Weak Law of Large Numbers

Theorem (WLLN). If \(\{X_1, ..., X_n\}\) are iid with \(E|X_i| < \infty\) and then \(\overline{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i \to_p E(X_i)\).

Proof. Without loss of generality, we can set \(E(X_i) = 0\) (by recentering \(X_i\) on its expectation). We need to show that for all \(\delta > 0\) and \(\eta > 0\) there is some \(\pi < \infty\) so that for all \(n \geq \pi\),

\[
P(|\overline{X}_n| > \delta) \leq \eta.
\]

Fix \(\delta\) and \(\eta\). Set \(\varepsilon = \delta \eta / 3\).

Set \(C = \infty\) large enough so that

\[
E(|X_1| \, 1(|X_1| > C)) \leq \varepsilon
\]

(where \(1(\cdot)\) is the indicator function) which is possible since \(E|X| < \infty\). Then set

\[
\pi \geq 4C^2 / \varepsilon^2.
\]

Define the random vectors

\[
W_i = X_i \, 1(|X_i| \leq C) - E(X_i \, 1(|X_i| \leq C))
\]

and

\[
Z_i = X_i \, 1(|X_i| > C) - E(X_i \, 1(|X_i| > C)).
\]

Since \(X_i\) is iid, \(W_i\) and \(Z_i\) are also.

By Jensen’s inequality and (1),

\[
|E(X_i \, 1(|X_i| > C))| \leq E(|X_i| \, 1(|X_i| > C)) \leq \varepsilon.
\]

By the triangle inequality and (1),

\[
E|Z_n| \leq E|Z_i| \leq E|X_i| \, 1(|X_i| > C) + |E(X_i \, 1(|X_i| > C))| \leq 2\varepsilon.
\]

Note that \(|W_i| \leq 2C\). Thus (crudely) \(EW_i^2 \leq 4C^2\). Since the \(W_i\) are iid and mean zero,

\[
EW_n^2 = \frac{EW_i^2}{n} \leq \frac{4C^2}{n} \leq \varepsilon^2
\]

the final inequality holding for \(n \geq \pi\) by (2). Thus by Jensen’s inequality

\[
(E|W_n|)^2 \leq EW_n^2 \leq \varepsilon^2.
\]

Finally, by Markov’s inequality, the fact that \(\overline{X}_n = \overline{W}_n + \overline{Z}_n\), the triangle inequality, and these two bounds,

\[
P(|\overline{X}_n| > \delta) \leq \frac{E|\overline{X}_n|}{\delta} \leq \frac{E|\overline{W}_n|}{\delta} + \frac{E|\overline{Z}_n|}{\delta} \leq \frac{3\varepsilon}{\delta} = \eta,
\]

the equality by the definition of \(\varepsilon\). We have shown that for any \(\delta > 0\) and \(\eta > 0\) there is some \(\pi < \infty\) so that for all \(n \geq \pi\), \(P(|\overline{X}_n| > \delta) \leq \eta\), as needed. \(\blacksquare\)
Strong Law of Large Numbers

Theorem (SLLN). If \(\{X_1, \ldots, X_n\} \) are iid with \(E|X_i| < \infty \) and \(EX_i = \mu \) then \(\bar{X}_n \to_{a.s.} \mu \) as \(n \to \infty \).

Classical proofs of strong laws are based on convergence results from analysis. Two powerful results are known as the Toeplitz Lemma and the Kronecker Lemma.

A **Toeplitz array** \(\{a_{ni}\} \) satisfies the following three characteristics:

(i) For all \(n \geq 1 \), \(\sum_{i=1}^{\infty} |a_{ni}| \leq c < \infty \)

(ii) As \(n \to \infty \), \(\sum_{i=1}^{\infty} a_{ni} \to 1 \)

(iii) For all \(i \geq 1 \), as \(n \to \infty \), \(a_{ni} \to 0 \)

An example of a Toeplitz array is \(a_{ni} = 1/n \) if \(i \leq n \), else \(a_{ni} = 0 \).

