COMMENTS ON
On the Unstable Relationship between Exchange Rates and Macroeconomic Fundamentals

by Philippe Bacchetta and Eric van Wincoop

Kenneth Kasa¹

¹Department of Economics
Simon Fraser University

January 7, 2011
Main Idea

Rational Confusion

Unobserved Fundamentals + Unobserved Time-Varying Parameters on Observed Fundamentals

⇒ Estimated coefficients on observed fundamentals can change even when there is no underlying change in the parameters

⇒ ‘Scapegoat Effects’
GENERAL COMMENTS

1. Nice idea.

2. Intuitively plausible.

3. Analysis seems like it could be simplified.
Simplification Strategies

1. Express model in State-Space form and apply recursive nonlinear filtering methods.
 - Zakai/Kushner Equations.
 - The extended Kalman filter.

Comments on On the Unstable Relationship between Exchange Rates

By Philippe Bacchetta and Eric Van Wincoop
Simplification Strategies

1. Express model in State-Space form and apply recursive nonlinear filtering methods.
 - Zakai/Kushner Equations.
 - The extended Kalman filter.

2. Are time-varying parameters and unobserved fundamentals even necessary to generate scapegoat effects?
 - Perceived vs. Actual TVP.
 - Learning Cycles. (Sargent & Williams (RED, 2005)).
The Extended Kalman Filter

Model: \[E_{t} s_{t+1} = \mu s_t + f_t + b_t \quad \mu > 1 \]
\[f_{t+1} = \beta_t f_t + \varepsilon_{1,t+1} \]
\[\beta_{t+1} = \alpha \beta_t + \varepsilon_{3,t+1} \]

Let \(X_{t+1} = (f_{t+1}, E_t s_{t+1}, \beta_{t+1}, b_{t+1})' \) and \(Y_t = (f_t, s_t)' \).

Then model can be written as:

\[
X_{t+1} = F(X_t) + C\varepsilon_{t+1} \\
Y_{t+1} = GX_t + D\varepsilon_{t+1}
\]

Key Idea: Recursively linearize the system around current state estimate in order to update state estimates, but propagate the system forward using the original nonlinear system.
A SIMULATION

\[\mu = 1.03 \quad \alpha = 0.95 \quad \gamma = 0.95 \quad \sigma_1 = 0.03 \quad \sigma_3 = 0.01 \]

![Graph showing Actual beta (blue) vs Estimated beta (red)]

\[\sigma_\beta = 0.029 \]
\[\sigma_\beta \text{ hat} = 0.044 \]
Learning Cycles

Model:

\[s_t = \lambda E_t s_{t+1} + \beta_1 f_{1,t} + \beta_2 f_{2,t} \]

\[
\begin{pmatrix}
 f_{1,t} \\
 f_{2,t}
\end{pmatrix}
= \begin{pmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
 f_{1,t-1} \\
 f_{2,t-1}
\end{pmatrix}
+ \begin{pmatrix}
 \epsilon_{1,t} \\
 \epsilon_{2,t}
\end{pmatrix}
\]

Note: \(\beta_1 \) and \(\beta_2 \) are constant and \(f_t \) is observed

PLM:

\[
s_t = b_1 f_{1,t} + b_2 f_{2,t} + \epsilon_t
\]

\[
b_t = b_{t-1} + v_t \quad \text{var}(v_t) = V
\]

MeanODEs:

\[
\dot{b} = Pg(b)
\]

\[
\dot{P} = \sigma_\epsilon^{-2}V - PMP
\]
A SIMULATION

\[
\begin{align*}
\lambda &= .95 & \beta_1 &= .6 & \beta_2 &= .4 & a_{11} &= a_{22} = .9 & a_{21} &= -.35
\end{align*}
\]
Parameter Uncertainty vs. Model Uncertainty

- Markiewicz (2010), “Monetary Policy, Model Uncertainty and Exchange Rate Volatility”