Introductory Econometrics Lecture 1

Xiaoxia Shi
University of Wisconsin - Madison

$$
09 / 02 / 2010
$$

What is Econometrics?

What is Econometrics?

- Econometrics employs statistical methods

What is Econometrics?

What is Econometrics?

- Econometrics employs statistical methods
- to analyze data

What is Econometrics?

What is Econometrics?

- Econometrics employs statistical methods
- to analyze data
- in order to

What is Econometrics?

What is Econometrics?

- Econometrics employs statistical methods
- to analyze data
- in order to
(1) estimate economic relationships,

What is Econometrics?

What is Econometrics?

- Econometrics employs statistical methods
- to analyze data
- in order to
(1) estimate economic relationships,
(2) evaluate government and business policies,

What is Econometrics?

What is Econometrics?

- Econometrics employs statistical methods
- to analyze data
- in order to
(1) estimate economic relationships,
(2) evaluate government and business policies,
(3) test economic theories, and

What is Econometrics?

What is Econometrics?

- Econometrics employs statistical methods
- to analyze data
- in order to
(1) estimate economic relationships,
(2) evaluate government and business policies,
(3) test economic theories, and
(9) make predictions and forecasts.

Data that Econometricians Use

Four types of Data:

- Cross-Sectional Data

Data that Econometricians Use

Four types of Data:

- Cross-Sectional Data
- Time Series Data

Data that Econometricians Use

Four types of Data:

- Cross-Sectional Data
- Time Series Data
- Pooled Cross Sections

Data that Econometricians Use

Four types of Data:

- Cross-Sectional Data
- Time Series Data
- Pooled Cross Sections
- Panel Data

Random Variables

- What is a random variable?
- In the linear regression:

$$
Y=\beta_{0}+\beta_{1} X+U
$$

Random Variables

- What is a random variable?
- In the linear regression:

$$
Y=\beta_{0}+\beta_{1} X+U
$$

- are Y, X, U random variables?

Random Variables

- What is a random variable?
- In the linear regression:

$$
Y=\beta_{0}+\beta_{1} X+U
$$

- are Y, X, U random variables?
- are β_{0}, β_{1} random variables?

Random Variables

- What is a random variable?
- In the linear regression:

$$
Y=\beta_{0}+\beta_{1} X+U
$$

- are Y, X, U random variables?
- are β_{0}, β_{1} random variables?
- Are the OLS estimators of β_{0}, β_{1} random variables?

Expectation

- What is Expectation?
- What's the difference between expectation and sample average?

Expectation

- What is Expectation?
- What's the difference between expectation and sample average?
- Properties of expectation:

$$
E(a X+b Y+c)=?
$$

Expectation

- What is Expectation?
- What's the difference between expectation and sample average?
- Properties of expectation:

$$
E(a X+b Y+c)=?
$$

- What's conditional Expectation?

Expectation

- What is Expectation?
- What's the difference between expectation and sample average?
- Properties of expectation:

$$
E(a X+b Y+c)=?
$$

- What's conditional Expectation?
- Law of Iterated Expectation:

$$
E[E(Y \mid X)]=E(Y)
$$

Variance, Covariance and Correlation

- What's the variance of a random variable X ?

Variance, Covariance and Correlation

- What's the variance of a random variable X ?
- What's the covariance of random variable X and Y ?

Variance, Covariance and Correlation

- What's the variance of a random variable X ?
- What's the covariance of random variable X and Y ?
- Properties of variances:

$$
\operatorname{Var}(a X+b Y+c)=?
$$

Variance, Covariance and Correlation

- What's the variance of a random variable X ?
- What's the covariance of random variable X and Y ?
- Properties of variances:

$$
\operatorname{Var}(a X+b Y+c)=?
$$

- What's the correlation between X and Y ?

$$
\rho(X, Y)=\frac{?}{?}
$$

Simple Regression

- We want to know the parameters β_{0} and β_{1} in the population equation:

$$
Y=\beta_{0}+\beta_{1} X+U
$$

Simple Regression

- We want to know the parameters β_{0} and β_{1} in the population equation:

$$
Y=\beta_{0}+\beta_{1} X+U
$$

- We have a sample $\left\{X_{i}, Y_{i}\right\}_{i=1}^{n}$. How do we estimate the parameters?