Toeplitz Lemma. If \(\{a_{ni}\} \) is a Toeplitz array and \(x_n \) is a real sequence such that \(x_n \to x \) as \(n \to \infty \) then as \(n \to \infty \)

\[
y_n = \sum_{i=1}^{\infty} a_{ni}x_i \to x.
\]

Proof: Using property (ii) WLOG assume \(x = 0 \). Fix \(\varepsilon > 0 \) and pick \(N \) so that \(|x_i| \leq \varepsilon/2c \) for all \(i \geq N \). Then by property (i)

\[
|y_n| \leq \sum_{i=1}^{N} |a_{ni}| |x_i| + \sum_{i=N+1}^{\infty} |a_{ni}| |x_i| \\
\leq \sum_{i=1}^{N} |a_{ni}| |x_i| + \varepsilon/2 \\
\leq \varepsilon
\]

the final inequality holding for \(n \) sufficiently large by property (iii). \(\blacksquare \)

Kronecker Lemma. If \(b_n \) is an increasing real sequence with \(b_n \to \infty \), and \(x_n \) is a real sequence such that \(\sum_{i=1}^{\infty} x_i \) exists (that is, \(\sum_{i=1}^{n} x_i \) converges to a finite limit as \(n \to \infty \)), then

\[
\frac{1}{b_n} \sum_{i=1}^{n} b_i x_i \to 0.
\]

Proof. Let \(s_n = \sum_{i=1}^{n} x_i \) and define \(s_0 = 0 \) and \(b_0 = 0 \). Now

\[
\sum_{i=1}^{n} b_i x_i = \sum_{i=1}^{n} b_i s_i - \sum_{i=1}^{n} b_i s_{i-1} \\
= \sum_{i=1}^{n} b_i s_i - \sum_{i=1}^{n} b_{i-1} s_{i-1} - \sum_{i=1}^{n} (b_i - b_{i-1}) s_{i-1} \\
= b_n s_n - \sum_{i=1}^{n} (b_i - b_{i-1}) s_{i-1}.
\]
Thus

\[\frac{1}{b_n} \sum_{i=1}^{n} b_i x_i = s_n - \sum_{i=1}^{n} a_{ni} s_{i-1} \]

(3)

where

\[a_{ni} = \frac{b_i - b_{i-1}}{b_n} \]

and we define \(a_{ni} = 0 \) for \(i > n \). Note that \(|a_{ni}| \leq 1 \), \(\sum_{i=1}^{\infty} a_{ni} = 1 \), and \(a_{ni} \to 0 \) as \(n \to \infty \), so \(a_{ni} \) is a Toeplitz array. Since \(s_n \to x \) then \(\sum_{i=1}^{n} a_{ni} s_{i-1} \to x \) by the Toeplitz Lemma and (3) converges to \(x - x = 0 \).

We also need a strengthening of Markov’s inequality.

Kolmogorov’s Inequality. Assume \(U_1, \ldots, U_n \) are independent (but not necessarily iid) with \(EU_i = 0 \). Set \(S_j = \sum_{i=1}^{j} U_i \). Then for any \(\lambda > 0 \)

\[P \left(\max_{1 \leq i \leq n} |S_i| > \lambda \right) \leq \frac{ES_n^2}{\lambda^2} = \frac{1}{\lambda^2} \sum_{i=1}^{n} EU_i^2. \]

(4)

Proof: Define

\[I_{i-1} = \left\{ |S_i| > \lambda; \max_{j<i} |S_j| \leq \lambda \right\}, \]

the event that the sequence \(|S_j| \) first exceeds \(\lambda \) at \(j = i \). Since these events are disjoint,

\[P \left(\max_{1 \leq i \leq n} |S_i| > \lambda \right) = P \left(\bigcup_{i=1}^{n} I_{i-1} \right) = \sum_{i=1}^{n} P(I_{i-1}) \leq \sum_{i=1}^{n} P(I_{i-1} | S_i > \lambda) \leq \lambda^{-2} \sum_{i=1}^{n} E(I_{i-1} S_i^2). \]

(5)

