1. Define

\[g(x, \beta) = 1(x \leq \beta) - \frac{1}{2} \]

where \(1(\cdot) \) is the indicator function (takes the value 1 if the argument is true, else equals zero).

Let \(\beta \) satisfy \(E g(X_i, \beta) = 0 \). Is \(\beta \) the median of the distribution of \(X_i \)?

2. Let \(\hat{\beta} \) satisfy \(\overline{g}_n(\hat{\beta}) = 0 \) where \(\overline{g}_n(b) = n^{-1} \sum_{i=1}^n g(X_i, b) \) and \(g \) is defined as in problem 1. Show that \(\hat{\beta} \) is the sample median.

3. Let \(X \) be a random variable with \(\mu = EX \) and \(\sigma^2 = Var(X) \). Define

\[g(x, \mu, \sigma^2) = \left(\frac{x - \mu}{(x - \mu)^2 - \sigma^2} \right). \]

Let \((\hat{\mu}, \hat{\sigma}^2) \) be the values such that \(\overline{g}_n(\hat{\mu}, \hat{\sigma}^2) = 0 \) where \(\overline{g}_n(m, s) = n^{-1} \sum_{i=1}^n g(X_i, m, s) \). Show that \(\hat{\mu} \) and \(\hat{\sigma}^2 \) are the sample mean and variance.

4. Take the bi-variate linear projection model

\[y_i = \beta_0 + \beta_1 x_i + e_i \]

\[Ee_i = 0 \]

\[Ex_ie_i = 0 \]

Define \(\mu_y = E y_i, \mu_x = E x_i, \sigma^2_x = Var(x_i), \sigma^2_y = Var(y_i) \) and \(\sigma_{xy} = Cov(x_i, y_i) \). Show that \(\beta_1 = \sigma_{xy}/\sigma^2_x \) and \(\beta_0 = \mu_y - \beta_1 \mu_x \).

5. Suppose that \(y_i \) is discrete-valued, taking values only on the non-negative integers, and the conditional distribution of \(y_i \) given \(x_i \) is Poisson:

\[P(y_i = k \mid x_i = x) = \frac{e^{-x}(x^k)}{k!}, \quad k = 0, 1, 2, \ldots \]

Compute \(E(y_i \mid x_i = x) \) and \(Var(y_i \mid x_i = x) \). Does this justify a linear regression model of the form \(y_i = x_i^T \beta + \varepsilon_i \)?

Hint: If \(P(Y = k) = \frac{e^{-\lambda} \lambda^k}{k!} \), then \(EY = \lambda \) and \(Var(Y) = k \).

6. Let \(x_i \) and \(y_i \) have the joint density \(f(x, y) = \frac{3}{2} (x^2 + y^2) \) on \(0 \leq x \leq 1, 0 \leq y \leq 1 \). Compute the coefficients of the linear projection \(y_i = \beta_0 + \beta_1 x_i + e_i \). Compute the conditional mean \(m(x) = E(y_i \mid x_i = x) \). Are they different?