Simple Regression

- We want to know the parameters β_{0} and β_{1} in the population equation:

$$
Y=\beta_{0}+\beta_{1} X+U
$$

- We have a sample $\left\{X_{i}, Y_{i}\right\}_{i=1}^{n}$. How do we estimate the parameters?
- Ordinary least square (OLS):

$$
\hat{\beta}_{0}, \hat{\beta}_{1} \text { minimizes } \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

Simple Regression

- We want to know the parameters β_{0} and β_{1} in the population equation:

$$
Y=\beta_{0}+\beta_{1} X+U
$$

- We have a sample $\left\{X_{i}, Y_{i}\right\}_{i=1}^{n}$. How do we estimate the parameters?
- Ordinary least square (OLS):

$$
\hat{\beta}_{0}, \hat{\beta}_{1} \text { minimizes } \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right)^{2}
$$

- What is the formula for the OLS estimators? (hint: take first derivatives and set to zero)

$$
\hat{\beta}_{0}=?, \hat{\beta}_{1}=?
$$

Another Way to Derive OLS Estimators

- Population Moments: the true parameters $\left(\beta_{0}, \beta_{1}\right)$ solve:

$$
\begin{aligned}
E\left(Y-\beta_{0}-\beta_{1} X\right) & =0 \\
E\left(Y X-\beta_{0} X-\beta_{1} X^{2}\right) & =0
\end{aligned}
$$

Another Way to Derive OLS Estimators

- Population Moments: the true parameters $\left(\beta_{0}, \beta_{1}\right)$ solve:

$$
\begin{aligned}
E\left(Y-\beta_{0}-\beta_{1} X\right) & =0 \\
E\left(Y X-\beta_{0} X-\beta_{1} X^{2}\right) & =0
\end{aligned}
$$

- Sample analogue: $\hat{\beta}_{0}, \hat{\beta}_{1}$ solves:

$$
\begin{aligned}
n^{-1} \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) & =0 \\
n^{-1} \sum_{i=1}^{n}\left(Y_{i} X_{i}-b_{0} X_{i}-b_{1} X_{i}^{2}\right) & =0
\end{aligned}
$$

Another Way to Derive OLS Estimators

- Population Moments: the true parameters $\left(\beta_{0}, \beta_{1}\right)$ solve:

$$
\begin{aligned}
E\left(Y-\beta_{0}-\beta_{1} X\right) & =0 \\
E\left(Y X-\beta_{0} X-\beta_{1} X^{2}\right) & =0
\end{aligned}
$$

- Sample analogue: $\hat{\beta}_{0}, \hat{\beta}_{1}$ solves:

$$
\begin{aligned}
n^{-1} \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} X_{i}\right) & =0 \\
n^{-1} \sum_{i=1}^{n}\left(Y_{i} X_{i}-b_{0} X_{i}-b_{1} X_{i}^{2}\right) & =0
\end{aligned}
$$

- $\hat{\beta}_{0}=$?, $\hat{\beta}_{1}=$?

Residual and Predicted Value

- What is "regression residual"?

Residual and Predicted Value

- What is "regression residual"?

$$
\hat{U}_{i}=Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}
$$

Residual and Predicted Value

- What is "regression residual"?

$$
\hat{U}_{i}=Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}
$$

- What is "predicted value of Y_{i} "?

Residual and Predicted Value

- What is "regression residual"?

$$
\hat{U}_{i}=Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}
$$

- What is "predicted value of Y_{i} "?

$$
\begin{aligned}
\hat{Y}_{i} & =\hat{U}_{i} \\
& =\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}
\end{aligned}
$$

Residual and Predicted Value

- What is "regression residual"?

$$
\hat{U}_{i}=Y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} X_{i}
$$

- What is "predicted value of Y_{i} "?

$$
\begin{aligned}
\hat{Y}_{i} & =\hat{U}_{i} \\
& =\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}
\end{aligned}
$$

- Now,

$$
\sum_{i=1}^{n} \hat{U}_{i}=?, \quad \sum_{i=1}^{n} \hat{U}_{i} X_{i}=?
$$

Changing Units of Measurement

- Holding other variables constant, if smoking one more cigarette reducing baby birth weight by 1 pound, what's the effect of smoking one pack (20) more of cigarette?

