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Abstract

Schelling (1971) introduces a seminal model of the dynamics of residential segre-
gation in an isolated neighborhood. His model combines agent heterogeneity with
explicit behavior dynamics; as such it is presented informally, and with the use of
“semi-equilibrium” restrictions on out-of-equilibrium play. In this paper, we use
recent techniques from evolutionary game theory to introduce a formal version of
Schelling’s model, one that dispenses with equilibrium restrictions on the adjustment
process. We show that key properties of the resulting infinite-dimensional dynamic
can be derived using a simple finite-dimensional dynamic that captures aggregate
behavior. We determine conditions for the stability of integrated equilibria, and we
derive a strong restriction on out-of-equilibrium dynamics that implies global con-
vergence to equilibrium: along any solution trajectory, one population’s aggregate
behavior adjusts monotonically, while the other’s changes direction at most once. We
present a variety of examples, and we show how extensions of the basic model can
be used to study both alternative specifications of agents’ preferences and policies to
promote integration.

1. Introduction

The high degree of residential segregation in U.S. cities is well documented. While
many factors contribute to this state of affairs, it is widely acknowledged that individuals’
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preferences about the racial composition of their neighborhoods play an important role.1

Still, the link between individual preferences and observed segregation is not as direct as
one might expect. Indeed, surveys show that most individuals prefer neighborhoods that
are more diverse than the neighborhoods we see.2 This discrepancy suggests a variety of
questions of clear practical import: Why do observed neighborhood racial compositions
differ from what individuals would prefer? How do these compositions change over
time? Under what circumstances are integrated neighborhoods most likely to survive?
When is public policy likely to be helpful in sustaining integration?

The seminal work on the link between individual preferences and residential segrega-
tion is Thomas Schelling’s 1971 article entitled “Dynamic Models of Segregation”. This
article considers residential location choices made by individuals from two groups, fo-
cusing on how these decisions can result in higher levels of segregation than nearly any
individual agent would prefer.3

Schelling (1971) presents two distinct models of residential location dynamics. Both
models feature agents whose preferences are described by scalar “tolerances”; these indi-
cate the proportion of unlike residents in a neighborhood that an agent will accept before
prefering to move to a new location. The two models differ in how physical space, and
hence agents’ choice sets, are described. In Schelling’s “spatial proximity model”, loca-
tions are arrayed in a discrete grid, and an agent’s neighborhood is defined to be the set of
locations that are adjacent to his own; when an opportunity to move arises, a dissatisfied
agent moves to an empty square whose neighborhood he prefers.4

In contrast, Schelling’s “isolated neighborhood” model describes decisions made by
heterogeneous agents about whether to live in a certain mixed neighborhood or in some
homogeneous outside locales.5 Schelling focuses on how the distributions of tolerances

1Unless proper controls are put in place when preferences are elicited, racial composition can end up
serving as a proxy for preferences about other neighborhood characteristics, in particular income levels.
Nevertheless, the sociological consensus holds that preferences about neighborhood racial composition
remain an important contributor to observed segregation even when other factors are held fixed. The basic
reference on U.S. residential segregation is Massey and Denton (1993). For a more recent survey of work on
this question, see Charles (2003). Additional references are discussed below.

2See the previous references, as well as Clark (1991), Bobo and Zubrinsky (1996), and Farley et al. (1997).
3Schelling further develops this insight in a broad array of contexts in his 1978 book, Micromotives and

Macrobehavior, which contains an abridged version of his 1971 paper.
4Actually, Schelling presents two spatial proximity models that differ in important respects. The better

known of these, the so-called “checkerboard model”, describes locations as a discrete two-dimensinal grid,
and allows agents who are not content to move to any unoccupied square in the grid. Before presenting
this model, Schelling considers a one-dimensional model in which agents are able to insert themselves
between pairs of opponents. See Pancs and Vriend (2007) for further discussion of these models. Variants
of Schelling’s spatial proximity models have been analyzed using techniques from stochastic evolutionary
game theory: see Young (1998, 2001), Zhang (2004a,b), Möbius (2000), and Bøg (2006).

5Schelling refers to this model as the “bounded neighborhood” model.
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in the two populations influence the set of equilibrium outcomes and the nature of dise-
quilibrium dynamics. He then uses this model to consider the effects of various policy in-
terventions, and, most famously, to address the phenomenon of “neighborhood tipping”.
While this model has been quite influential, it is not completely satisfying in all respects:
it requires strong out-of-equilibrium sorting assumptions, and its disequilibrium dynam-
ics are not specified explicitly. Still, Schelling’s approach provides a workable model
of disequilibrium behavior adjustment in an environment with heterogeneous agents—
an environment that without strong simplifying assumptions appears impervious to a
tractable dynamic analysis.

In this paper, we show that despite the complications generated by agent heterogeneity,
Schelling’s isolated neighborhood model can be placed on a firm theoretical footing. Using
new tools from evolutionary game theory—namely, the Bayesian best response dynamic
of Ely and Sandholm (2005)—we construct an explicit model of location choice dynamics.
This model allows the behaviors of agents with different preferences to adjust separately,
and so avoids “semi-equilibrium” restrictions on disequilibrium neighborhood composi-
tions. While the model takes the form of an infinite-dimensional dynamical system, we
adapt Ely and Sandholm’s (2005) results to show that for many purposes, the analysis of
this system can be reduced to that of an appropriate two-dimensional dynamical system,
one that keeps track of aggregate behavior within each population. Thus, our approach
to the dynamics of residential segregation allows us to model individual behavior in a
satisfying way while still retaining Schelling’s original insights.

Indeed, by specifying an explicit model of behavior dynamics, we are able to obtain
a number of new qualitative results. For instance, we derive necessary and sufficient
conditions for the stability of integrated equilibria. Surprisingly, the key requirement
for stability is that in at least one of the populations, the number of agents who find
themselves indifferent between staying in the neighborhood and moving out must not be
too large.

More novelly, we are able to obtain restrictions on the nature of the adjustment process
itself. Using techniques from the theory of competitive differential equations (see, e.g.,
Smith (1995)), we are able to prove that any solution trajectory of our model must obey
strong monotonicity requirements: the state variable describing aggregate behavior in one
of the two groups must change monotonically over time, while the state variable describing
behavior in the other group switches directions at most once. It follows immediately that
every solution trajectory of the dynamic converges to equilibrium. Restrictions on the
nature of disequilibrium adjustment are not common in economics, but in studying issues
like residential segregation, where dynamics are understood to be of central import,
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implications of this sort seem likely to play a crucial role.
While we only explore one model in detail, our modeling technique is quite flexible,

and can accommodate a wide array of specifications of policy instruments, individual
preferences, and location choice alternatives. After presenting the analytical results for
our basic model, we offer a variety of examples that reveal the complex interplay between
population sizes and preference distributions that determine the nature and the stability
of equilibrium behavior. We show that a distaste for overly homogeneous neighborhoods
can lead to the formation of sparsely populated segregated districts, but can also allow an
integrated equilibrium to be a global attractor. We address policies to sustain integration,
and argue that the success of these policies can depend on the fine details of the instruments
employed. Lastly, we describe in brief some further extensions of our model, including
the replacement of the homogeneous outside options by additional neighborhoods subject
to settlement by both groups, and the introduction of heterogeneity in income levels and
in preferences for public goods.

The remainder of the paper is organized as follows. In Section 2, we describe Schelling’s
original isolated neighborhood model. In Section 3, we show how this model can be for-
malized using Bayesian population games and Bayesian best response dynamics, and
introduce the aggregate dynamic that makes our qualitative analysis possible. Section 4
derives necessary and sufficient conditions for stability of equilibrium, establishes mono-
tonicity properties of disequilibrium behavior trajectories, and demonstrates the implica-
tions of these results through some examples. Section 5 describes extensions of the model,
and Section 6 offers concluding remarks. All proofs are relegated to an appendix.

