Introductory Econometrics Lecture 1

Xiaoxia Shi

University of Wisconsin - Madison

09/02/2010

Lecture (1)

3 1 4

• Econometrics employs statistical methods

- Econometrics employs statistical methods
- to analyze data

- Econometrics employs statistical methods
- to analyze data
- in order to

- Econometrics employs statistical methods
- to analyze data
- in order to
 - estimate economic relationships,

- Econometrics employs statistical methods
- to analyze data
- in order to
 - estimate economic relationships,
 - evaluate government and business policies,

- Econometrics employs statistical methods
- to analyze data
- in order to
 - estimate economic relationships,
 - evaluate government and business policies,
 - test economic theories, and

- Econometrics employs statistical methods
- to analyze data
- in order to
 - estimate economic relationships,
 - evaluate government and business policies,
 - test economic theories, and
 - make predictions and forecasts.

• Cross-Sectional Data

- Cross-Sectional Data
- Time Series Data

- Cross-Sectional Data
- Time Series Data
- Pooled Cross Sections

- Cross-Sectional Data
- Time Series Data
- Pooled Cross Sections
- Panel Data

- What is a random variable?
- In the linear regression:

$$Y = \beta_0 + \beta_1 X + U$$

- What is a random variable?
- In the linear regression:

$$Y = \beta_0 + \beta_1 X + U$$

• are Y, X, U random variables?

- What is a random variable?
- In the linear regression:

$$Y = \beta_0 + \beta_1 X + U$$

- are Y, X, U random variables?
- are β_0 , β_1 random variables?

- What is a random variable?
- In the linear regression:

$$Y = \beta_0 + \beta_1 X + U$$

- are Y, X, U random variables?
- are β_0 , β_1 random variables?
- Are the OLS estimators of β_0 , β_1 random variables?

- What is Expectation?
- What's the difference between expectation and sample average?

- What is Expectation?
- What's the difference between expectation and sample average?
- Properties of expectation:

$$E(aX+bY+c)=?$$

- What is Expectation?
- What's the difference between expectation and sample average?
- Properties of expectation:

$$E\left(aX+bY+c\right)=?$$

• What's conditional Expectation?

- What is Expectation?
- What's the difference between expectation and sample average?
- Properties of expectation:

$$E\left(aX+bY+c\right)=?$$

- What's conditional Expectation?
- Law of Iterated Expectation:

$$E\left[E\left(Y|X\right)\right] = E\left(Y\right)$$

• What's the variance of a random variable X?

- What's the variance of a random variable X?
- What's the covariance of random variable X and Y?

- What's the variance of a random variable X?
- What's the covariance of random variable X and Y?
- Properties of variances:

$$Var(aX+bY+c) =?$$

- What's the variance of a random variable X?
- What's the covariance of random variable X and Y?
- Properties of variances:

$$Var(aX+bY+c)=?$$

• What's the correlation between X and Y?

$$\rho(X,Y) = \frac{?}{?}$$

Lecture (1)

09/02/2010 6 / 25

• We want to know the parameters β_0 and β_1 in the population equation:

$$Y = \beta_0 + \beta_1 X + U$$

• We want to know the parameters β_0 and β_1 in the population equation:

$$Y = \beta_0 + \beta_1 X + U$$

• We have a sample $\{X_i, Y_i\}_{i=1}^n$. How do we estimate the parameters?

• We want to know the parameters β_0 and β_1 in the population equation:

$$Y = \beta_0 + \beta_1 X + U$$

- We have a sample $\{X_i, Y_i\}_{i=1}^n$. How do we estimate the parameters?
- Ordinary least square (OLS):

$$\hat{\beta}_0, \hat{\beta}_1$$
 minimizes $\sum_{i=1}^n (Y_i - b_0 - b_1 X_i)^2$

→ ∃ →

• We want to know the parameters β_0 and β_1 in the population equation:

$$Y = \beta_0 + \beta_1 X + U$$

- We have a sample $\{X_i, Y_i\}_{i=1}^n$. How do we estimate the parameters?
- Ordinary least square (OLS):

$$\hat{\beta}_0$$
, $\hat{\beta}_1$ minimizes $\sum_{i=1}^n (Y_i - b_0 - b_1 X_i)^2$

