1. For the data on “month,” “leaded gas,” and “cord lead,” the model of interest is

\[Y_i = \alpha + \beta X_i + \epsilon_i \]

(1)

where \(Y \) is cord lead, \(X \) is leaded gas, and the disturbance \(\epsilon_i \) has mean 0 and variance \(\sigma^2(Y|X) = \sigma^2(\epsilon|x) \).

a. Write the population regression function that expresses the mean of \(Y \) as a function of \(X \).

b. Explain whether the following equation is correct: \(E(Y|X) = \alpha + \beta X + \epsilon \).

c. Estimate the conditional variance \(\sigma^2(Y|X) \). Is your estimator unbiased? Explain.

d. Find and interpret the “standard error of estimate.” What is the metric (i.e., measurement units/scale) of the standard error of estimate?

f. Suppose \(\beta = 0 \): what is the probability of observing \(\hat{\beta} > 1 \)?

g. Construct the 95% confidence interval for the regression coefficient \(\beta \).

h. At the .05 level of significance, do a t-test of the null hypothesis \(\beta = 0 \) against the two-sided alternative. Also test \(\beta = 1.6 \) against the alternative \(\beta < 1.6 \).

i. Carry out the appropriate F-test (\(\alpha \)-level .05) of the null model

\[Y_i = \alpha + \epsilon_i \]

(2)

against the alternative

\[Y_i = \alpha + \beta X_i + \epsilon_i \]

(3)

j. What is the relationship between the F-test in “i” and the t-test of \(\beta = 0 \) in problem “g”?

k. Give the point estimate and the 95% confidence interval estimate of the mean \(\mu(Y|X = 140) \).