2. Schelling’s Isolated Neighborhood Model

2.1 Colors and Tolerances

Here is the basic idea behind Schelling’s (1971) model, in his own words:

In this model there is one particular bounded area that everybody, black or white,
prefers to its alternatives. He will reside in it unless the percentage of residents of the
opposite color exceeds some limit. Each person, black or white, has his own limit.
(’Tolerance’, we shall occasionally call it.) If a person’s limit is exceeded in this area
he will go someplace else—a place, presumably, where his own color predominates or
where color does not matter. (p. 167)

Thus, in Schelling’s model, there are two populations of agents, one of whites and
one of blacks. Agents in each group choose between residing in a (possibly) mixed
neighborhood and residing at an alternate location inhabited solely by members of their
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own group. Each agent’s preferences are characterized by a tolerance. If the ratio of
other-group residents to own-group residents in the neighborhood is below the agent’s
tolerance, he prefers to live in the neighborhood; if this ratio is below the agent’s tolerance,
he prefers to live at the alternate location.

Schelling presents his model without using any notation: he employs only verbal
descriptions and diagrammatic analysis. Nevertheless, introducing some notation here
will enable us to explain his work in an efficient fashion. We let mw and mb denote the sizes
of the white and black populations. The distributions of tolerances in the white and black
populations, which we denote by µw and µb, are measures on [0,∞) with total masses mw

and mb, respectively. Both of these measures are assumed to be absolutely continuous
(i.e., to admit density functions).

2.2 Equilibrium

The natural definition of equilibrium in this setting requires that no agent be able to
benefit from switching locations.6 To describe equilibrium formally, let xw

∈ Xw
≡ [0,mw]

and xb
∈ Xb

≡ [0,mb] denote the numbers of whites and blacks in the neighborhood.
Elements of X ≡ Xw

× Xb are called social states.
Let the functions tw : Xw

→ [0,∞) and tb : Xb
→ [0,∞) be defined implicitly as follows:

µw([tw(xw),∞)) = xw;

µb([tb(xb),∞)) = xb.

Thus, tw(xw) is the (xw)th highest tolerance in the white population (where tw(0) is the very
highest tolerance and tw(mw) is the very lowest), and tb(xb) is the (xb)th highest tolerance
in the black population. To ensure that tw and tb are well-defined, we assume in the
remainder of this section that the supports of µw and µb are bounded intervals. In this
case, tw and tb are the inverses of the decumulative distribution functions of µw and µb.7

A white agent will be indifferent between living inside or outside the neighborhood
when the ratio of blacks to whites in the neighborhood is equal to his tolerance. In
particular, if xb blacks and the xw most tolerant whites live in the neighborhood, then the

6When Schelling (1971) introduces his notion of “static viability”, he does not consider whether agents
outside the neighborhood would prefer to move in; however, he introduces this possibility when considering
location choice dynamics (p. 170).

7Without this assumption, the dynamics described in equations (2a) and (2b) are not well defined.
Schelling (1971) uses distributions with both nonconvex supports and mass points in some of his examples
(see, e.g., his p. 176-178), but nothing about these examples changes if the distributions are modified so as to
have convex supports. In our model, we will allow nonconvex supports, but mass points at finite tolerances
will be forbidden.
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marginal white agent is indifferent if the ratio xb/xw equals his tolerance tw(xw). With this
in mind, we define

Tw(xw) = xw tw(xw)

to be the number of blacks that must be in the neighborhood for this marginal white agent
to be indifferent. Similarly, if the xb most tolerant blacks are in the neighborhood, then

Tb(xb) = xb tb(xb)

is the number of whites who must be in the neighborhood for the marginal black agent to
be indifferent.

Social state x = (xw, xb) is an equilibrium if the following conditions hold:
xw = 0 ⇒ Tw(0) ≤ xb;

xw
∈ (0,mw) ⇒ Tw(xw) = xb;

xw = mw
⇒ Tw(mw) ≥ xb.

(1a)


xb = 0 ⇒ Tb(0) ≤ xw;

xb
∈ (0,mb) ⇒ Tb(xb) = xw;

xb = mb
⇒ Tb(mb) ≥ xw.

(1b)

In equilibrium, it must be that the xw most tolerant white agents and the xb most tolerant
black agents live in the neighborhood. Conditions (1a) and (1b) tell us that at an interior
equilibrium, the marginal agent in each population is indifferent between living inside or
outside the neighborhood. If all agents of a certain color are in the neighborhood, the least
tolerant agent of that color must weakly prefer to reside there; if no agents of this color
are in the neighborhood, the most tolerant agent must weakly prefer not to reside there.

Let us illustrate these definitions by presenting Schelling’s (1971) first example (p.
168-171). In this example, Schelling assumes that the white population is twice as large as
the black population (mw = 100,mb = 50), and that the distribution of tolerances in each
population is uniformly distributed on [0, 2]. It is easy to verify that this specification of µw

and µb generates the functions Tw(xw) = 2xw
−

1
50 (xw)2 and Tb(xb) = 2xb

−
1
25 (xb)2. Schelling’s

diagram of these two functions is presented in Figure 1.8 Examining this figure, we see
that there are segregated equilibria at (100, 0) and (0, 50), and an integrated equilibrium
at x? = (xw

?, x
b
?) ≈ (21.7401, 34.0276).

8This graph, Figure 9 of Schelling (1978), is a cleaner version of Figure 18 of Schelling (1971).
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Figure 1: Schelling’s first example.

It is worth noting one technical difficulty here. If one population, say the whites, is
absent from the neighborhood (xw = 0), then the ratio xb/xw used to define white agents’
preferences is undefined. There is no difficulty in setting this ratio to ∞ when xb is
positive, and our definitions behave appropriately in this case. But if both xw and xb are 0,
it is unclear how preferences ought to be defined, and it is clearly problematic to specify
preferences in a neighborhood of this point in a continuous way. 9

2.3 Schelling’s Dynamics
Let us quote Schelling’s (1971) description of his dynamics:

It is the dynamics of motion, though, that determine what color mix will ultimately
occupy the area. The simplest dynamics are as follows: if all whites present in the
area are content, and some outside would be content if they were inside, the former
will stay and the latter will enter; and whites will continue to enter so long as all those
present are content and some would be content if present. If not all whites present are
content, some will leave; they will leave in the order of their discontent, so that those
remaining are the most tolerant; and when their number in relation to the number of
blacks is such that the whites remaining are all content, no more of them leave. A
similar rule governs entry and departure of the blacks. (p. 170)

In our notation, this description corresponds to the following family of dynamics on
X = Xw

× Xb:

sgn(ẋw) = sgn(Tw(xw) − xb);(2a)

sgn(ẋb) = sgn(Tb(xb) − xw).(2b)

9For the record, we note that since Tw(0) = Tb(0) = 0, state (0, 0) is always an equilibrium according to
conditions (1a) and (1b).
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The effect of these dynamics on the state (xw, xb) is represented by the arrows in Figure 1.
When the state is below the graph of Tw (labeled W in the figure), so that Tw(xw) > xb, ẋw is
positive, so the number of whites in the neighborhood increases. When the state is above
the graph of Tw, the number of whites in the neighborhood falls, and when the state is
on the graph of Tw, the number of whites is momentarily fixed. Similarly, the number of
blacks in the neighborhood rises, falls, or stays fixed according to whether the state is to
the left, to the right, or directly on the graph of Tb.

While one would need to specify the dynamics more precisely than in (2) to obtain
exact solutions, the qualitative features of such solutions is apparent from Figure 1: the
integrated equilibrium x? is a saddle, and hence unstable, and so almost all solution
trajectories head toward one of the stable, segregated equilibria at states (100, 0) and (0,
50).

2.4 The Semi-Equilibrium Assumption

In order to formulate his dynamics on the set of social states X, Schelling must impose
a major simplifying assumption: at any point in time, the agents who are in the neighbor-
hood are always the ones whose tolerances are highest. While this property must hold in
equilibrium, it is a very strong assumption to make about behavior during disequilibrium
adjustment. We refer to Schelling’s assumption here as the semi-equilibrium assumption,
and describe system (2) as semi-equilibrium dynamics.

It is important to note that without the semi-equilibrium assumption, it is no longer
clear that system (2) provides a reasonable description of the evolution of behavior. To see
why not, suppose that at some moment in time, the xw whites in the neighborhood are not
the xw most tolerant whites in the population. In this event, the least tolerant white agent
in the neighborhood has a tolerance less than Tw(xw). Even if Tw(xw) > xb, if it is the case
the least tolerant whites in the neighborhood adjust their behavior before the discontented
whites outside the neighborhood, the number of white agents in the neighborhood could
fall. This disagrees with equation (2a).