The first inequality holds since \(I_{i-1} = 1 \) implies \(I_{i-1} |S_i| > \lambda \), and the last inequality is Markov’s. Let \(\hat{U}_i = (U_1, \ldots, U_i) \) and note that

\[E \left(S_n^2 | \hat{U}_i \right) = E \left(S_i^2 | \hat{U}_i \right) + 2E \left(S_i (S_n - S_i) | \hat{U}_i \right) + E \left((S_n - S_i)^2 | \hat{U}_i \right) = S_i^2 + E(S_n - S_i)^2 \geq S_i^2 \]

so using iterated expectations,

\[E \left(I_{i-1} S_i^2 \right) \leq E \left(I_{i-1} E \left(S_n^2 | \hat{U}_i \right) \right) = E \left(E \left(I_{i-1} S_n^2 | \hat{U}_i \right) \right) = E \left(I_{i-1} S_n^2 \right). \]

(6)

Together, (5) and (6) show that

\[\lambda^2 P \left(\max_{1 \leq i \leq n} |S_i| > \lambda \right) \leq \sum_{i=1}^{n} E \left(I_{i-1} S_n^2 \right) = E \left(\left(\sum_{i=1}^{n} I_{i-1} \right) S_n^2 \right) \leq ES_n^2. \]

\[\square \]
Given the Kronecker Lemma and Kolmogorov’s inequality, it is straightforward to establish the SLLN if \(\text{Var}(X) < \infty \).

Almost Sure Convergence Theorem. If
\[
\sum_{i=1}^{\infty} \frac{\text{Var}(X_i)}{i^2} < \infty
\]
then \(\bar{X}_n \to 0 \) almost surely.

Before we prove this theorem, we state the following implication.

Kolmogorov SLLN. If \(X_i \) is iid and \(\text{Var}(X_i) < \infty \) then \(\bar{X}_n \to 0 \) almost surely.

Proof of Kolmogorov SLLN.
\[
\sum_{i=1}^{\infty} \frac{\text{Var}(X_i)}{i^2} = \text{Var}(X_i) \sum_{i=1}^{\infty} \frac{1}{i^2} < \infty
\]
since \(\sum_{i=1}^{\infty} \frac{1}{i^2} = \pi^2/6 < \infty \). Then by the almost sure convergence theorem, \(\bar{X}_n \to 0 \) almost surely.

Proof of Almost Sure Convergence Theorem. WLOG assume \(\text{EX}_i = 0 \). Let \(U_i = i^{-1}X_i \). The Kronecker Lemma implies that if \(S_n = \sum_{i=1}^{n} U_i \) converges to a finite random limit as \(n \to \infty \), then \(\bar{X}_n \to 0 \). (To see this, set \(x_i = U_i \) and \(b_i = i \).) We now show that \(S_n \) converges almost surely as \(n \to \infty \), so \(\bar{X}_n \to 0 \) almost surely.

One characterization of convergence is that \(S_n \) converges iff \(S_{m+k} - S_m \to 0 \) as \(m,k \to \infty \). In other words, \(S_n \) converges if for all \(\varepsilon > 0 \), there is a sufficiently large \(m \) such that for all \(m \geq m \), \(|S_{m+k} - S_m| < \varepsilon \) for all \(k \geq 1 \). But for all \(\varepsilon > 0 \) and \(m < \infty \)
\[
P \left(\text{for some } k \geq 1, \ |S_{m+k} - S_m| \geq \varepsilon \right) = \lim_{n \to \infty} P \left(\max_{1 \leq k \leq n} |S_{m+k} - S_m| \geq \varepsilon \right)
\]
\[
= \lim_{n \to \infty} P \left(\max_{1 \leq k \leq n} \left| \sum_{i=m+1}^{m+k} U_i \right| \geq \varepsilon \right)
\]
\[
\leq \frac{1}{\varepsilon^2} \lim_{n \to \infty} \sum_{i=m+1}^{m+n} \text{EU}_i^2
\]
\[
= \frac{1}{\varepsilon^2} \sum_{i=m+1}^{\infty} \frac{\text{Var}(X_i)}{i^2}.
\]
Under (7), (9) tends to 0 as \(m \to \infty \), as required. Note that inequality (8) is Kolmogorov’s inequality (4).

