Lecture 4: Consumption-Savings Problem

Under Uncertainty

Economics 714, Spring 2016

1 Consumption-Savings Problem under Uncertainty

1.1 Basic Problem

$$\max_{\{c_t, a_{t+1}\}} E_0 \sum_{t=0}^{\infty} \beta^t u(c_t)$$

s.t. $c_t + a_{t+1} = Ra_t + y_t$

a_0, y_0 given.

Constraints: $c_t \geq 0, \ a_t \geq a$. Debt limit.

Income y stochastic: $y \in Y \subseteq \mathbb{R}_+$ compact, Borel σ-algebra \mathcal{Y}.

y follows Markov process w/transition function Q on (Y, \mathcal{Y}).

Assume Q has **Feller property**: for $f : Y \to \mathbb{R}$ bounded, continuous then:

$$E[f(y')|y] = \int f(y') Q(y, dy')$$

is bounded and continuous

State space: assets $a \in A = [a, \infty)$, Borel σ-algebra \mathcal{A}.

Joint state space $(a, y) \in X = A \times Y$ with Borel σ-algebra \mathcal{X}.

Feasible correspondence:

$$\Gamma(x) = \{(c, a') : c + a' \leq Ra + y, \ c \geq 0, \ a' \geq a\}$$
1.2 Sequence Problem

At each date \(c_t : Y^t \rightarrow \mathbb{R}_+ \), measurable (w.r.t \(Y^t \)).

\(a_{t+1} : Y^t \rightarrow \mathbb{R}_+ \), measurable (w.r.t \(Y^t \))

\(v^*(a_0, y_0) = \sup_{\{c_t(Y^t), a_{t+1}(Y^t)\}} \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t) \]
\(= \sup_{\{c_t(Y^t), a_{t+1}(Y^t)\}} \int_{\sum_{t=0}^{\infty} \beta^t u(c_t(Y^t)) Q(y_t, dy_{t+1}) Q(y_{t-1}, dy_t) \cdots Q(y_0, dy_1)} \)

1.3 Bellman Equation

\(v(a, y) = \max_{(c,a') \in \Gamma(a,y)} \left\{ u(c) + \beta \int v(a', y') Q(y, dy') \right\} \)

Extensions of the previous results apply, principle of optimality is direct.

Define Bellman operator as before:

\(T f(a, y) = \max_{(c,a') \in \Gamma(a,y)} \left\{ u(c) + \beta \int f(a', y') Q(y, dy') \right\} \)

Theorem: Under the assumptions here \(T : C(X) \rightarrow C(X) \) is a contraction, and hence has a unique fixed point \(v \in C(X) \) and for all \(v_0 \in C(X) \):

\(\| T^n v_0 - v \| \leq \beta^n \| v_0 - v \| \)

Moreover, the optimal policy correspondence:

\(G(x) = \{(c, a') \in \Gamma(a, y) : v(a, y) = u(c) + \beta \int v(a', y') Q(y, dy')\} \)

is compact-valued and uhc.

In addition, under our standing assumptions we have the stronger results.
Theorem: (i) \(v(a, y) \) is strictly increasing in \(a \)

(ii) \(v(a, y) \) is strictly concave in \(a \) and the optimal policy functions \(c(a, y) \) and \(a'(a, y) \) are continuous.

(iii) If \((a_0, y_0) \in \text{int}(X) \) and \((c(a_0, y_0), a'(a_0, y_0)) \in \text{int}\Gamma(a_0, y_0) \) then \(v \) is continuously differentiable (in \(a \)) at \((a_0, y_0) \) and:

\[
v_a(a_0, y_0) = Ru'(c(a_0, y_0)) = Ru'(Ra + y - a'(a_0, y_0))
\]

1.4 Euler Equations

If the constraints don’t bind:

\[
v(a, y) = \max_{(c,a') \in \Gamma(a,y)} \left\{ u(c) + \beta \int v(a', y') Q(y, dy') \right\}
\]

First order condition:

\[
u'(c) = \beta \int v_a(a', y') Q(y, dy')
\]

Envelope condition:

\[
v_a(a, y) = Ru'(c)
\]

So we have the (stochastic) Euler equation:

\[
u'(c(a, y)) = \beta R \int u'(c'(a'(a, y), y')) Q(y, dy')
\]

Or:

\[
u'(c_t) = \beta RE_t u'(c_{t+1})
\]
2 GE: Arrow-Debreu Complete Markets Model

Markov state s_t, assume finite with transition function $P(s'|s)$.

Implies probabilities of any sequence $s^t = \{s_0, \ldots, s^t\}$:

$$P(s^t|s_0) = P(s_t|s_{t-1})P(s_{t-1}|s_{t-2})\ldots P(s_1|s_0)$$

Agents: $i = 1, \ldots I$. Endowments: $y_i^t = y^t(s_t)$.

Preferences:

$$U^i(c^t) = \sum_{t=0}^{\infty} \sum_{s^t} (\beta_i)^t u^t(c^t_i(s^t))P(s^t|s^0)$$

Arrow-Debreu complete markets: trade dated, state-contingent consumption claims at date 0, price $q_0^0(s^t))$

Budget constraint:

$$\sum_{s^t} q_0^0(s^t)c^t_i(s^t) \leq \sum_{t=0}^{\infty} \sum_{s^t} q_0^0(s^t)y^t(s_t)$$

Feasible allocation:

$$\sum_{i=1}^{I} c^t_i(s^t) \leq \sum_{i=1}^{I} y^t(s_t), \quad \forall s^t.$$

A competitive equilibrium is a price system $\{q_0^0(s^t)\}$ and an allocation $\{c^t_i(s^t)\}$ s.t.:

(i) Households optimize, and (ii) markets clear.

Each household solves single optimization problem. Representative first order condition:

$$(\beta_i)^t u^t_i(c^t_i(s^t))P(s^t|s_0) = \mu^i q_0^0(s^t)$$

Cross sectionally:

$$\frac{(\beta_i)^t u^t_i(c^t_i(s^t))}{(\beta_j)^t u^t_j(c^t_j(s^t))} = \frac{\mu^i}{\mu^j}$$