In order to construct dynamics that do not rely on an implicit equilibrium assumption,
one must track the behaviors of agents with different tolerances separately. We accomplish
this by employing tools introduced in an abstract context by Ely and Sandholm (2005):
we express Schelling’s model as a Bayesian population game, and describe the evolution
of behavior using Bayesian best response dynamics.
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3. Bayesian Population Games and Best Response Dynamics

3.1 Schelling’s Model as a Bayesian Population Game

3.1.1 Types and Type Distributions

In our Bayesian population game, each agent is a member of one of two populations,
w or b. Each agent in population p ∈ {w, b} is endowed with a type (i.e., a tolerance) θp

from the set Θp
≡ [0,∞]. In what follows, we denote the type of a white agent by θw and

the type of a black agent by θb; as before, the distributions of blacks’ and whites’ types
are denoted µw and µb. Notice that we have introduced agents of type∞; these committed
types prefer to live in the neighborhood under all circumstances.

We make the following assumptions about distributions µw and µb:

(A1) mw
∞
≡ µw({∞}) > 0 and mb

∞
≡ µb({∞}) > 0.

(A2) µw
|[0,∞) and µb

|[0,∞) admit bounded density functions.

We sometimes find it convenient to write mp = mp
f + mp

∞, where mp
f = µp([0,∞)) denotes

the mass of finite type agents in population p ∈ {w, b}. The roles of assumptions (A1) and
(A2) will be made clear below.

3.1.2 Payoffs

The payoff functions for the Bayesian game are of the form Up
s : X × Θp

→ (−∞,∞],
where p ∈ {w, b} is a population and s ∈ {in, out} is a strategy. Recall that in Schelling’s
(1971) model, an agent prefers to live in the neighborhood if and only if the ratio of
other-group residents to own-group residents in the neighborhood is below the agent’s
tolerance. Therefore, if we normalize the payoff to the outside option out to 0 (i.e., if
Uw

out ≡ Ub
out ≡ 0), then the payoff to choosing in must satisfy

sgn
(
Uw

in(x;θw)
)

= sgn
(
θw
−

xb

xw

)
when θw , ∞, and(3a)

sgn
(
Ub

in(x;θb)
)

= sgn
(
θb
−

xw

xb

)
when θb , ∞.(3b)

Since the committed types always prefer to live in the neighborhood, we set

Uw
in( · ;∞) ≡ Ub

in( · ;∞) ≡ ∞.

For conditions (3a) and (3b) to be well-defined, xw and xb must be positive. We could
skirt this issue temporarily by multiplying through by xw and xb, but as we saw at the end

–9–



of Section 2.2, doing so still leaves us with a severe discontinuity at the origin. This issue
is addressed in the next two sections.

3.1.3 Bayesian Strategies

For analytical convenience, we assume that in each population p, there is a continuum
of agents of each typeθp

∈ support(µp). The proportion of agents in subpopulationθp who
choose in is denoted σp(θp) ∈ [0, 1]. Thus, the behavior of all types of agents in population
p is described by the Bayesian strategy σp : Θp

→ [0, 1]; the set of all such Bayesian strategies
is denoted Σp. We evaluate distances between points in Σp using the L1 norm,

(4) ‖σp
− σ̂p
‖ =

∫
Θp

∣∣∣σp(θp) − σ̂p(θp)
∣∣∣ dµp,

so that the distance between Bayesian strategies σp and σ̂p is just the (µp-)average distance
between subpopulations’ behaviors under σp and σ̂p. We call σp and σ̂p equivalent if
σp(θp) = σ̂p(θp) for (µp-)almost every θp

∈ Θp. In other words, we do not distinguish
between Bayesian strategies that indicate the same action distribution in almost every
subpopulation.

A complete description of behavior in both populations is provided by σ = (σw, σb) ∈
Σ ≡ Σw

× Σb. We refer to σ ∈ Σ as a Bayesian strategy profile, or as a profile for short.
As we have seen, agents care about the proportions of blacks and whites in the neigh-

borhood, but they do not care directly about opponents’ types. For this reason, it is useful
to introduce notation for the aggregate behavior generated by a Bayesian strategy profile.
The masses of white and black agents who choose in under profile σ = (σw, σb) is obtained
by applying the aggregation operator A:

Aσ = (Aσw,Aσb) =

(∫
Θw
σw(θw) dµw,

∫
Θb
σb(θb) dµb

)
.

Like the expectation operator E, the aggregation operator A always integrates with respect
to the measure or measures appropriate for its argument.

In Section 3.1.2, we saw that that preferences are not well-defined at social states x at
which xw or xb equals 0. To begin to address this issue, recall that committed agents in
both populations find in strictly dominant. Bearing this in mind, we let

Σ
p
◦ = {σp

∈ Σp : σp(∞) = 1}

denote the subset of Σp on which committed agents in population p choose in. By defini-
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tion, the total number of in players at any σp
∈ Σ

p
◦ is at least mp

∞; we thus have

A(Σp
◦) = Xp

◦ ≡ [mp
∞,mp].

For future convenience, we let Σ◦ = Σw
◦
× Σb

◦
and X◦ = Xw

◦
× Xb

◦
, so that A(Σ◦) = X◦.

3.2 Bayesian Best Responses, Equilibria, and Dynamics

3.2.1 Bayesian Best Responses

The Bayesian best response correspondence for population p ∈ {w, b}, denoted Bp : X⇒ Σp,
is defined as follows:

Bp(x)(θp) =


1 if Up

in(x;θp) > Up
out(x;θp),

[0, 1] if Up
in(x;θp) = Up

out(x;θp),

0 if Up
in(x;θp) < Up

out(x;θp).

Notice that Bp(x) ∈ Σp is a Bayesian strategy; for each θp
∈ Θp, Bp(x)(θp) ∈ [0, 1] is the set of

mixed best responses to state x for agents of type θp.
All of the analysis to come hinges on the following fact about the restrictions of Bw and

Bb to the set X◦, which we prove in the Appendix.

Lemma 3.1. Under assumptions (A1) and (A2), the maps Bw : X◦ → Σw and Bb : X◦ → Σb are
single-valued and Lipschitz continuous.

According to Lemma 3.1, restricting attention to Bayesian strategy profiles in Σ◦ dispels the
discontinuity problem noted earlier: if x is restricted to lie in X◦, the maps (xw, xb) 7→ xb/xw

and (xw, xb) 7→ xw/xb are continuous with bounded derivatives on this set. This observation
is crucial to establishing the basic properties of the Bayesian best response dynamic.

3.2.2 Bayesian Equilibria

Bayesian strategy profile σ ∈ Σ is a Bayesian equilibrium if

(σw, σb) =
(
Bw(Aσ),Bb(Aσ)

)
.

In a Bayesian equilibrium, almost every agent in each population chooses a best response
to the current aggregate behavior Aσ. We denote the set of Bayesian equilibria by Σ?.
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3.2.3 The Bayesian Best Response Dynamic

Under the Bayesian best response dynamic, behavior in the subpopulation correspond-
ing to each type θp adjusts in the direction of that type’s current best response. Formally,
the Bayesian best response dynamic on Σ◦ is defined by the law of motion

(B)
σ̇w = Bw(Aσ) − σw,

σ̇b = Bb(Aσ) − σb,

where the time derivatives σ̇w and σ̇b are defined in terms of the L1 norm (4). Evidently,
the rest points of (B) are the Bayesian equilibria of the underlying Bayesian population
game.

Since committed types always prefer in, the best response dynamic leaves the set Σ◦

forward invariant. Together, this observation, Lemma 3.1, and results in Ely and Sandholm
(2005) imply that the dynamic (B) is well-behaved on Σ◦, in the sense that solutions from
each initial condition in Σ◦ exist and are unique.

Theorem 3.2. For each Bayesian strategy profile σ ∈ Σ◦, there exists a unique L1 solution {σt}t≥0

to the dynamic (B) with σ0 = σ. This solution remains in Σ◦ at all positive times.

