Chapter 11: Applying the IS / LM Model

Consider the IS / LM model.
Consumption function:
\[C = a + b(Y - T) \] (1)
Investment function:
\[I = c - dr \] (2)
Real money demand:
\[L(r, Y) = l_1 Y - l_2 r \] (3)
Parameters:
\(a > 0, \ 0 < b < 1, \ c > 0, \ d > 0, \ l_1 > 0, \ l_2 > 0 \)

Given the information above, please answer the following questions:

a) Given equations (1) and (2), solve for \(Y \) as a function of \(r, \ G, \ T \), and parameters (IS curve).
\[
Y = C + I + G \\
Y = (a + b(Y - T)) + (c - dr) + G \\
Y(1 - b) = a - bT + c - dr + G \\
Y = \frac{1}{1 - b}[a - bT + c - dr + G]
\]

b) How does the slope of the IS curve depend on \(d \), the interest rate sensitivity of investment?
\[
m_{IS} \equiv \frac{\partial Y}{\partial r} = \frac{-d}{1 - b} \\
\frac{\partial}{\partial d} m_{IS} = -\frac{1}{1 - b} < 0
\]

c) Which will cause a larger horizontal shift in the IS curve, a $100 tax cut or a $100 increase in government spending?
\[
|\frac{\partial Y}{\partial T}| = |\frac{-b}{1 - b}| = \frac{b}{1 - b} \\
|\frac{\partial Y}{\partial G}| = |\frac{1}{1 - b}| = \frac{1}{1 - b} \\
0 < b < 1 \Rightarrow |\frac{\partial Y}{\partial G}| > |\frac{\partial Y}{\partial T}|
\]

Provided that \(\Delta G = -\Delta T \), \(\Delta G \) shifts the IS curve more than \(\Delta T \).
d) Given equation (3), solve for r as a function of Y, M, P, and parameters (LM curve).

\[
\left(\frac{M}{P} \right)^d = L(r, Y) = l_1 Y - l_2 r
\]
\[
\left(\frac{M}{P} \right) = \frac{M}{P}
\]
\[
\left(\frac{M}{P} \right)^d = \left(\frac{M}{P} \right)^s \Rightarrow l_1 Y - l_2 r = \frac{M}{P}
\]
\[
r = \frac{1}{l_2} [l_1 Y - \frac{M}{P}]
\]

e) Using your answer from the previous part, how does the slope of the LM curve depend on l_2, the interest rate sensitivity of real money demand?

\[
m_{LM} = \frac{\partial r}{\partial Y} = \frac{l_1}{l_2}
\]
\[
\frac{\partial}{\partial l_2} m_{LM} = -\frac{l_1}{(l_2)^2} < 0
\]

$l_2 \uparrow \Rightarrow m_{LM} \downarrow$ (flatter)

$l_2 \uparrow \Rightarrow$ money demand more sensitive to real interest rates $\Rightarrow r$ responds less strongly to changes in income to achieve money market equilibrium; with some ΔY, smaller Δr needed to return to equilibrium

e) How does the size of the shift in the LM curve resulting from a 100 increase in M depend on l_1? What about l_2?

\[
\mu = \frac{\partial r}{\partial M} = -\frac{1}{P l_2}
\]
\[
\frac{\partial}{\partial l_1} \mu = 0
\]
\[
\frac{\partial}{\partial l_2} \mu = \frac{1}{P (l_2)^2} > 0
\]
g) Use your answers from parts (a) and (d) to derive an expression for the aggregate demand curve. You should solve for \(Y \) as a function of \(P \), \(M \), \(G \), \(T \), and parameters; the resulting expression should not depend on \(r \).

From part (a):

\[
Y = \frac{1}{1-b} [a - bT + c - dr + G]
\]

From part (d):

\[
r = \frac{1}{l_2} [l_1 Y - \frac{M}{P}]
\]

AD curve (substitute LM curve into IS curve):

\[
Y = \frac{1}{1-b} [a - bT + c - \frac{d}{l_2} (l_1 Y - \frac{M}{P}) + G]
\]

\[
Y(1 + \frac{dl_1}{l_2} - b) = a - bT + c + \frac{dM}{Pl_2} + G
\]

\[
Y = \frac{1}{1 + \frac{dl_1}{l_2} - b} [a - bT + c + \frac{dM}{Pl_2} + G]
\]

h) Using your answer from the previous part, show that the aggregate demand curve is downward-sloping (negative slope).

\[
\frac{\partial Y}{\partial P} = -\frac{dM}{(1 + \frac{dl_1}{l_2} - b)Pl_2} < 0
\]

\(\frac{\partial Y}{\partial P} < 0 \Rightarrow \text{aggregate demand curve is downward-sloping} \)

i) Use your answer from part (g) to show that increases in \(G \) and \(M \), and decreases in \(T \), shift the aggregate demand curve to the right. How does this result change if parameter \(l_2 = 0 \) (real money demand does not depend on the real interest rate)?

Case \(l_2 \neq 0 \):

\[
\frac{\partial Y}{\partial M} = \frac{d}{(1 + \frac{dl_1}{l_2} - b)Pl_2} = \frac{d}{P((1-b)l_2 + dl_1)} = \frac{1}{P(l_1 + \frac{1-b}{d}l_2)} > 0
\]

\[
\frac{\partial Y}{\partial G} = \frac{1}{1 + \frac{dl_1}{l_2} - b} = \frac{l_2}{dl_1 + (1-b)l_2} > 0
\]

\[
\frac{\partial Y}{\partial T} = \frac{-b}{1 + \frac{dl_1}{l_2} - b} = \frac{-bl_2}{dl_1 + (1-b)l_2} < 0
\]

Case \(l_2 \to 0 \):

\[
\frac{\partial Y}{\partial M} \to \frac{1}{Pl_1} > 0
\]

\[
\frac{\partial Y}{\partial G} \to 0
\]

\[
\frac{\partial Y}{\partial T} \to 0
\]