1. Take the model

\[y_i = x_i' \beta + e_i \]

\[\mathbb{E}(z_i e_i) = 0 \]

and consider the two-stage least-squares estimator. The first-stage estimate is

\[\hat{X} = Z \hat{\Gamma} \]

\[\hat{\Gamma} = (Z'Z)^{-1} Z'X \]

and the second-stage is LS of \(y_i \) on \(\hat{x}_i \):

\[\hat{\beta} = \left(\hat{X}' \hat{X} \right)^{-1} \hat{X}'Y \]

with LS residuals

\[\hat{e} = Y - \hat{X} \hat{\beta}. \]

Consider \(\hat{\sigma}^2 = \frac{1}{n} \hat{e}' \hat{e} \) as an estimator for \(\sigma^2 = \mathbb{E}e_i^2 \). Is this appropriate? If not, propose an alternative estimator.

2. You have two independent iid samples \((y_{1i}, x_{1i}, z_{1i} : i = 1, \ldots, n)\) and \((y_{2i}, x_{2i}, z_{2i} : i = 1, \ldots, n)\). The dependent variables \(y_{1i}\) and \(y_{2i}\) are real-valued. The regressors \(x_{1i}\) and \(x_{2i}\) and instruments \(z_{1i}\) and \(z_{2i}\) are \(k\)-vectors. The model is standard just-identified linear instrumental variables

\[y_{1i} = x_{1i}' \beta_1 + e_{1i} \]

\[\mathbb{E}(z_{1i} e_{1i}) = 0 \]

\[y_{2i} = x_{2i}' \beta_2 + e_{2i} \]

\[\mathbb{E}(z_{2i} e_{2i}) = 0 \]

For concreteness, sample 1 are women and sample 2 are men. You want to test \(H_0 : \beta_1 = \beta_2 \), that the two samples have the same coefficients.

(a) Develop a test statistic for \(H_0 \)

(b) Derive the asymptotic distribution of the test

(c) Describe (in brief) the testing procedure
3. Take the model

\[y_i = x_{1i}\beta_1 + x_{2i}\beta_2 + e_i \]

\[\mathbb{E}(x_ie_i) = 0 \]

with both \(\beta_1 \in \mathbb{R} \) and \(\beta_2 \in \mathbb{R} \), and define the parameter \(\theta = \beta_1\beta_2 \)

(a) What is the appropriate estimator \(\hat{\theta} \) for \(\theta \)?
(b) Find the asymptotic distribution of \(\hat{\theta} \) under standard regularity conditions.
(c) Show how to calculate an asymptotic 95% confidence interval for \(\theta \)
(d) Describe how to use the percentile bootstrap to calculate a 95% confidence interval for \(\theta \)

4. You have a friend who wants to estimate \(\beta \) in the model

\[y_i = x_i\beta + e_i \]

\[\mathbb{E}(e_i \mid z_i) = 0 \]

with both \(x_i \in \mathbb{R} \) and \(z_i \in \mathbb{R} \), and \(z_i \) is continuously distributed. Your friend wants to treat the reduced form equation for \(x_i \) as nonparametric

\[x_i = g(z_i) + u_i \]

\[\mathbb{E}(u_i \mid z_i) = 0 \]

Your friend asks you for advice and help to construct an estimator \(\hat{\beta} \) of \(\beta \). Describe an appropriate estimator. You do not have to develop the distribution theory, but try to be sufficiently complete with your advice so your friend can compute \(\hat{\beta} \).