• What is the formula for the OLS estimators? (hint: take first derivatives and set to zero)

$$\hat{eta}_0=?$$
, $\hat{eta}_1=?$

Another Way to Derive OLS Estimators

• Population Moments: the true parameters (β_0, β_1) solve:

$$E(Y - \beta_0 - \beta_1 X) = 0$$

$$E(YX - \beta_0 X - \beta_1 X^2) = 0$$

Another Way to Derive OLS Estimators

• Population Moments: the true parameters (β_0, β_1) solve:

$$E(Y - \beta_0 - \beta_1 X) = 0$$

$$E(YX - \beta_0 X - \beta_1 X^2) = 0$$

• Sample analogue: $\hat{\beta}_0, \hat{\beta}_1$ solves:

$$n^{-1} \sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i) = 0$$
$$n^{-1} \sum_{i=1}^{n} (Y_i X_i - b_0 X_i - b_1 X_i^2) = 0$$

Another Way to Derive OLS Estimators

• Population Moments: the true parameters (β_0, β_1) solve:

$$E(Y - \beta_0 - \beta_1 X) = 0$$

$$E(YX - \beta_0 X - \beta_1 X^2) = 0$$

• Sample analogue: $\hat{\beta}_0, \hat{\beta}_1$ solves:

$$n^{-1} \sum_{i=1}^{n} (Y_i - b_0 - b_1 X_i) = 0$$
$$n^{-1} \sum_{i=1}^{n} (Y_i X_i - b_0 X_i - b_1 X_i^2) = 0$$

•
$$\hat{eta}_0=?$$
, $\hat{eta}_1=?$

• What is "regression residual"?

• What is "regression residual"?

$$\hat{U}_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i$$

۲

• What is "regression residual"?

$$\hat{U}_i = Y_i - \hat{eta}_0 - \hat{eta}_1 X_i$$

• What is "predicted value of Y_i"?

۲

• What is "regression residual"?

$$\hat{U}_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i$$

• What is "predicted value of Y_i "?

$$\hat{Y}_i = \hat{U}_i \ = \hat{eta}_0 + \hat{eta}_1 X_i$$

۲

۲

3 1 4

• What is "regression residual"?

$$\hat{U}_i = Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i$$

• What is "predicted value of Y_i"?

$$egin{array}{rcl} \hat{Y}_i &=& \hat{U}_i \ &=& \hat{eta}_0 + \hat{eta}_1 X_i \end{array}$$

• Now,

۲

۲

$$\sum_{i=1}^{n} \hat{U}_i = ?, \qquad \sum_{i=1}^{n} \hat{U}_i X_i = ?$$

• Holding other variables constant, if smoking one more cigarette reducing baby birth weight by 1 pound, what's the effect of smoking one pack (20) more of cigarette?

Changing Units of Measurement

 Holding other variables constant, if smoking one more cigarette reducing baby birth weight by 1 pound, what's the effect of smoking one pack (20) more of cigarette?

•
$$Y = \beta_0 + \beta_1 X + U = \beta_0 + (20\beta_1) \left(\frac{X}{20}\right) + U$$

Changing Units of Measurement

 Holding other variables constant, if smoking one more cigarette reducing baby birth weight by 1 pound, what's the effect of smoking one pack (20) more of cigarette?

•
$$Y = \beta_0 + \beta_1 X + U = \beta_0 + (20\beta_1) \left(\frac{X}{20}\right) + U$$

• What's the effect of smoking one more cigarette on baby birth weight measured by grams?

Changing Units of Measurement

 Holding other variables constant, if smoking one more cigarette reducing baby birth weight by 1 pound, what's the effect of smoking one pack (20) more of cigarette?

•
$$Y = \beta_0 + \beta_1 X + U = \beta_0 + (20\beta_1) \left(\frac{X}{20}\right) + U$$

• What's the effect of smoking one more cigarette on baby birth weight measured by grams?

$$\begin{array}{rcl} \displaystyle \frac{(450\,Y)}{450} & = & \beta_0 + \beta_1 X + U \\ \displaystyle (450\,Y) & = & 450\beta_0 + 450\beta_1 X + 450\,U \end{array}$$

$$\log(Y) = \beta_0 + \beta_1 X + U?$$

Image: Image:

$$\log\left(Y\right) = \beta_0 + \beta_1 X + U?$$

ullet one unit of change in X changes Y by $\beta_1 \times 100\%$

$$\log{(Y)} = \beta_0 + \beta_1 X + U?$$

- ullet one unit of change in X changes Y by $eta_1 imes 100\%$
- How to interpret coefficients obtained from the regression:

$$Y = \beta_0 + \beta_1 \log(X) + U?$$

$$\log{(Y)} = \beta_0 + \beta_1 X + U?$$

- ullet one unit of change in X changes Y by $eta_1 imes 100\%$
- How to interpret coefficients obtained from the regression:

$$Y = \beta_0 + \beta_1 \log(X) + U?$$

• one percent change in X changes Y by $\beta_1/100$ units

• What is the sum of squared total (SST) of the dependent variable Y?