3.3 Aggregation

The Bayesian best response dynamic (B) describes the evolution of behavior without
recourse to a semi-equilibrium assumption. However, since the dynamic is defined on the
L1 space Σ◦, it is cumbersome to study directly. In this section, we appeal to results from
Ely and Sandholm (2005) to show that most interesting properties of the dynamic (B) are
captured by an aggregate dynamic defined directly on X◦ ⊂ R2. This allows us to recover
the simplicity of Schelling’s (1971) analysis without assuming any undue coordination in
agents’ disequilibrium behavior.

Bayesian equilibria and the Bayesian best response dynamic are defined in terms of the
composite map B◦A : Σ◦ → Σ◦. Given a Bayesian strategy σ ∈ Σ◦, this map first aggregates
to obtain social state Aσ ∈ X◦, and from this computes the Bayesian best response profile
B(Aσ) ≡ (Bw(Aσ),Bb(Aσ)) ∈ Σ◦.

We want to work with equilibria and dynamics defined on the set X◦. To do so,
we reverse the order of the operators in the composition B ◦ A, and thus consider the
map A ◦ B : X◦ → X◦. Given a social state x, this map first computes the Bayesian best
response profile B(x) = (Bw(x),Bb(x)) ∈ Σ◦, and then aggregates to obtain the new social
state A(B(x)) = (A(Bw(x)),A(Bb(x))) ∈ X◦.
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3.3.1 Aggregate Equilibria

We call social state x? an aggregate equilibrium, denoted x? ∈ X?, if

x? = A(B(x?)).

To see the relevance of this definition, suppose that σ? ∈ Σ? is a Bayesian equilibrium,
so that σ? = B(A(σ?)). Then A(B(Aσ?))) = Aσ?, and so Aσ? is an aggregate equilib-
rium. Conversely, if x? ∈ X? is an aggregate equilibrium, so that x? = A(B(x?)), then
B(A(B(x?))) = B(x?), and so B(x?) is a Bayesian equilibrium. This demonstrates that there
is a one-to-one correspondence between Bayesian equilibria and aggregate equilibria; in
fact, one can further establish that the restricted map A|Σ? : Σ? → X? is a homeomorphism
whose inverse is B|X? : X? → Σ?.

3.3.2 The Aggregate Best Response Dynamic

The aggregate best response dynamic is described by the law of motion

(A)
ẋw = A(Bw(x)) − xw

ẋb = A(Bb(x)) − xb

on X◦. Evidently, the rest points of (A) are the aggregate equilibria of the underlying
Bayesian population game.

To understand the importance of this dynamic, suppose that {σt}t≥0 is a solution to the
Bayesian best response dynamic (B), so that σ̇t = B(Aσt) − σt for all t ≥ 0. Then

d
dt

Aσt = Aσ̇t = A(B(Aσt)) − Aσt.

Thus, if the trajectory of Bayesian strategy profiles {σt}t≥0 is a solution to (B), then the
aggregate behavior trajectory {Aσt}t≥0 is a solution to (A). This argument shows that
the aggregation operator A defines a many-to-one map from solutions of the Bayesian
dynamic (B) to solutions of the aggregate dynamic (A). In other words, the evolution of
aggregate behavior under (B) is completely determined by aggregate behavior at time
0: two Bayesian strategies that induce the same aggregate behavior induce the same
aggregate behavior trajectories.

Because the map from solutions of (B) to solutions of (A) is many-to-one, it is not
obvious whether stability results for rest points x? of (A) imply stability results for the
corresponding rest points B(x?) of (B). Nevertheless, Ely and Sandholm (2005) prove that if
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x? is stable under (A), then B(x?) is stable under (B), where “stable” can refer to Lyapunov,
asymptotic, or global asymptotic stability. They also show that instability of x? under the
aggregate dynamic (A) implies instability of B(x?) under the Bayesian dynamic (B). Thus,
while we are directly concerned with the behavior of the infinite-dimensional dynamic
(B) on the set of Bayesian strategies Σ◦, most of our questions about this dynamic can be
addressed by studying the finite-dimensional dynamic (A) on the set of social states X◦.
Therefore, the remainder of the paper focuses on the latter dynamic.

3.3.3 Alternate Expressions for the Aggregate Dynamic

Before turning to the analysis of the aggregate dynamic (A), it will prove useful to
express it directly in terms of the primitives of the model. The compositions A ◦ Bw and
A ◦ Bb can be written explicitly as

A(Bw(x)) =

∫
Θw

Bw(x)(θw) dµw = µw
([

xb

xw ,∞
])

and

A(Bb(x)) =

∫
Θb

Bb(x)(θb) dµb = µb
([

xw

xb ,∞
])
.

We can therefore write the dynamic (A) as

ẋw = µw
([

xb

xw ,∞
])
− xw,(5a)

ẋb = µb
([

xw

xb ,∞
])
− xb.(5b)

By setting the left hand sides of equations (5a) and (5b) equal to 0, we obtain explicit
conditions for state (xw, xb) to be an aggregate equilibrium:

xw = µw
([

xb

xw ,∞
])
,(6a)

xb = µb
([

xw

xb ,∞
])
.(6b)

Thus, in an aggregate equilibrium, the mass of population p agents in the neighborhood
equals the mass of such agents who prefer to reside in the neighborhood. Apart from
the accounting for committed types, equations (6a) and (6b) are an alternate form of
Schelling’s equilibrium equations (1a) and (1b).
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Figure 2: Schelling’s first example revisited: no stable integration.

3.4 Revisiting Two of Schelling’s Examples

Example 3.3. With the groundwork complete, let us revisit Schelling’s first example, de-
scribed in Sections 2.2 and 2.3 above. Recall that that example featured a white population
twice as large as the black population (mw = 100,mb = 50), with distributions of tolerances
in each population uniformly distributed on [0, 2].

To ensure that the ratios xb

xw and xw

xb are always well-defined, we introduce small masses
mw
∞

= mb
∞

= .01 of type ∞ agents to each population, so that the total population masses
become mw = mw

f + mw
∞

= 100.01 and mb = mb
f + mb

∞
= 50.01. Applying equations (5a) and

(5b), we express the aggregate best response dynamic for this game as

ẋw =
(
max

{
100 − 50 xb

xw , 0
}

+ .01
)
− xw,

ẋb =
(
max

{
50 − 25 xw

xb , 0
}

+ .01
)
− xb.

Figure 2 presents a phase diagram for this dynamic. In this diagram and those to
follow, solution trajectories are lines marked with arrows representing the direction of
motion. Colors represent the speed of motion, with red fastest and blue slowest. The dark
and light gray curves represent the blacks’ and whites’ nullclines—that is, the states at
which the rate of entry of each group is 0. Reviewing Figure 1 reveals that the graphs of
the functions Tw and Tb from Schelling (1971) correspond to the nullclines in our figure.

Turning to the equilibrium states, we see that the white dot in Figure 2, located at x? =

(21.7401, 34.0276), represents an unstable integrated equilibrium, while the black dots at
(100.0050, .01) and (.01, 50.0050) represent stable segregated equilibria. Evidently, solution
trajectories from almost all initial conditions converge to a segregated equilibrium. §
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Figure 3: Schelling’s second example: stable integration.

Example 3.4. While in the previous example integration is unstable, Schelling (1971) also
offers an example in which integration is stable. Suppose that each population consists
of a set of agents of mass mw

f = mb
f = 100 with tolerances distributed uniformly on [0, 5],

as well as a small mass mw
∞

= mb
∞

= .01 of committed types. The aggregate best response
dynamic generated by equations (5a) and (5b), described by

ẋw =
(
max

{
100 − 20 xb

xw , 0
}

+ .01
)
− xw,

ẋb =
(
max

{
100 − 20 xw

xb , 0
}

+ .01
)
− xb,

is illustrated in Figure 3. States (100.0080, .01), and (.01, 100.0080) are stable segre-
gated equilibria, state (80.01, 80.01) is a stable integrated equilibrium, and states (25.3590,
94.6410) and (94.6410, 25.3590) are unstable integrated equilibria. §

4. Analysis of the Aggregate Dynamic

The Bayesian best response dynamic (B) provides a satisfying but technically cum-
bersome model of the evolution of behavior. As we saw in Section 3.3, many important
properties of this dynamic are captured by the aggregate best response dynamic (A).

