The Optimal Capital Stock

\[K_t = (R_t + d_t)P_t^K \]

\[R_t^K = (R_t + d_t)P_t^K - \Delta P_t^K \]

\[R_t^K = (R_t - \pi_t^K + d_t)P_t^K \]

Where

\[\pi_t^K = \frac{P_t^K - P_{t-1}^K}{P_t^K} \]

Relating the Optimal Capital Stock to Investment

\[K_t^* = 0.5 \left(\frac{W_t}{R_t^K} \right) Y_t \]
The definition of investment is:
(11.4) \(I_t \equiv K_t - K_{t-1} \)
Assume actual investment undertaken is a function of desired capital stock relative to the previous capital stock:
(11.5) \(I_t = K^*_t - K_{t-1} \)
Substituting in the optimal capital stock yields:
(11.6) \(I_t = 0.5 \left(\frac{W_t}{R^K_t} \right) Y_t - K_{t-1} \)
If \(v = 0.5 \left(W / R^K \right) \), and the capital stock always equals the optimal capital stock, then:
(11.8) \(I_t = vY_t - vY_{t-1} = v\Delta Y_t \)
If there are lags in putting into place the capital stock, then one obtains a partial adjustment model:
(11.9) \(I_t = s(K^*_t - K_{t-1}) \)
Where \(s \) is the fraction of the gap between desired and lagged capital stock put in place each period.

\textbf{Tax Policy and the Capital Stock}

Let \(u \) be the tax rate on rental income (related to the corporate tax rate), and \(z \) is the investment incentive for each dollar of capital purchased (investment tax credit, accelerated write-offs or “depreciation for tax purposes”). Then firms equate:
(11.10) \((1-u)R_t^K = (R_t + d)(1-z_t)P^K_t \), (11.11) \(R^K_t = \frac{(R_t + d)(1-z_t)P^K_t}{(1-u_t)} \)

\textbf{Housing}