
Review Material

Xiaoxia Shi

December 14, 2010

1. OLS

(a) Bivariate regression
Yi = �0 + �1Xi + "i. (1)

Estimates:

�̂1 =

Pn
i=1

�
Xi � �X

� �
Yi � �Y

�Pn
i=1

�
Xi � �X

�2 (2)

�̂0 = �Y � �̂1 �X: (3)

Assumptions: Linear form, Random Sampling, no multicollinearity, Exo-
geneity (E("ijXi) = 0), Homoskedasticity (V ar("ijXi) = �

2),
Under Exogeneity, �̂1 is unbiased: E(�̂1jX) = �1.
Under Homoskedasticity and Exogeneity, �̂1 is BLUE. (Gauss-Markov
Theorem) Variance of �̂1 :

V ar(�̂1jX) =
�2Pn

i=1

�
Xi � �X

�2 : (4)

(b) Multivariate regression

Yi = �0 + �1X1i + �2X2i + :::+ �kXki + "i: (5)

i. OLS estimator

�̂j=

Pn
i=1 r̂jiYiPn
i=1 r̂

2
ji

; (6)

where r̂ji is the residual from regression of Xj on the rest of the
regressors (including the constant).
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ii. For a general k 2 f1; 2; :::g. With the same assumptions as in the
bivariate case, we get the same conclusions about �̂1; �̂2; :::; �̂k:

iii. Interpretation: now let Xi denote the vector (X1i; :::Xki)
0. With

E("ijXi) = 0, �̂j is interpreted as the causal e¤ect ofXji on Yi holding
other covariates constant. Without E("ijXi) = 0; �̂j cannot be inter-
preted as causal e¤ect, but it can be interpreted as correlation. It�s
the correlation between Xji with Yi controlling for other covariates.

(c) Multicollinearity: one of the regressors (including the constant, if there is
one) can be written as a linear function of other regressors. One example:
dummy variable trap. If a bunch of dummy variables sum up to 1 (which
is equal to the constant term), one of the dummy variables has to be left
out of the regression (the base group)

(d) Heteroskedasticity: V ar("ijXi) = �
2(Xi). Consequences: OLS estimator

is not e¢ cient anymore; STATA reports "wrong standard error". OLS
estimator is still unbiased. We can use robust standard error (which is
justi�ed in large samples)
Testing for heteroskedasticity: visual inspection, the Breusch-Pagan test,
and the White test.

(e) Weight least square: a way to get an estimator with smaller variance than
the OLS estimator in the presence of heteroskedasticity.

(f) Endogeneity: E("ijXi) 6= 0. OLS estimator is biased. In the bivariate
case:

E(�̂1jX) = �1 +
P

i xiE("ijX)P
i x

2
i

: (7)

Direction of the bias is determined by the correlation between "i and Xi.

2. Testing (inference).

(a) t-test. In small sample, t-statistic has t-distribution with n-k degrees of
freedom (the error term is assumed to be normally distributed). In large
sample, normal error assumption can be dropped and the t-statistic has
asymptotic Normal distribution.

(b) F-test: to test multiple restrictions. e.g. H0 : �1 = 0 and �2 = 0. Steps
to compute F-statistic.

(c) Test for heteroskedasticity.

(d) Test for autocorrelation.
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3. Endogeneity, proxy variable, and 2SLS

(a) Endogeneity: omitted variable, measurement error, simultaneity.

i. Omitted variable:

Yi = �0 + �1X1i + (�2X2i + "i); E("ijX1i) = 0; (8)

in which X2i is not observed. Direction of bias is determined by

cov(�2X2i + "i; X1i) = cov(�2X2i; X1i) = �2cov(X2i; X1i). (9)

When �2 6= 0 AND cov(X2i; X1i) 6= 0, OLS estimator of �1 is biased.
ii. measurement error:

Yi = �0 + �1Xi + "i; E("ijX1i) = 0; (10)

X�
i = Xi + ei, (11)

where Xi is not observed. If we use X�
i instead, we run regression:

Yi = �0 + �1X
�
i + vi, (12)

where vi = "i � �1e1.
Classical measurement error assumption: E(eijXi) = 0, E(ei"i) = 0,
V ar(eijXi) = �

2
e.

Direction of the bias is determined by

cov(vi; X
�
i ) = cov("i � �1ei; Xi + ei)

= cov("i; Xi) + cov("i; ei)� �1cov(ei; Xi)� �1cov(ei; ei)
= 0 + 0� 0� �1cov(ei; ei)
= ��1�2e; (13)

which always has the opposite sign as �1. Thus the bias is always
toward zero, and is called attenuation bias.
Classical measurement error in the dependent variable does not cause
bias or inconsistency.

iii. Simultaneity:

Y1i = �0 + �1Y2i + "i

Y2i = �0 + �1Y1i + vi, cov("ivi) = 0. (14)
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)
Y2i = �0 + �1 (�0 + �1Y2i + "i) + vi (15)

)
Y2i =

1

1� �1�1
(�0 + �1�0 + �1"i + vi) (16)

Thus,

cov("i; Y2i) = cov("i;
1

1� �1�1
(�1"i + vi))

=
�1

1� �1�1
: (17)

Typically, 1 � �1�1 > 0 (stable system requirement). Then the sign
of bias on OLS estimator �̂1 is the same as the sign of �1.