To begin our analysis of the aggregate dynamic, we express it in a more convenient
form. Let f w : [0,∞)→ R and f b : [0,∞)→ R denote the density functions for µw

|[0,∞) and
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µb
|[0,∞). Then the dynamic (A) (cf equations (5a) and (5b)) becomes

ẋw =

∫
∞

xb
xw

f w(θw) dθw + mw
∞
− xw,(7a)

ẋb =

∫
∞

xw

xb

f b(θb) dθb + mb
∞
− xb.(7b)

Let us henceforth assume that the density functions f w and f b are continuous, so that
the dynamic (7) is continuously differentable (C1).10 Writing the dynamic (7) as ẋ = V(x),
we observe that the derivative matrix for V at x is easily computed as

(8) DV(x) =


∂Vw

∂xw (x)
∂Vw

∂xb
(x)

∂Vb

∂xw (x)
∂Vb

∂xb
(x)

 =


f w(rbw) xb

(xw)2 − 1 −
f w(rbw)

xw

−
f b(rwb)

xb

f b(rwb) xw

(xb)2
− 1

 ,
where we let rbw

≡ xb/xw and rwb
≡ xw/xb.

The following lemmas note two important consequences of this calculation. The first
is the key to determining local stability of equilibria, while the second is the basis for our
analysis of global behavior.

Lemma 4.1. The eigenvalues of DV(x) are λ(x) =
f w(rbw) xb

(xw)2 +
f b(rwb) xw

(xb)2
− 1 and −1.

Lemma 4.2.
∂Vw

∂xb
(x) and

∂Vb

∂xw (x) are nonpositive.

4.1 Local Stability of Equilibria

4.1.1 Stability of Segregated Equilibria

We call equilibrium x? segregated if one group only has committed types residing in the
neighborhood. A segregated equilibrium is predominantly black if xw

? = mw
∞

and xb
? > mb

∞
,

predominantly white if xw
? > mw

∞
and xb

? = mb
∞

, and empty if xw
? = mw

∞
and xb

? = mb
∞

.
Theorem 4.3 shows that under mild assumptions, there are unique predominantly

black and predominantly white equilibria, and that both of these equilibria are locally
stable. For brevity, the statement of the theorem focuses on predominantly black equilibria.

10For our local stability results to hold, it is enough that the densities f w and f b be continuous at the
equilibrium ratios xb

?/x
w
? and xw

?/x
b
?, respectively.
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Theorem 4.3. (i) Let xb = µb([mw
∞

mb
∞

,∞]) > mb
∞

, and suppose that µw([ xb

mw
∞

,∞]) = mw
∞

. Then
there is at least one predominantly black equilibrium x? = (mw

∞
, xb
?), and all such equilibria satisfy

xb
? ≥ xb.

(ii) Suppose in addition that

(9) f b
(

mw
∞

xb

)
<

(xb)2

mw
∞

for all xb > xb. Then the predominantly black equilibrium is unique and asymptotically stable.
(iii) More generally, if x? = (mw

∞
, xb
?) is a predominantly black equilibrium, then x? is

asymptotically stable if it satisfies condition (9), and it is unstable if it satisfies condition (9) with
the inequality reversed.

The proof of this result is presented in the Appendix.
Part (i) of Theorem 4.3 tells us that if some noncommitted blacks have at least moderate

tolerances, and if no noncommitted whites have very high tolerances, then a predomi-
nantly black equilibrium exists, and that all such equilibria have a nonnegligible mass of
blacks in the neighborhood. Part (ii) states that if there is no tolerance level at which the
tolerance density f b is exceptionally high, then the predominantly black equilibrium is
unique and locally stable. Finally, part (iii) shows that even in the absence of uniqueness,
the density condition (9) and its opposite still provide sufficient conditions for stability
and instability of predominantly black equilibria.

In the next section, we will see that the link between tolerance densities and local
stability persists for integrated equilibria.11

4.1.2 Stability and Instability of Integrated Equilibria

We call an equilibrium x? integrated if there are noncommitted types from each popu-
lation who reside in the neighborhood: that is, if xw

? > mw
∞

and xb
? > mb

∞
. Theorem 4.4, a

direct consequence of Lemma 4.1, characterizes the stability of integrated equilibria.

Theorem 4.4. An integrated equilibrium x? is a sink (and hence asymptotically stable) if

(10) f w(rbw
? ) rbw

? + f b(rwb
? ) (rwb

? )2 < xw
?,

while x? is a saddle (and hence unstable) if this inequality is reversed.

What makes an integrated equilibrium stable? According to Theorem 4.4, stability
of equilibrium depends directly on the masses xw

? and xb
? of agents of each type in the

11For related results in the context of purified equilibria of normal form games, see Sandholm (2007).
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neighborhood, as well as on the equilibrium tolerance densities f w(rbw
? ) and f b(rwb

? ). In
particular, having small numbers of nearly indifferent agents leads to stability, while large
numbers of indifferent agents leads to instability.

For intuition, consider an equilibrium x? at which no whites are close to indifferent,
and suppose that a shock causes the number of whites in the neighborhood to fall by a
small amount. Since no whites were initially close to indifferent, the proportion of whites
whose best response is in remains fixed, so the number of whites in the neighborhood
rises back toward the equilibrium level xw

?. At the same time, the mass of blacks whose
best response is in goes up, causing the number of blacks choosing in to increase from xb

?.
How evolution proceeds depends on the number of blacks who are initially nearly

indifferent. If there are few, then the rise of xw back toward xw
? will proceed quickly

relative to rise of xb away from xb
?. When xw comes close enough to xw

?, xb starts falling
back toward xb

?, and the equilibrium x? is restored. On the other hand, if there are many
blacks initially close to indifferent, then the disequilibrating change in xb outpaces the
equilibrating change in xw; at some point, enough blacks enter the neighborhood that
whites begin to leave, and the integrated equilibrium is destroyed.

Examining expression (10) more carefully, we find that if the equilibrium white/black
ratio rwb

? is, say, relatively large, then it is the density of indifferent blacks that is key to
determining stability. The reason for this is not difficult to divine. When the ratio rwb

is large, changes in xw and xb have more dramatic effects on rwb than on rbw. Since the
equilibrium ratios rwb

? and rbw
? are also the equilibrium tolerance levels of indifferent black

and white agents respectively, the claim immediately follows.
To illustrate the behavior of his class of dynamics, Schelling (1971) draws the nullclines

of xw and xb to represent his restrictions on feasible directions of motion. Theorem 4.5
shows that in the context of the Bayesian best response dynamic, these same nullclines
are very useful for local stability analysis: except in nongeneric cases, local stability under
this dynamic is completely determined by the slopes of the nullclines at the equilibrium.

Theorem 4.5. Suppose that equilibrium x? is hyperbolic (i.e., that λ(x?) , 0). Then x? is
asymptotically stable if

(i) both nullclines have negative or infinite slopes at x?, and
(ii) the whites’ nullcline is steeper than the blacks’ nullcline at x?

Otherwise, x? is unstable.

The proof of this result can be found in the Appendix.
All of the examples in Section 3.4 and in Section 4.3 below illustrate Theorem 4.5: all

stable equilibria satisfy conditions (i) and (ii) of the theorem, while all unstable equilibria
fail one condition or the other. However, in nongeneric cases in which the nullclines
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Figure 4: Lyapunov stable equilibria that are not asymptotically stable.

overlap, one can have Lyapunov stable equilibria that are not asymptotically stable. The
next example illustrates this point.

Example 4.6. Let mp = mp
f + mp

∞ = 100 + .1 for p ∈ {w, b}, and let the distributions of
tolerances satisfy

f p(θp) =



80 if θp
∈ [0, 3

4 ],
100

(θp+1)2 if θp
∈ (3

4 ,
4
3 ],

450
7 if θp

∈ (4
3 , 2],

0 otherwise.

Figure 4 presents the phase diagram of the resulting aggregate best response dynamic.
The relative interior of the thick line black consists of Lyapunov stable equilibria; white
and black dots represent unstable and stable equilibria, respectively. §

4.2 Global Behavior of the Dynamic

We saw in Lemma 4.2 that the off-diagonal elements of the derivative matrix DV(x)
are always nonpositive: higher numbers of black agents in the neighborhood reduce the
entry rate of white agents, and vice versa. Differential equations with this property are
said to be competitive. Classical results from the dynamical systems literature show that
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two-dimensional competitive systems have very simple global behavior—see Smith (1995,
Theorem 3.2.2) or Hofbauer and Sigmund (1998, Section 3.4). Theorem 4.7 presents the
consequences of these results in the current setting.

