (0, \varepsilon]\) (twice)

for all \(i, j, k \in S\) \(\rightarrow\) for all distinct \(i, j, k \in S\) (and hence for all \(i, j, k \in S\) with \(i \neq j\) and \(i \neq k\) (why?))

“Theory” \(\rightarrow\) “The Theory”

81–108 \(\rightarrow\) 667–689

“upperhemicontinuous” \(\rightarrow\) “upper-hemicontinuous”