Changing Units of Measurement

- Holding other variables constant, if smoking one more cigarette reducing baby birth weight by 1 pound, what's the effect of smoking one pack (20) more of cigarette?
- $Y=\beta_{0}+\beta_{1} X+U=\beta_{0}+\left(20 \beta_{1}\right)\left(\frac{X}{20}\right)+U$

Changing Units of Measurement

- Holding other variables constant, if smoking one more cigarette reducing baby birth weight by 1 pound, what's the effect of smoking one pack (20) more of cigarette?
- $Y=\beta_{0}+\beta_{1} X+U=\beta_{0}+\left(20 \beta_{1}\right)\left(\frac{X}{20}\right)+U$
- What's the effect of smoking one more cigarette on baby birth weight measured by grams?

Changing Units of Measurement

- Holding other variables constant, if smoking one more cigarette reducing baby birth weight by 1 pound, what's the effect of smoking one pack (20) more of cigarette?
- $Y=\beta_{0}+\beta_{1} X+U=\beta_{0}+\left(20 \beta_{1}\right)\left(\frac{X}{20}\right)+U$
- What's the effect of smoking one more cigarette on baby birth weight measured by grams?

$$
\begin{aligned}
& \frac{(450 Y)}{450}=\beta_{0}+\beta_{1} X+U \quad \Rightarrow \\
& (450 Y)=450 \beta_{0}+450 \beta_{1} X+450 U
\end{aligned}
$$

Log-forms

- How to interpret coefficients obtained from the regression:

$$
\log (Y)=\beta_{0}+\beta_{1} X+U ?
$$

Log-forms

- How to interpret coefficients obtained from the regression:

$$
\log (Y)=\beta_{0}+\beta_{1} X+U ?
$$

- one unit of change in X changes Y by $\beta_{1} \times 100 \%$

Log-forms

- How to interpret coefficients obtained from the regression:

$$
\log (Y)=\beta_{0}+\beta_{1} X+U ?
$$

- one unit of change in X changes Y by $\beta_{1} \times 100 \%$
- How to interpret coefficients obtained from the regression:

$$
Y=\beta_{0}+\beta_{1} \log (X)+U ?
$$

Log-forms

- How to interpret coefficients obtained from the regression:

$$
\log (Y)=\beta_{0}+\beta_{1} X+U ?
$$

- one unit of change in X changes Y by $\beta_{1} \times 100 \%$
- How to interpret coefficients obtained from the regression:

$$
Y=\beta_{0}+\beta_{1} \log (X)+U ?
$$

- one percent change in X changes Y by $\beta_{1} / 100$ units

R-square

- What is the sum of squared total (SST) of the dependent variable Y ?

R-square

- What is the sum of squared total (SST) of the dependent variable Y ?
- What is the sum of squared explained (SSE) of the regression $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}$?

R-square

- What is the sum of squared total (SST) of the dependent variable Y ?
- What is the sum of squared explained (SSE) of the regression $\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i}$?
- What is the sum of squared residual (SSR) of that regression?

R-square

- What is the sum of squared total (SST) of the dependent variable Y ?
- What is the sum of squared explained (SSE) of the regression

$$
\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{i} ?
$$

- What is the sum of squared residual (SSR) of that regression?
- How much of the variation in Y is explained by the model?

$$
R^{2}=\frac{?}{?}=\frac{1-?}{?}
$$

Classical Linear Model Assumptions:

- Assumption SLR. 1 (Linear in Parameters) $Y=\beta_{0}+\beta_{1} X+U$
- Assumption SLR. 2 (Random Sampling) $\left(X_{i}, Y_{i}\right), i=1, \ldots, N$, is a random sample from the population.
- Assumption SLR. 3 (Sample Variation in the Explanatory Variable) $\left\{X_{i}, i=1, \ldots, N\right\}$ are not all the same value.
- Assumption SLR. 4 (Zero Conditional Mean) $E(U \mid X)=0$.
- Assumption SLR. 5 (Homoskedasticity) $\operatorname{Var}(U \mid X)=\sigma^{2}$.

Unbiasedness and Variance

- What is unbiasedness?

$$
\text { we call the estimator } \hat{\beta}_{1} \text { unbiased if } E\left(\hat{\beta}_{1} \mid X\right)=\text { ? }
$$

- Under which assumptions unbiasedness hold?
- Under all of the five assumptions,

$$
\operatorname{Var}\left(\hat{\beta}_{1} \mid X\right)=?
$$

- What happens if there is no variation in X (SLR. 3 is violated)?
- What happens if there is heteroskedasticity (SLR. 5 is violated)?
- What does Gauss-Markov Theorem say?