To state this theorem, we let

R+− = {x ∈ X◦ : Vw(x) ≥ 0 and Vb(x) ≤ 0},

denote the set of states at which xw is weakly increasing and xb is weakly decreasing under
the aggregate dynamic (A). We define the sets R++, R−−, and R−+ analogously.

Theorem 4.7. Under the aggregate dynamic (A),
(i) Sets R+− and R−+ are forward invariant, and sets R++ and R−− are backward invariant.
(ii) Along each solution trajectory {xt}t≥0, either {xw

t }t≥0 or {xb
t }t≥0 is monotone, and the other

changes direction at most once.
(iii) Every solution trajectory converges to an aggregate equilibrium x?.

We begin our discussion of Theorem 4.7 with the intuition behind the invariance results
in part (i). Consider, for instance, how a trajectory starting in region R+− might escape into
another region. Evidently, escape directly into region R−+ would require passing through
a rest point of V, a contradiction. We therefore consider escape into a one of the two
remaining regions, say R++. This escape requires Vb(x) to become positive; in particular,
at the escape point it must be that Vw(x) ≥ 0 and Vb(x) = 0.

Now, express the rate of change over time of ẋb = Vb(x) as

(11)
d
dt

Vb(x) =
∂Vb(x)
∂xw ẋw +

∂Vb(x)
∂xb

ẋb.

At the escape point, the second term on the right hand side of (11) is zero, since ẋb = 0.
Furthermore, since ẋw

≥ 0 at the escape point, and since ∂Vb(x)
∂xw ≤ 0 by the competitiveness

of the dynamic, the first term on the right hand side of (11) is non-positive, implying
that d

dtV
b(x) ≤ 0. But since Vb(x) = 0 at the escape point, Vb(x) cannot become positive,

contradicting that an escape point has been reached. A similar argument establishes the
forward invariance of R−+. The backward invariance of R−− and R++ follows from the
same argument, but with time running backwards.

Once part (i) is established, part (ii), and hence the absence of cycles, follows easily. The
nullclines of the dynamic partition the state space into regions, each of which is contained
in either R+−, R−+, R++, or R−−. Clearly, forward invariance implies that solutions starting
in R+− or R−+ are monotonic in both components, with one component shrinking and
the other growing. Furthermore, solutions starting in R++ or R−− are monotone in each
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component while they remain in the region; these solutions either converge to a rest point
or enter R+− or R−+, after which the previous analysis holds force. Either way, the solution
obeys the restrictions stated in part (ii) of the theorem. Since the solution trajectory is
eventually componentwise monotone, and since the state space X◦ is compact, it follows
immediately that the solution must converge to an equilibrium, proving part (iii) of the
theorem.12

4.3 Examples

Example 4.8. Reducing tolerance to sustain integration. Figure 5 presents phase diagrams for
three examples that differ only in the distribution of tolerances in the white population.
In all three figures, we have mw = mw

f + mw
∞

= 100 + .1 and mb = mb
f + mb

∞
= 50 + .1, with

the tolerances of noncommitted blacks uniformly distributed on [0, 5]. In Figure 5(i), all
noncommitted whites have high tolerances: the full mass mw

f = 100 of these agents have
tolerances uniformly distributed on [3, 5]. In Figure 5(ii), we replace some high tolerance
agents with low tolerance agents: mass 70 have tolerances uniformly distributed on [3,
5], and the remaining mass of 30 have tolerances uniformly distributed on [0, .5]. Figure
5(iii) takes this one step further, giving the uniform[3, 5] group mass 60, and the uniform[0,
.5] group mass 40. Evidently, it is only in the final specification that a stable integrated
equilibrium exists.

While at first glance this example seems counterintuitive, the logic behind it is sim-
ple. Since there are twice as many whites as blacks, entry by whites into an integrated
neighborhood can leave it with a low percentage of blacks; this leads blacks with lower
tolerances to start exiting the neighborhood, starting a feedback loop that leaves the neigh-
borhood predominantly white. Replacing high tolerance whites with some low tolerance
whites is tantamount to reducing the mass of the white population, making it less likely
that entry by whites ultimately leads to an exodus of blacks.13

We can also interpret this result “locally”, using the density condition from Theorem
4.4. In Figure 5(i), the unique integrated equilibrium, x? ≈ (10.0032, 48.0126), has a
black/white ratio of rbw

? ≈ 4.7997, and hence a white/black ratio of rwb
? ≈ .2083, ratios that

lie in the supports of f w and f b, respectively. As Theorem 4.4 indicates, the existence of
relatively large numbers of indifferent agents causes adjustments away from equilibrium
to be self-reinforcing, and so is a source of instability.

12In a competitive system, the nullcline condition in Theorem 4.5 is sufficient condition for local stability
of equilibrium—see Hirsch and Smale (1974, p. 271) for an example. However, the necessity of the nullcline
condition is not true for general competitive systems, but instead depends on the specific form of the
dynamic (A).

13Schelling (1971, p. 174-175) offers a similar example and discussion.
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f = 100, distributed (.6 uniform[3, 5] + .4 uniform [0, .5])

Figure 5: Making the white population less tolerant can create a stable integrated equilibrium.
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In contrast, Figure 5(iii) features an integrated equilibrium x? ≈ (40.04, 40.0933). Since
the ratio of blacks to whites in this equilibrium is near unity, while the support of tolerance
desnity f w is [0, .5] ∩ [3, 5], there are no whites who are close to indifferent at this
equilibrium. It follows that small changes in behavior do not affect any whites’ best
responses, with the consequence that whites’ behavior tends to return to the integrated
equilibrium level after any small disturbance. Consequently, even though a disturbance
adding whites to the neighborhood (i.e., a disturbance sending the state to the right of the
black dot representing x?) initially leads marginal blacks to leave, these blacks return to
the neighborhood as xw returns to xw

?.
Note, though, that Figure 5(iii) also shows two unstable integrated equilibria, at

(60.0941, 20.0143) and (10.7189, 47.8557). In these equilibria, the black/white ratios lie
in the support of f w; the existence of many indifferent agents again generates instability. §

Example 4.9. Relative population sizes and stability of integration. In the examples pictured
in Figure 6, the white population is of mass mw = mw

f + mw
∞

= 100 + .1, and noncommitted
types have tolerances that are uniformly distributed on [0, 2]. In Figure 6(i), the black
population is of mass mb = mb

f + mb
∞

= 45 + .1, and noncommitted types have tolerances
distributed uniformly on [0, 2]; here the unique integrated equilibrium is unstable. In
Figure 6(ii), we increase tolerances in the black population, distributing them uniformly
on [3, 5]. Doing so creates two unstable integrated equilibria, as well as a stable integrated
equilibrium at x? ≈ (65.7900, 45.1), at which all blacks and most whites reside in the
neighborhood. By making tolerances high in the black population, we ensure that blacks
are willing to reside in the neighborhood even when they are outnumbered by whites.
Since the number of blacks is relatively small, the entry of all blacks does not cause the
whites to leave. But if we increase the mass of the black population to 55 + .1, as in 6(iii),
then no positive number of noncommitted whites can coexist with all of the blacks in an
integrated equilibrium. §

5. Extensions

To this point, we have focused our attention on a formal version of Schelling’s (1971)
original segregation model. But beyond providing a platform from which to obtain
analytical results for Schelling’s model, the Bayesian population game framework allows
us to consider a broader range of environments than would be possible using an informal
approach. We now offer some preliminary examples in this vein.
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Figure 6: Increasing tolerances in the black population creates a stable integrated equilibrium.
After this, increasing the mass of the black population destroys the equilibrium.
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5.1 A Dual-Threshold Model

To this point, we have followed Schelling (1971) in assuming that agents’ preferences
are described by a single tolerance threshold. While this model is appealingly simple, is
certainly not the only one worthy of study.