- What is the sum of squared total (SST) of the dependent variable Y?
- What is the sum of squared explained (SSE) of the regression $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$?

- What is the sum of squared total (SST) of the dependent variable Y?
- What is the sum of squared explained (SSE) of the regression $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$?
- What is the sum of squared residual (SSR) of that regression?

- What is the sum of squared total (SST) of the dependent variable Y?
- What is the sum of squared explained (SSE) of the regression $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$?
- What is the sum of squared residual (SSR) of that regression?
- How much of the variation in Y is explained by the model?

$$R^2 = \frac{?}{?} = \frac{1-?}{?}$$

Lecture (1)

09/02/2010 12 / 25

- Assumption SLR.1 (Linear in Parameters) $Y = \beta_0 + \beta_1 X + U$
- Assumption SLR.2 (Random Sampling) (X_i, Y_i) , i = 1, ..., N, is a random sample from the population.
- Assumption SLR.3 (Sample Variation in the Explanatory Variable)
 {X_i, i = 1, ..., N} are not all the same value.
- Assumption SLR.4 (Zero Conditional Mean) E(U|X) = 0.
- Assumption SLR.5 (Homoskedasticity) $Var(U|X) = \sigma^2$.

• What is unbiasedness?

we call the estimator \hat{eta}_1 unbiased if $E\left(\hat{eta}_1|X
ight)=?$

- Under which assumptions unbiasedness hold?
- Under all of the five assumptions,

Var
$$ig(\hat{eta}_1|Xig)=?$$

- What happens if there is no variation in X (SLR.3 is violated)?
- What happens if there is heteroskedasticity (SLR.5 is violated)?
- What does Gauss-Markov Theorem say?

- When we do causal analysis, what is the interpretation for U?
- If X and U are positively correlated, which assumption is violated? What happens to $E(\hat{\beta}_1|X)$ now?
- What is the effect of omitting a variable that is independent of X?
- What is the effect of omitting a variable that has both direct positive effect on *Y* and positive effect on *X*?
- What is the effect of omitting a variable that has both direct negative effect on Y and positive effect on X?

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_K X_K + U$$

• Estimated equation:

$$\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 X_{1i} + ... + \hat{eta}_K X_{Ki}$$

• How are the OLS estimators $\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_K$ obtained?

• Under Assumptions MLR.1-4 (Linearity, Random Sampling, No Multicollinearity, Conditional Mean-Zero):

$$\mathsf{E}\left(\hat{eta}_{j}|X
ight)=?$$

• Under the above assumptions and MLR.5 (Homoskedasticity):

$$V$$
ar $\left(\hat{eta}_{j} | X
ight) = rac{\sigma^{2}}{SST_{X} \left(1 - R_{j}^{2}
ight)}$

What is σ^2 , SST_X or R_j^2 ?

• How does R^2 change when we add more variables to the regression?

- How does R^2 change when we add more variables to the regression?
- What's the effect on the unbiasedness of the estimators of including irrelevant variables?

- How does R^2 change when we add more variables to the regression?
- What's the effect on the unbiasedness of the estimators of including irrelevant variables?
- What's the effect on the unbiasedness of the estimators of omitting relevant variables?

- How does R^2 change when we add more variables to the regression?
- What's the effect on the unbiasedness of the estimators of including irrelevant variables?
- What's the effect on the unbiasedness of the estimators of omitting relevant variables?
- Are there any reasons for not including a particular variable on the left hand side?

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + ... + U$$

• What's the partial effect (marginal effect) of X_1 on Y?

$$\frac{\partial Y}{\partial X_1} = ?$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + ... + U$$

• What's the partial effect (marginal effect) of X_1 on Y?

$$\frac{\partial Y}{\partial X_1} = ?$$

 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + ... + U$

Lecture (1)

۲

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + ... + U$$

• What's the partial effect (marginal effect) of X_1 on Y?

$$\frac{\partial Y}{\partial X_1} = ?$$

۲

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \dots + U$$

• What's the partial effect (marginal effect) of X_1 on Y?

$$\frac{\partial Y}{\partial X_1} = ?$$

Lecture (1)

• How is the t-statistic for $\hat{\beta}_i$ formulated?

$$t_n=\frac{\hat{\beta}_j-?}{?}$$

• How is the t-statistic for $\hat{\beta}_i$ formulated?

$$t_n = \frac{\hat{\beta}_j - ?}{?}$$

• What's the 95% confidence interval of β_i ?

$$\left[\hat{eta}_j-1.96*?,\hat{eta}_j+1.96*?
ight]$$

Lecture (1)

• What is type I error of a test?