Omitted Variable Bias

- When we do causal analysis, what is the interpretation for U ?
- If X and U are positively correlated, which assumption is violated? What happens to $E\left(\hat{\beta}_{1} \mid X\right)$ now?
- What is the effect of omitting a variable that is independent of X ?
- What is the effect of omitting a variable that has both direct positive effect on Y and positive effect on X ?
- What is the effect of omitting a variable that has both direct negative effect on Y and positive effect on X ?

Multiple Regression

$$
Y=\beta_{0}+\beta_{1} X_{1}+\ldots+\beta_{K} X_{K}+U
$$

- Estimated equation:

$$
\hat{Y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} X_{1 i}+\ldots+\hat{\beta}_{K} X_{K i}
$$

- How are the OLS estimators $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{K}$ obtained?

Unbiasedness and Variance

- Under Assumptions MLR.1-4 (Linearity, Random Sampling, No Multicollinearity, Conditional Mean-Zero):

$$
E\left(\hat{\beta}_{j} \mid X\right)=?
$$

- Under the above assumptions and MLR. 5 (Homoskedasticity):

$$
\operatorname{Var}\left(\hat{\beta}_{j} \mid X\right)=\frac{\sigma^{2}}{S S T_{X}\left(1-R_{j}^{2}\right)}
$$

What is $\sigma^{2}, S S T_{X}$ or $R_{j}^{2} ?$

What Variables to Include?

- How does R^{2} change when we add more variables to the regression?

What Variables to Include?

- How does R^{2} change when we add more variables to the regression?
- What's the effect on the unbiasedness of the estimators of including irrelevant variables?

What Variables to Include?

- How does R^{2} change when we add more variables to the regression?
- What's the effect on the unbiasedness of the estimators of including irrelevant variables?
- What's the effect on the unbiasedness of the estimators of omitting relevant variables?

What Variables to Include?

- How does R^{2} change when we add more variables to the regression?
- What's the effect on the unbiasedness of the estimators of including irrelevant variables?
- What's the effect on the unbiasedness of the estimators of omitting relevant variables?
- Are there any reasons for not including a particular variable on the left hand side?

Squares and Interactions

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{1}^{2}+\ldots+U
$$

- What's the partial effect (marginal effect) of X_{1} on Y ?

$$
\frac{\partial Y}{\partial X_{1}}=?
$$

Squares and Interactions

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{1}^{2}+\ldots+U
$$

- What's the partial effect (marginal effect) of X_{1} on Y ?

$$
\frac{\partial Y}{\partial X_{1}}=?
$$

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+\ldots+U
$$

Squares and Interactions

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{1}^{2}+\ldots+U
$$

- What's the partial effect (marginal effect) of X_{1} on Y ?

$$
\begin{gathered}
\frac{\partial Y}{\partial X_{1}}=? \\
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+\ldots+U
\end{gathered}
$$

- What's the partial effect (marginal effect) of X_{1} on Y ?

$$
\frac{\partial Y}{\partial X_{1}}=?
$$

Confidence Interval

- How is the t-statistic for $\hat{\beta}_{j}$ formulated?

$$
t_{n}=\frac{\hat{\beta}_{j}-?}{?}
$$

Confidence Interval

- How is the t-statistic for $\hat{\beta}_{j}$ formulated?

$$
t_{n}=\frac{\hat{\beta}_{j}-?}{?}
$$

- What's the 95% confidence interval of β_{j} ?

$$
\left[\hat{\beta}_{j}-1.96 * ?, \hat{\beta}_{j}+1.96 * ?\right]
$$

Confidence Interval

- What is type I error of a test?

Confidence Interval

- What is type I error of a test?
- What is type II error of a test?

Confidence Interval

- What is type I error of a test?
- What is type II error of a test?
- What is the significance level of a test?

Confidence Interval

- What is type I error of a test?
- What is type II error of a test?
- What is the significance level of a test?
- Suppose we are doing the two-sided test of $H_{0}: \beta_{j}=0$ vs. H_{1} : $\beta_{j} \neq 0$.

Confidence Interval

- What is type I error of a test?
- What is type II error of a test?
- What is the significance level of a test?
- Suppose we are doing the two-sided test of $H_{0}: \beta_{j}=0$ vs. H_{1} : $\beta_{j} \neq 0$.
- If $\hat{\beta}_{j}=2, \operatorname{se}\left(\hat{\beta}_{j}\right)=0.1$, do we reject the null at 5% level?