To take one simple variation, we can assume that agents’ preferences are captured by
two thresholds: for an agent to prefer to reside in the neighborhood, the ratio of other
group to own group in the neighborhood must not only be less than an upper bound θp

h,
but must also exceed a lower bound θp

l . Thus, agents still avoid neighborhoods in which
their group is insufficiently represented, but they also avoid neighborhoods in which their
group is overrepresented.14

While a complete treatment of this model is beyond the scope of this paper, we as-
sert that under mild smoothness conditions on the distributions of θw = (θw

l , θ
w
h ) and

θb = (θb
l , θ

b
h), the best response functions Bw : X◦ ⇒ Σw

◦
and Bb : X◦ ⇒ Σb

◦
are Lipschitz con-

tinuous. Thus, solutions to the Bayesian best response dynamic for this model exist, and
satisfy appropriate analogues of the aggregation results from Section 3.3. The following
two examples illustrate that introducing a distaste for homogeneity leads to qualitatively
different behavioral dynamics.

Example 5.1. In the examples in Figure 7, the population’s masses are mw = 100 and
mb = 50. In each population, the distribution of the typesθp = (θp

l , θ
p
h) of the noncommitted

agents is uniform on the line segment with endpoints (0, 1) and (1, 3); thus, (θp
l , θ

p
h) = (0, 1)

is the type vector of the least tolerant agent, while (θp
l , θ

p
h) = (1, 3) is the type vector of

the most tolerant noncommitted agent. The two diagrams in the figure differ only in the
masses of committed types: in Figure 7(i), the masses are mw

∞
= mb

∞
= 2, while in Figure

7(ii) they are mw
∞

= mb
∞

= 6. In both figures, the only stable outcomes are segregated,
but in contrast to the segregated equilibria from the single threshold case, the segregated
equilibria here are sparsely populated. The reason for this is easy to see. When, for
example, there are very few whites in the neighborhood, the most tolerant whites will
find the neighborhood too homogenous, and so will exit. This exodus is only halted by the
presence of blacks who are committed to living in the neighborhood, which prevents the
noncommitted whites with the lowest lower thresholds from exiting. Comparing Figures
7(i) and 7(ii), we see that increasing the number of committed blacks increases the number
of whites residing in the neighborhood in the predominantly white equilibrium. §

14This model relies on an implicit assumption that the outside option offers some degree of group
heterogeneity. Rather than specifying the racial compositions of outside locations exogenously, it would be
preferable to determine the compositions of all locations endogenously—see Section 5.3 below.
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Figure 7: Dual thresholds, low tolerances. Stable equilibria are segregated and sparsely populated.
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Figure 8: Dual thresholds, high tolerances. A stable integrated equilibrium exists; with enough
committed types it is the unique equilibrium.
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Example 5.2. In the examples pictured in Figure 8, the population’s masses are mw = 100
and mb = 50, with the masses of committed types equal to mw

∞
= mb

∞
= 2 in Figure 8(i), and

equal to mw
∞

= mb
∞

= 6 in Figure 8(ii). Relative to those in the previous example, the agents
here are more tolerant: in both cases, the types θw = (θw

l , θ
w
h ) of noncommitted white

agents are uniformly distributed on the segment with endpoints (0, 1) and (1, 3.5), while
the types θb = (θb

l , θ
b
h) of noncommitted black agents are uniformly distributed on the

segment with endpoints (0, 1) and (.9, 5.05). Evidently, making the agents more tolerant
introduces the possibility of a stable integrated equilibrium.

Comparing Figures 8(i) and 8(ii), we see that increasing the masses of committed types
has dramatic effects on the set of equilibria: when there are few committed types, the
stable integrated equilibrium is supplemented by two stable segregated equilibria and two
unstable integrated equilibria. With more committed types, these additional equilibria
vanish, making the stable integrated equilibrium a global attractor. For intuition, bear in
mind that in the dual threshold model, segregated equilibria, when they exist, tend to be
sparsely populated. But if agents are relatively tolerant and the number of committed
types is not too small, such equilibria cannot exist. For instance, if all committed agents
and a relatively small number of noncommitted whites are in the neighborhood, the most
tolerant blacks will prefer to enter. §

5.2 Taxation to Sustain Integration

Since integration is generally viewed as a social goal, it is natural to consider policies
whose aim is to promote this outcome. Here, we show how taxes can be used to sustain
integration, and how the success of the policy can be sensitive to its fine details.

Example 5.3. Suppose as in Example 3.3 that the populations’ masses are mw = mw
f + mw

∞
=

100 + .1 and mb = mb
f + mb

∞
= 50 + .1, and the tolerances of noncommitted agents in

each population are distributed uniformly on [0, 5]. As we saw in Figure 2, the unique
integrated equilibrium under this specification is unstable.

We now consider using taxes to sustain stable integration, while simultaneously keep-
ing the total population of the neighborhood relatively small—in particular, below 80.15

We suppose that tax rates can depend on the total mass xT = xw + xb of neighborhood
residents, and can be set at different levels τw(xT) and τb(xT) for whites and blacks, as
might be the case under various forms of affirmative action.

To introduce taxes, we must specify payoffs more precisely than we did in equation
(3). We again normalize the payoff of Out to 0, but this time assume that the payoffs of

15Schelling (1971, p. 173-174) considers directly imposing a cap on the neighborhood’s total population,
but both the means of implementation and the consequences of such a cap are left vague.
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(ii) whites taxed as in (i), blacks’ taxes increase at rate 1
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(iii) whites taxed as in (i), blacks’ taxes increase at rate 1
50 for xT ∈ [70, 80]

Figure 9: Taxation to sustain integration.

–30–



noncommitted agents to choosing In take the following functional form:

Uw
In(x, θw) = θw

−
xb

xw − τ
w(xT),

Ub
In(x, θb) = θb

−
xw

xb
− τb(xT).

Thus, an agent’s base payoff to residing in the neighborhood is the difference between his
tolerance and the relevant neighborhood composition ratio; taxes enter the payoff function
in a quasilinear fashion.16

In each diagram in Figure 9, we suppose that no taxes are imposed when the the
neighborhood size xT is below 70. To create Figure 9(i), we suppose that the tax on each
resident increases linearly from 0 to 2 as the neighborhood size increases from 70 to 80,
and remains fixed at 2 for higher levels of xT. The taxes ensure that xT cannot long remain
above 80. Once xT is approximately 76, it remains at this level. But the ratio of whites
to blacks continues to change, with the state ultimately approaching the predominantly
white equilibrium at (75.9908, .1).

In Figure 9(i), the region where xT
≈ 76 is blue, reflecting the fact that evolution

proceeds slowly in this region. It stands to reason that small changes in tax policy could
reverse the direction of motion of the dynamic in this region, thereby creating a stable
integrated equilibrium. In Figure 9(ii), taxation of blacks is not initiated until xT = 80; it
increases linearly from 0 to 2 as xT increases linearly from 80 to 90 and remains fixed at 2
thereafter. This policy generates a stable equilibrium at x? ≈ (40.0134, 40.1022). In Figure
9(iii), the tax rate for blacks increases less steeply than the tax rate for whites: in particular,
we set τb(xT) = 1

50 (xT
− 70) (versus τw(xT) = 1

5 (xT
− 70)) when xT

∈ [70, 80]. This policy too
generates a stable integrated equilibrium, this time at state x? ≈ (44.3790, 35.6387). §

5.3 Further Extensions

5.3.1 Multiple Unrestricted Neighborhoods

To this point, we have always assumed that each agents chooses between the neigh-
borhood of interest and an outside location whose composition is fixed. Of course, a more
complete model would account for the fact that when agents move to the outside location,
they change the racial composition of that location, altering its appeal. Thus, a “general
equilibrium” model in which the compositions of all locations are determined endoge-
nously is of clear interest. Such a model is no more difficult to construct and analyze than

16This specification of payoffs is chosen for concreteness; the qualitative features of the example can be
obtained using other functional forms.
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the ones considered above, and we leave this task for future research.

5.3.2 Segregation by Race, Income, and Preferences for Public Goods

Throughout this paper, we have assumed that the sole characteristic that agents use to
evaluate a neighborhood’s desirability is its racial composition. While racial composition
is an important determinant of residential location choice, it is hardly the only one. For
instance, a neighborhood’s average income level affects most people’s assessments of its
desirability. Indeed, attempts to elicit preferences for neighborhood racial composition
is often subjected to the criticism that the preferences being elicited are those concerning
income, for which race is serving as a proxy. By the same token, this paper has abstracted
away from another key determinant of residential location choice, that of local public
goods. Indeed, Tiebout’s (1956) analysis of this issue is perhaps the main competitor of
Schelling (1971) in terms of its influence on later work on neighborhood choice.