For a proof of the SLLN without assuming the variance is finite, we need another intermediate result.
Lemma. $E|X| < \infty$ iff
\[\sum_{i=1}^{\infty} P(|X| > i) < \infty. \] (10)

Proof. Let $Y = |X|$. By expansion

\[
EY = \sum_{i=1}^{\infty} E(|X|1(i-1 < Y \leq i)) \\
\leq \sum_{i=1}^{\infty} iE(1(i-1 < Y \leq i)) \\
= \sum_{i=1}^{\infty} iP(i-1 < Y \leq i) \\
= \sum_{i=1}^{\infty} iP(Y > i) - \sum_{i=1}^{\infty} iP(Y > i) \\
= \sum_{i=1}^{\infty} (i+1)P(Y > i) - \sum_{i=0}^{\infty} iP(Y > i) \\
= \sum_{i=1}^{\infty} P(Y > i)
\]

Thus $\sum_{i=1}^{\infty} P(Y > i) < \infty$ implies $EY < \infty$. The converse can be shown similarly. \blacksquare

General Proof of SLLN. WLOG assume $EX_i = 0$. By the previous Lemma, $E|X_i| < \infty$ and X_i identically distributed implies
\[\sum_{i=1}^{\infty} P(|X_i| > i) < \infty. \] (11)

The Borel-Cantelli Lemma states that (11) implies that $P(\{|X_i| > i\}$ infinitely often) = 0. This means that $\bar{X}_n \rightarrow 0$ almost surely iff
\[\frac{1}{n} \sum_{i=1}^{n} X_i 1(|X_i| \leq i) \rightarrow 0 \]

almost surely, which occurs iff
\[\frac{1}{n} \sum_{i=1}^{n} [X_i 1(|X_i| \leq i) - E(X_i 1(|X_i| \leq i))] \rightarrow 0 \]

almost surely, since $EX_i = 0$ and identically distributed implies $E(X_i 1(|X_i| \leq i)) \rightarrow 0$ as $i \rightarrow \infty$, and an application of the Toeplitz Lemma yields
\[\frac{1}{n} \sum_{i=1}^{n} E(X_i 1(|X_i| \leq i)) \rightarrow 0. \]
By the almost sure convergence theorem, it is therefore sufficient to show that

\[
\sum_{i=1}^{\infty} \frac{\text{Var}(X_i 1(|X_i| \leq i))}{i^2} \leq \sum_{i=1}^{\infty} \frac{E(X_i^2 1(|X_i| \leq i))}{i^2} < \infty.
\]

Let

\[
A_j = \sum_{i=j}^{\infty} \frac{1}{i^2} \leq \frac{2}{j}.
\]

The inequality holds since for \(j = 1 \), \(A_1 = \pi^2/6 < 2 \), and for \(j \geq 2 \), by comparing \(A_j \) to the sum of rectangles beneath the curve \(x^{-2} \),

\[
\sum_{i=j}^{\infty} \frac{1}{i^2} \leq \int_{j-1}^{\infty} x^{-2} dx = \frac{1}{j-1} \leq \frac{2}{j}.
\]

Then by expanding and changing the order of summation

\[
\sum_{i=1}^{\infty} \frac{E(X_i^2 1(|X_i| \leq i))}{i^2} = \sum_{i=1}^{\infty} \sum_{j=1}^{i} \frac{E(X_i^2 1(j-1 < |X_i| \leq j))}{i^2}
\]

\[
= \sum_{j=1}^{\infty} \sum_{i=j}^{\infty} \frac{E(X_i^2 1(j-1 < |X_i| \leq j))}{i^2}
\]

\[
= \sum_{j=1}^{\infty} E(X_i^2 1(j-1 < |X_i| \leq j)) A_j
\]

\[
\leq 2 \sum_{j=1}^{\infty} \frac{E(X_i^2 1(j-1 < |X_i| \leq j))}{j}
\]

\[
\leq 2 \sum_{j=1}^{\infty} E(|X_i| 1(j-1 < |X_i| \leq j))
\]

\[
= 2E |X| < \infty
\]

which is what we wanted to show.