A Single Linear Combination of Parameters

- How do we test:

$$
H_{0}: a \beta_{1}+b \beta_{2}=0 ?
$$

A Single Linear Combination of Parameters

- How do we test:

$$
H_{0}: a \beta_{1}+b \beta_{2}=0 ?
$$

- Modified the regression:

$$
\begin{aligned}
Y & =\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\ldots+\varepsilon \\
& =\beta_{0}+\left(a \beta_{1}\right) \frac{X_{1}}{a}+\left(b \beta_{2}\right) \frac{X_{2}}{b}+\ldots+\varepsilon \\
& =\beta_{0}+\left(a \beta_{1}+b \beta_{2}\right) \frac{X_{1}}{a}+\left(b \beta_{2}\right)\left(\frac{X_{2}}{b}-\frac{X_{1}}{a}\right)+\ldots+\varepsilon
\end{aligned}
$$

A Single Linear Combination of Parameters

- How do we test:

$$
H_{0}: a \beta_{1}+b \beta_{2}=0 ?
$$

- Modified the regression:

$$
\begin{aligned}
Y & =\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\ldots+\varepsilon \\
& =\beta_{0}+\left(a \beta_{1}\right) \frac{X_{1}}{a}+\left(b \beta_{2}\right) \frac{X_{2}}{b}+\ldots+\varepsilon \\
& =\beta_{0}+\left(a \beta_{1}+b \beta_{2}\right) \frac{X_{1}}{a}+\left(b \beta_{2}\right)\left(\frac{X_{2}}{b}-\frac{X_{1}}{a}\right)+\ldots+\varepsilon
\end{aligned}
$$

- Run regression of Y on $\frac{X_{1}}{a}$ and $\frac{X_{2}}{b}-\frac{X_{1}}{a}$.

Multiple Hypotheses

- How do we test:

$$
H_{0}: \beta_{1}=0, \beta_{2}=0 ?
$$

Multiple Hypotheses

- How do we test:

$$
H_{0}: \beta_{1}=0, \beta_{2}=0 ?
$$

- Obtain SSR (SSR ${ }_{\text {ur }}$) from the unrestricted regression:

$$
\log (\text { wage })=\beta_{0}+\beta_{1} j c+\beta_{2} \text { univ }+\beta_{3} \text { exper }+\varepsilon
$$

Multiple Hypotheses

- How do we test:

$$
H_{0}: \beta_{1}=0, \beta_{2}=0 ?
$$

- Obtain SSR $\left(S S R_{u r}\right)$ from the unrestricted regression:

$$
\log (\text { wage })=\beta_{0}+\beta_{1} j c+\beta_{2} \text { univ }+\beta_{3} \operatorname{exper}+\varepsilon
$$

- Obtain SSR $\left(S S R_{r}\right)$ from the restricted regression:

$$
\log (\text { wage })=\beta_{0}+\beta_{3} \text { exper }+\varepsilon
$$

Multiple Hypotheses

- Form the F-statistic:

$$
F \equiv \frac{\left(S S R_{r}-S S R_{u r}\right) / q}{S S R_{u r} /(n-K-1)} \sim F_{q, n-K-1}
$$

What is q ? What is $F_{q, n-K-1}$?

Multiple Hypotheses

- Form the F-statistic:

$$
F \equiv \frac{\left(S S R_{r}-S S R_{u r}\right) / q}{S S R_{u r} /(n-K-1)} \sim F_{q, n-K-1}
$$

What is q ? What is $F_{q, n-K-1}$?

- Reject H_{0} if

$$
F>F_{q, n-K-1,1-\alpha}
$$

where α is the significance level, $F_{q, n-K-1,1-\alpha}$ is the $1-\alpha$ quantile of $F_{q, n-K-1}$

Read the Table Reported by STATA

Source	SS	df	MS
Model Residual	32001.7271	1	320001.7271
Total	4283835.539	1533	279.442622

Number of obs $=1534$
$F(1,1532)=123.68$
Prob $>\mathrm{F}=0.0000$
R-squared $=0.0747$
Adj R-squared $=0.0741$
Root MSE $=16.085$

prate	coef.	std. Err.	t	$\mathrm{P}>\|\mathrm{t}\|$	[95\% Conf., Interval]	
mrate	5.861079	.5270107	11.12	0.000	4.82734	6.894818
_cons	83.07546	.5632844	147.48	0.000	81.97057	84.18035