It is not too difficult to write down versions of our model that allow for heterogeneity
in income or in public good preferences, and in which the existence and aggregation
results from Section 3 continue to hold. However, determining the stability properties
of the resulting aggregate dynamic, or even illustrating particular examples, becomes
quite challenging, as the state variable for the aggregate dynamic is necessarily of higher
dimension than 2. The construction and analysis of evolutionary models of segregation
by race, income, and preferences for public goods is a challenging task for future research.

6. Concluding Remarks

In this paper, we use recent tools from evolutionary game theory to formalize, an-
alyze, and develop extensions of the residential segregation model of Schelling (1971).
Our approach captures the behavior dynamics of large, heterogeneous populations in a
rigorous but tractable way. There many other economic issues whose modeling requires
the introduction of behavior dynamics for heterogeneous populations. The present work
demonstrates that the theory of Bayesian population games and Bayesian best response
dynamics provides a powerful tool for analyzing such environments. We therefore have
hope that this approach will prove fruitful as a foundation for models in other applied
economic domains.
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A. Appendix

The Proof of Lemma 3.1
We consider only the map Bw. The single-valuedness of this map is easily verified.

To establish Lipschitz continuity, let x and y be social states, and assume without loss of
generality that xb/xw

≤ yb/yw. Letting M denote the bound on the density of µp
|[0,∞) and K

the Lipschitz coefficient for the map x 7→ xb/xw on domain X◦, we find that

∥∥∥Bw(x) − Bw(y)
∥∥∥ =

∫
Θw

∣∣∣Bw(x)(θw) − Bw(y)(θw)
∣∣∣ dµw

= µw
([

xb

xw ,
yb

yw

])
≤M

∣∣∣∣ xb

xw −
yb

yw

∣∣∣∣
≤MK

∣∣∣x − y
∣∣∣ .

The Proof of Theorem 4.3
(i) By equilibrium conditions (6a) and (6b), a state x? = (mw

∞
, xb
?) with xb

? > mb
∞

is a
predominantly black equilibrium if and only if

mw
∞

= µw
([

xb
?

mw
∞

,∞
])

and(12a)

xb
? = µb

([
mw
∞

xb
?
,∞

])
.(12b)

Now as xb increases from mb
∞

to mb, the map xb
7→ µb([mw

∞

xb ,∞]) is continuous and nonde-
creasing with µb([mw

∞

mb
∞

,∞]) = xb > mb
∞

. Thus, (12b) has a fixed point in [xb,mb], and all fixed
points of (12b) lie in this interval. Since all fixed points of (12b) satisfy xb

? ≥ xb, condition
(12a) is satisfied at such points by assumption, proving the result.

(ii, iii) The slope of the map xb
7→ µb([mw

∞

xb ,∞]) is easily computed as f b(rwb) xw/(xb)2.
Therefore, if inequality (9) holds this map can cross the 45◦ line only once, proving the
uniqueness result in part (ii).

As for stability, since xb
? ≥ xb and since f w is continuous, the fact thatµw([ xb

mw
∞

,∞)) = 0 im-
plies that f w(rbw

? ) = 0. Thus, the eigenvalueλ(x?) from Lemma 4.1 equals f b(rwb
? ) mw

∞
/(xb

?)2
−

1. Comparing this with condition (9) yields the stability result in part (ii), and part (iii) as
well.

The Proof of Theorem 4.5
As in Section 2.2, let tw(xw) denote the (xw)th highest tolerance in the white population,
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as implicitly defined by

xw =

∫
∞

tw(xw)
f w(θw) dθw + mw

∞
.

There may be an interval of values of tw(xw) that satisfy this inequality. However, if for
some such tw(xw) we have that f w(tw(xw)) > 0, then tw(xw) is uniquely defined. In this
case, because of our maintained assumption that f w is continuous, implicit differentiation
reveals that

(tw)′(xw) = −
1

f w(tw(xw))
.

Proceeding to follow Section 2.2, let Tw(xw) = xwtw(xw), so that the whites’ nullcline is the
graph of Tw. If we suppose once more that f w(tw(xw)) > 0, then the product rule tells us
that the slope of the whites’ nullcline is

(13) (Tw)′(xw) = tw(xw) −
xw

f w(tw(xw))
.

Now let x? be an equilibrium. To defer special cases until the end of the proof, we
suppose for now that

(14) f w
? ≡ f w(tw(xw

?)) > 0, f b
? ≡ f b(tb(xb

?)) > 0, and f b
? ,

(xb
?)2

xw
?

.

Since x? is an equilibrium, it lies on the whites’ and blacks’ nullclines. The former fact can

be expressed as Tw(xw
?) = xb

?, and hence as tw(xw
?) =

xb
?

xw
?

, so substituting into (13) reveals that

(15) (Tw)′(xw
?) =

xb
?

xw
?

−
xw
?

f w
?

.

Repeating this entire argument for the blacks’ nullcline shows that

(16) (Tb)′(xb
?) =

xw
?

xb
?

−
xb
?

f b
?

.

These last two equalities imply that

(Tw)′(xw
?) ≤

xb
?

xw
?

and (Tb)′(xb
?) ≤

xw
?

xb
?

,
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from which it follows directly that

(17) if (Tw)′(xw) and (Tb)′(xb
?) are nonnegative, then (Tw)′(xw

?) (Tb)′(xb
?) < 1.

Now compute as follows:

1 − (Tw)′(xw
?) (Tb)′(xb

?) = 1 −
(
1 −

(xb
?)2

xw
? f b

?

−
(xw
?)2

xb
? f w

?

+
xb
? xw

?

f w
? f b

?

)
=

xb
? xw

?

f w
? f b

?

(
xb
? f w

?

(xw
?)2 +

xw
? f b

?

(xb
?)2
− 1

)
=

xb
? xw

?

f w
? f b

?

λ(x?).

This computation shows that 1 − (Tw)′(xw
?) (Tb)′(xb

?)) has the same sign as λ(x?), the eigen-
value of DV(x?) from Lemma 4.1; thus,

(18) λ(x?) < 0 if and only if (Tw)′(xw
?) (Tb)′(xb

?) > 1.

We now argue that under assumption (14), under which the whites’ and blacks’ null-
clines have equilibrium slopes (Tw)′(xw

?) and ((Tb)′(xb
?))−1, the theorem follows directly

from equations (18) and (17). If the slopes of both nullclines are negative at x?, then (18)
shows that x? is stable if and only if the whites’ nullcline is steeper than the blacks’. If
one of the nullclines’ slopes is negative and the other is not, then (Tw)′(xw

?) (Tb)′(xb
?) ≤ 0,

so (18) shows that x? is unstable. Finally, if both nullclines’ slopes are nonnegative, then
statement (17) shows that (Tw)′(xw

?) (Tb)′(xb
?) < 1, so (18) again shows that x? is unstable.

We now address the cases in which assumption (14) does not hold. First, suppose that
f w
? = 0, or, equivalently, that the slope of the whites’ nullcline is −∞. In this case, the

blacks’ nullcline is steeper than the whites’ if and only if ((Tb)′(xb
?))−1 lies in in (−∞, 0),

which is true if and only if xw
? f b

? < (xb
?)2 by equation (16). But this inequality is exactly

what is needed for x? to be hyperbolically stable (i.e., to have λ(x?) < 0), proving the result
in this case.

Next, suppose that f b
? = 0, or, equivalently, that the slope of the blacks’ nullcline is 0. In

this case, hyperbolic stability is equivalent to the requirement that xb
? f w

? < (xw
?)2, which is

in turn equivalent to the requirement that the slope of the white’s nullcline lies in [−∞, 0)
(cf equation (15)). This proves the theorem when f b

? = 0.

Finally, suppose that f b
? =

(xb
?)2

xw
?

. Then the blacks’ nullcline is vertical at x?, and so is at
least as steep at the whites’; moreover, λ(x?) ≥ 0, so x? is not hyperbolically stable. This
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completes the proof of the theorem.
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