- What is type I error of a test?
- What is type II error of a test?

- What is type I error of a test?
- What is type II error of a test?
- What is the significance level of a test?

- What is type I error of a test?
- What is type II error of a test?
- What is the significance level of a test?
- Suppose we are doing the two-sided test of $H_0: \beta_j = 0$ vs. $H_1: \beta_j \neq 0$.

- What is type I error of a test?
- What is type II error of a test?
- What is the significance level of a test?
- Suppose we are doing the two-sided test of $H_0: \beta_j = 0$ vs. $H_1: \beta_j \neq 0$.

• If
$$\hat{eta}_j=$$
 2, $se(\hat{eta}_j)=$ 0.1, do we reject the null at 5% level?

A Single Linear Combination of Parameters

• How do we test:

$$H_0: aeta_1+beta_2=0?$$

A Single Linear Combination of Parameters

How do we test:

$$H_0: a\beta_1 + b\beta_2 = 0?$$

• Modified the regression:

$$\begin{split} Y &= & \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \varepsilon \\ &= & \beta_0 + (a\beta_1) \frac{X_1}{a} + (b\beta_2) \frac{X_2}{b} + \ldots + \varepsilon \\ &= & \beta_0 + (a\beta_1 + b\beta_2) \frac{X_1}{a} + (b\beta_2) \left(\frac{X_2}{b} - \frac{X_1}{a} \right) + \ldots + \varepsilon \end{split}$$

A Single Linear Combination of Parameters

How do we test:

$$H_0: a\beta_1 + b\beta_2 = 0?$$

Modified the regression:

$$\begin{split} Y &= \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \varepsilon \\ &= \beta_0 + (a\beta_1) \frac{X_1}{a} + (b\beta_2) \frac{X_2}{b} + \ldots + \varepsilon \\ &= \beta_0 + (a\beta_1 + b\beta_2) \frac{X_1}{a} + (b\beta_2) \left(\frac{X_2}{b} - \frac{X_1}{a}\right) + \ldots + \varepsilon \end{split}$$

• Run regression of Y on $\frac{X_1}{a}$ and $\frac{X_2}{b} - \frac{X_1}{a}$.

• How do we test:

$$H_0: \beta_1 = 0, \ \beta_2 = 0?$$

・ロト ・ 日 ト ・ 田 ト ・

• How do we test:

$$H_0: \beta_1 = 0, \ \beta_2 = 0?$$

• Obtain SSR (SSR_{ur}) from the unrestricted regression:

$$log (wage) = \beta_0 + \beta_1 jc + \beta_2 univ + \beta_3 exper + \varepsilon$$

How do we test:

$$H_0: \beta_1 = 0, \ \beta_2 = 0?$$

• Obtain SSR (SSR_{ur}) from the unrestricted regression:

$$log (wage) = \beta_0 + \beta_1 jc + \beta_2 univ + \beta_3 exper + \varepsilon$$

• Obtain SSR (SSR_r) from the restricted regression:

$$\log(wage) = \beta_0 + \beta_3 exper + \varepsilon.$$

• Form the F-statistic:

$$F \equiv \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n - K - 1)} \sim F_{q, n - K - 1}.$$

What is q? What is $F_{q,n-K-1}$?

• Form the F-statistic:

$$F \equiv \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n - K - 1)} \sim F_{q, n - K - 1}.$$

What is q? What is $F_{q,n-K-1}$?

• Reject H₀ if

$$F > F_{q,n-K-1,1-\alpha}$$

where α is the significance level, $F_{q,n-K-1,1-\alpha}$ is the $1-\alpha$ quantile of $F_{q,n-K-1}$

Source	55	df	M5 32001.7271 258.73617 279.442622		Number of obs F(1, 1532) Prob > F R-squared Adj R-squared Root MSE	Number of obs	
Model Residual	32001.7271 396383.812	1 1532				= 0.0000 = 0.0747	
Total	428385.539	1533					
prate	Coef.	Std.	Err.	t	P> t	[95% conf.	Interval]
mrate _cons	5.861079 83.07546	. 5270 . 5632		11.12 L47.48	0.000	4.82734 81.97057	6.894818 84.18035

Image: A math a math