(b) Proxy variable- for endogeneity caused by omitted variables. A proxy
variable should mimic the omitted variable. Thus, it should has similar
impact on Y as does the omitted variable and it can be correlated with
the other regressors.
Example: IQ score for ability, adding time trend to regression when a
regressor and/or the dependent variable has trend.

(c) 2SLS or IV.

i. In a regression

Yi = �0 + �1X1i + �2X2i + :::+ �KXKi + "i: (18)

If XKi is endogenous (and all the other regressors are exogenous), and
if we have an instrumental variable Zi that satis�es: cov(XKi; Zi) 6= 0,
and cov(Zi; "i) = 0, then we can use the following regression:

XKi = �0 + �1Zi + vi, (19)

to decomposeXKi into a part that is not correlated with "i : (�0+�1Zi)
and a part that is correlated with "i : (vi). Then use the �rst part
instead of XKi in the original regression.
In practice, this is the 2SLS procedure: regress XKi on Zi; save the
predicted value X̂Ki; use X̂Ki instead ofXKi in the original regression.
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ii. (Weak Instrument) If cov(XKi; Zi) is small, then �1 is small, then
X̂Ki = �̂0 + �̂1Zi is almost constant (little variation), then in the
regression

Yi = �0 + �1X1i + �2X2i + :::+ �KX̂Ki + ui;

the variance of �̂K is very large.
iii. (Fishy Instrument) cov(Zi; "i) 6= 0. Then, the "exogenous part" is

not exogenous, X̂Ki is not asymptotically uncorrelated with ui. So,
2SLS estimator is inconsistent.

iv. Bivariate regression case:

Yi = �0 + �1Xi + "i; E("ijXi) 6= 0: (20)

A valid instrument The IV estimator for �1:

�̂
IV

1 =

P
i

�
Zi � �Zn

�
YiP

i

�
Zi � �Zn

�
Xi

(21)

Assume V ar("ijZi) = �2"$. The asymptotic variance of �̂
IV

1 :

Asy:V ar(�̂
IV

1 ) =
�2"

n�2xR
2
xz

v. In practice, it is recommended to use all the exogenous regressors in
the �rst stage regression:

XKi = �0 + �1X1i + :::+ �K�1X(K�1)i + �KZi + vi, (22)

vi. 2SLS estimator is biased, because �0; �1 are unknown and can only be
estimated. But it is consistent if cov(XKi; Zi) 6= 0, and cov(Zi; "i) =
0.

4. Panel data

(a) Panel data and endogeneity. Panel data can be used to deal with endo-
geneity caused by unobserved time invariant preferences. By doing First
di¤erence or Fixed e¤ect regression, we eliminate the latent time-invariant
preference from the error term.
For example, the individual �xed ability can be di¤erenced out when
estimating return to education.
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(b) Panel data and serial correlated error. Individual �xed (time-invariant)
heterogeneity, if not di¤erenced out, is in the error term, and causes serial
correlation of the error term:

vit = ui + "it

cov (vit; vis) = V ar (ui) 6= 0. (23)

Solution: (1) use cluster standard error.
(2) use random e¤ect:

(Yit � � �Yi) = �0 (1� �) + �1
�
Xit � � �Xi

�
+ (vit � ��vi) , (24)

where � satis�es:
Cov (vit � ��vi; vis � ��vi) = 0: (25)

:� = 1�
p
�2"= (T�

2
u + �

2
").

5. Treatment e¤ect, Experiments, and Natural experiments

(a) How a new drug reduce the risk of heart attack? How a job training
program increase a person�s chance of getting a job? etc., etc. The e¤ects
of the new drug, of the job training program is treatment e¤ect.

(b) Ideally, we want to randomly assign the treatment to some people and
not to other people. If all people comply and there is no spillover e¤ect,
we can estimate the treatment e¤ect easily by comparing the treated and
untreated after treatment. (Note that we do the comparison by running
regressions of the dependent variable on the "treatment" dummy. Run-
ning regression gives us a test statistic at the same time.) This approach
is called random experiment (as what the scientists do in their labs).

(c) Not truly random experiments and natural experiments. Treated group
and untreated (control) group are not necessarily similar a priori. With
only one cross section data, we cannot do anything. With Panel data or
pooled cross-sectional, DID estimation is possible. For DID to be valid,
we need (a) no spillover e¤ect and (b) the natural growth paths of the
treatment group and the controlled group are parallel.

6. Time series:

(a) Static models, FDL models
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(b) strict exogeneity and unbiasedness.

(c) contemporaneous exogeneity and consistency.

(d) Stationarity and weak dependence.

(e) Random Walk.

7. Technical stu¤:

(a) Change in percent(age)=change/initial value�100%
(b) Change in percentage point is the "change�100" when the dependent

variable is 0-1.

(c) Draw the �tted line of Y on X controlling for other covariates: Step 1:
run regression

Yi = �0 + �1Xi + � � othercovariates+ "i: (26)

Step 2: draw the function: y = �̂0 + �̂1Xi.

(d) The marginal e¤ect of X on Y : if X is continuous

@Y

@X

Notice the nonlinearity and interaction terms in the regression.
If X is binary:

E (Y jX = 1)� E(Y jX = 0).

Dummy dependent variables: LPM:

Y = �0 + �1X + ui

)

Pr (Y = 1jX) = �0 + �1X. (27)
@ Pr (Y = 1jX)

@X
= �1 (28)

Nonlinear probability models:

Pr (Y = 1jX) = F (�0 + �1X) . (29)
@ Pr (Y = 1jX)

@X
= �1F

0 (�0 + �1X) : (30)
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