A random sample of 12 chemists yielded data on three variables: 1) \(y \equiv \text{salary} \); 2) \(x \equiv \text{number of publications} \); and 3) \(z \equiv \text{years since Ph.D.} \). The analysis of the data yielded the following quantities:

\[
\begin{align*}
\sum y_i^2 &= 431 \\
\sum x_i^2 &= 17 \\
\sum z_i^2 &= 1588 \\
\sum x_i y_i &= 61 \\
\sum x_i z_i &= 107 \\
\sum z_i y_i &= 783
\end{align*}
\]

where all variables are measured in deviation units. On the basis of these quantities the following regression models were fitted:

Model 1: \(\hat{y}_i = 0.877 x_i + 0.434 z_i \)

Model 2: \(\hat{y}_i = 3.59 x_i \)
\(\text{SSREG} = 219 \quad \text{SSRESID} = 212 \)

Model 3: \(\hat{y}_i = 0.493 z_i \)
\(\text{SSREG} = 386 \quad \text{SSRESID} = 45 \)

Model 4: \(\hat{x}_i = 0.67 z_i \)
\(\text{SSREG} = 7.2 \quad \text{SSRESID} = 9.8 \)

Model 5: \(\hat{z}_i = 6.29 x_i \)
\(\text{SSREG} = 673 \quad \text{SSRESID} = 915 \)

For the purpose of computing degrees of freedom, all models have intercept terms (I just brought them over to the left-side of the equation when I put \(Y \) in deviation units.)

The following questions pertain to Model 3.

1. For Model 3, find the standard error of \(\hat{\beta}_{yz} \).

2. For Model 3, find the value of the test statistic for testing the null hypothesis \(\beta_{yz} = 0.51 \).

3. Construct the 95 percent confidence interval for \(\beta_{yz} \).

The following questions pertain to Model 1:

4. For Model 1, estimate the disturbance variance \(\sigma^2[y|x, z] \).

5. For Model 1, what proportion of the variation in \(y \) is “explained” by the regression?

6. For Model 1, test the null hypothesis \(\beta_{yx,z} = \beta_{yz,x} = 0 \) against the alternative that not both are zero. Fix \(\alpha \) at 0.05.

7. For Model 1, estimate the standard error \(\sigma_{\hat{\beta}_{yz,x}} \) of \(\hat{\beta}_{yz,x} \).

8. For Model 1, test the hypothesis \(\beta_{yz,x} = 0.40 \) against the two-sided alternative (\(\alpha = 0.05 \)).

9. For Model 1, do an F-test of the null hypothesis \(\beta_{yx,z} = 0 \) against the two-sided alternative (\(\alpha = 0.05 \)).
10. Explain and numerically account for the difference in the simple regression coefficient of \(z \) in Model 3 and the partial regression coefficient of \(z \) in Model 1.

This is the end of questions pertaining to the data on chemists.

11. A researcher with \(n=20 \) observations on \(y, x, z, r \) and \(v \) fits the following models with the specified results:

\[
\begin{align*}
\text{Model} & \quad \text{SS} & \\
1 & y=f(x, z, v, r) & \text{SSreg}=200 \quad \text{SSresid}=75 \\
2 & y = f(x, z) & \text{SSreg}=170 \quad \text{SSresid}=105 \\
3 & y = f(x) & \text{SSreg}=120 \quad \text{SSresid}=155 \\
4 & y = f(z,v) & \text{SSreg}=105 \quad \text{SSresid}=170 \\
5 & y=f(r, (x+z)) & \text{SSresid}=104 \\
6 & y= f(x,z,r) & \text{SSreg}=175 \quad \text{SSresid}=100 \\
7 & (y+3v)= f(x, z, r) & \text{SSreg}=320 \quad \text{SSresid}=90
\end{align*}
\]

Compute the relevant test statistic (you don’t actually have to arrive at a conclusion about rejecting or not) for each of the following hypotheses:

a. In the model \(y = f(x, z, v, r) \), the coefficients of \(v \) and \(r \) are simultaneously zero against the alternative “not both zero.”

b. \(H_0 : \beta_{yz.xr} = \beta_{yr.xz} = 0 \) vs. “not both zero”.

c. \(\beta_{yz.xr} = \beta_{yz.zr} \) vs. not equal.

d. \(\beta_{yx.zxr} = -3 \)

12. Suppose the true linear regression model for \(y \) is \(y=f(x,v) \), but the researcher, who does not have data on \(v \), fits \(y=f(x) \). If you have data on \(y, x, \) and \(v \), what would you look at to determine if the coefficient of \(x \) in the researcher’s model is biased?

13. Indicate whether the following statements are true or false.

a. Multicollinearity among regressors in a model is an important source of bias in least-squares estimators of the partial regression coefficients.

b. The gauss-markov theorem states that under the assumptions of the classical linear regression model, the OLS estimator of the parameters has minimum variance among all unbiased estimators.