Outline

• The determinants of economic growth
• Full employment and potential GDP
• The Solow growth model
4.1 The Determinants of Economic Growth

- Labor
- Capital
- Technology
The Production Function

• How much output can be produced from given amounts of labor, capital and technology

\[Y = F(N,K,A) \]

• It depends on labor for a given capital stock and a given level of technology
FIGURE 4.1 The Production Function in Terms of Labor Input
4.2 Full Employment and Potential GDP

- The growth model assumes that the economy is at full employment:
 \[\text{Demand for Labor} = \text{Supply of Labor} \]

- **Potential GDP** = amount of production when labor is fully employed

- To determine potential GDP
 - Calculate \(N \) corresponding to full employment
 - Consider \(A \) and \(K \) given – find \(N \)
Potential GDP

$Y^* = F(N^*, K, A)$

= amount of output produced when the labor market is at full employment
= full employment level of output

- Link to chapter 1: we found that potential GDP grows steadily, while actual GDP fluctuates around a growth trend.
- Link to chapter 3: the natural rate of unemployment (U^*) is the amount of unemployment in the economy when employment is at full employment (N^*) and GDP is equal to potential GDP (Y^*).
Positive Supply Side Shock
Outline

• The Growth Accounting Formula
• Endogenous Growth Theory
• Policies to Stimulate Growth
• The Neoclassical Growth Revival
• Real wages and Labor Productivity
• Productivity and the New Economy
5.1. The Growth Accounting Formula

• Framework that can be used to determine the contribution of labor, capital and technological change to economic growth:
- Rate of growth of output = technology growth + weighted rates of growth of labor and capital (growth accounting formula)

\[
\frac{\Delta Y}{Y} = \frac{\Delta A}{A} + \frac{0.7\Delta N}{N} + \frac{0.3\Delta K}{K}
\]

slide 9
Historical Growth Accounting

• The formula can be used to determine the contributions of each factor in the long-term growth in the US in the last 35 years.
FIGURE 5.1 Sources of Growth
Policies to Stimulate Capital Formation

• Government policy has historically concentrated on capital formation

• A rising capital stock adds to economic growth (see the growth formula)

• An extra 1% of capital growth adds 0.3% point to growth in output. To get an added 1% of growth in output, the capital stock would have to grow 3.3% per year.
Policies to Stimulate Capital Formation

• 1% more growth would restore growth rate from 1960s, increase living standards, and bring additional technical innovations – leading to more growth.

• Increased growth in capital stock requires increased investment spending; this occurs only if we reduce consumption, government purchases, or net exports.
Policies to Stimulate Capital Formation

Ex: 1962 President Kennedy sponsored a new investment tax credit – investment increased 30%

Feasible but not sustainable – investment declined to normal levels: growth in capital stock of 7% in 1966, then 5% in 1974, then between 1 and 4% from 1975-1982 (same investment tax credit)
Policies to Increase Labor Supply

• An extra 1% of employment growth adds 0.7% to output growth. Or, to get an added 1% of output growth, it takes 1.4% of added employment growth.
Policies to Increase Labor Supply

• Increased employment growth through:

 a. reduction in income tax rates
 - increases the incentives to work by increasing the wage
 - makes people better off – which depresses labor supply
 - net effect is small
FIGURE 5.5 Shift in Labor Supply from a Tax Cut
Policies to Increase Labor Supply

• Increased employment growth through:

b. Tax reform
 - change the marginal rates and average tax rates without changing average income
Ex: change the amount of deductions = change the average rate
- not an incentive for leisure
From GDP Growth to Per Capita Growth

\[
\frac{\Delta Y}{Y} = \frac{\Delta A}{A} + 0.7 \left[\frac{\Delta N}{N} \right] + 0.3 \left[\frac{\Delta K}{K} \right]
\]

(5.12)

\[
(\frac{\Delta Y}{Y}) - (\frac{\Delta N}{N}) = \frac{\Delta A}{A} + 0.3 \times \left[\frac{\Delta K}{K} - \frac{\Delta N}{N} \right]
\]
Detail of the Acceleration

Figure 2
Contributions to Labor Productivity Growth and Relative Changes in Semiconductor Prices

Source: Productivity data, Dan Sichel (via e-mail); semiconductor prices, BLS.
Will the Acceleration Continue?

Figure 1
Labor productivity (year-over-year growth)

Nonfinancial corporations
Nonfarm business