The dimensions are: x_i, u_i, and β are $k \times 1$, z_i is $\ell \times 1$ where $\ell \geq k > 1$, Π is $\ell \times k$ and y_i and e_i are 1×1.

The difficulty in the problem is that (y_i, x_i, z_i) are not jointly observed. Instead, we have two independent samples from the marginal distributions of (y, z) and (x, z):

- Sample 1: iid observations of (y_i, z_i), $i = 1, \ldots, n$
- Sample 2: iid observations of (x_j, z_j), $j = 1, \ldots, J$

You can imagine that you have two independent samples from the same joint distribution, but in the first sample x_i is missing, and in the second sample y_j is missing.

1. Write out the reduced form equations:
 (a) Write the reduced form equation for y_i as a function of z_i, β, and Π.
 (b) Explicitly write the error in this reduced form as a function of the errors e_i and u_i and parameters.
 (c) Write the population parameter β as a function of population moments of (y_i, x_i, z_i, Π)
 (d) Write the population parameter Π as a function of population moments of (y_i, x_i, z_i)
 (e) What is the condition for identification of β?

2. Define $Q = E(z_i z_i')$.
 (a) Write out estimators \hat{Q} and \tilde{Q} for Q using Sample 1 and Sample 2
 (b) Find the probability limit of \hat{Q} as $n \to \infty$
 (c) Find the probability limit of \tilde{Q} as $J \to \infty$
 (d) Are the probability limits in (b) and (c) the same?
 (e) Which estimator is more efficient?

3. Suppose you know Π. Find an estimator $\tilde{\beta}$ for β.
 Hint: Use the reduced form equation for y_i
 (a) Write out this estimator.
 (b) Which sample is used?
 (c) Show that $\tilde{\beta} \to p \beta$. Which sample size ($n$ or J) goes to infinity for this convergence?

4. Find an estimator $\hat{\Pi}$ for Π
 (a) Write out the estimator.
 (b) Which sample is used?
 (c) Show that $\hat{\Pi} \to p \Pi$. Which sample size (n or J) goes to infinity for this convergence?

5. Put your answers to 2 and 3 together to find an estimator $\tilde{\beta}$ for β when Π is unknown.
 (a) Write down the estimator.
 (b) Show that $\tilde{\beta} \to p \beta$. What assumptions on n and J are required?