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Abstract

We consider stochastic approximation processes with constant step size whose as-
sociated deterministic system is an upper semicontinous differential inclusion. We
prove that over any finite time span, the sample paths of the stochastic process are
closely approximated by a solution of the differential inclusion with high probability.
We then analyze infinite horizon behavior, showing that if the process is Markov, its
stationary measures must become concentrated on the Birkhoff center of the determin-
istic system. Our results extend those of Benaı̈m for settings in which the deterministic
system is Lipschitz continuous, and build on the work of Benaı̈m, Hofbauer, and Sorin
for the case of decreasing step sizes. We apply our results to models of population dy-
namics in games, obtaining new conclusions about the medium and long run behavior
of myopic optimizing agents.

1. Introduction

Stochastic approximation theory, whose origins lie in the analysis of stochastic opti-
mization algorithms, links the behavior of certain recursively-defined stochastic processes
with that of associated deterministic dynamical systems. Much of the theory addresses
the behavior of processes with decreasing step sizes {εk}

∞

k=1, which arise naturally when
the state represents a time-averaged quantity. Early work focused on cases in which
the approximating dynamical system is linear or a gradient system (Ljung (1977); Duflo
(1996); Kushner and Yin (1997)). A series of papers of Benaı̈m (1998, 1999) and Benaı̈m
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and Hirsch (1996, 1999) considered the case of Lipschitz continuous dynamical systems,
including a model from game theory known as stochastic fictitious play (Fudenberg and
Kreps (1993), Fudenberg and Levine (1998), Hofbauer and Sandholm (2002)). Their main
results show that the stochastic process converges almost surely to an internally chain
transitive set of the deterministic flow.

More recently, Benaı̈m et al. (2005) develop the theory for the case in which the deter-
ministic dynamic is not a differential equation, but a upper semicontinuous differential
inclusion. This level of generality is important in game-theoretic applications in which
choices are determined by exact maximization, as the maximizer correspondence is nei-
ther single-valued nor continuous, but rather multi-valued and upper semicontinuous.
An important application of these results is to the original fictitious play process, defined
in the early days of game theory by Brown (1949, 1951). Indeed, Benaı̈m et al.’s (2005) anal-
ysis provides a simple proof that the fictitious play process must converge to a connected
set of Nash equilibria in any two-player zero-sum game and in any potential game.1

While the discussion above concerns stochastic approximation processes with decreas-
ing step size, a distinct branch of the theory has considered processes with constant step
size. Such processes are parameterized by a constant ε > 0, which represents both the
step size of the process and the inverse of the step rate of the process, so that the expected
increment per time unit remains fixed as ε varies. The analysis concerns the behavior of
the processes as ε approaches zero.

While the decreasing step size theory leads naturally to one basic limit theorem, the
constant step size theory leads to two. Kurtz (1970) (also see Ethier and Kurtz (1986),
Benveniste et al. (1990), and Benaı̈m (1998)) shows that over finite time horizons, the
sample paths of the stochastic process are well-approximated by a solution trajectory of
the deterministic system with probability approaching one. To describe infinite horizon
behavior, Benaı̈m (1998) shows that the stationary measures of the stochastic process must
become concentrated on the Birkhoff center of the deterministic system.

Existing analyses of stochastic approximation with constant step size focus on cases
in which the deterministic system is Lipschitz continuous. Building on the work of
Benaı̈m et al. (2005) for the decreasing step size case, we develop the dynamical systems
approach to stochastic approximation with constant step size when the deterministic
system is an upper semicontinuous differential inclusion. Our two main results parallel
those of Benaı̈m (1998) for the Lipschitz case. We prove a finite-horizon deterministic
approximation theorem, and we prove that stationary measures of the stochastic process
must become concentrated on the Birkhoff center of the deterministic system.

1A similar but more direct proof for the zero-sum case is provided by Hofbauer and Sorin (2006).
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Stochastic approximation theory with constant step size is of basic importance in evo-
lutionary game theory, where it is used to understand the dynamics of behavior in large
populations of strategically interacting agents whose decisions are based on simple my-
opic rules (Benaı̈m and Weibull (2003), Sandholm (2003, 2010)). Much research in this field
focuses on deterministic continuous-time dynamics, which provide an idealized descrip-
tion of the population’s aggregate behavior. Stochastic approximation methods connect
the properties of these ideal systems with those of processes describing the stochastic
evolution of play in large but finite populations. Existing results have drawn these con-
nections for cases in which the deterministic system is Lipschitz continuous. But many
interesting deterministic dynamics from game theory, particularly those reflecting exact
optimization by individual agents, take the form of differential inclusions. These include
the best response dynamics of Gilboa and Matsui (1991) and Hofbauer (1995), which
(along with the replicator dynamic of Taylor and Jonker (1978)) represent one of the two
leading dynamics studied in the field. More recent optimization-based models, includ-
ing the refined best response dynamics of Balkenborg et al. (2011), the tempered best
response dynamics of Zusai (2011), and the sampling best response dynamics of Oyama
et al. (2012), also yield differential inclusions. By combining the main results in this paper
with existing analyses of the relevant deterministic dynamics, we obtain a variety of new
results on medium and long run behavior under optimization-based decision protocols.

A few recent papers have obtained results for special cases of the model considered
here. Gorodeisky (2008, 2009) supposes that the deterministic dynamic is piecewise Lip-
schitz continuous with unique solution from each initial condition, and uses his analysis
to study the behavior of myopic optimizers in the Matching Pennies game. Gast and
Gaujal (2010) consider a Markovian model whose mean field is arbitrary, and obtain
finite-horizon deterministic approximation results stated in terms of a regularized mean
field that takes the form of a differential inclusion.

The rest of the paper proceeds as follows. Section 2 provides background on differential
inclusions and introduces the stochastic approximation processes. Section 3 presents our
main results. Section 4 offers applications to evolutionary game dynamics. Section 5
contains the proofs of most results.
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2. Definitions

2.1 Differential inclusions

A correspondence V : Rn ⇒ Rn defines a differential inclusion on Rn via

(DI) ẋ ∈ V(x).

Definition 2.1. We call (DI) a good upper semicontinuous (or good USC) differential inclusion if
V is

(i) Nonempty: V(x) , ∅ for all x ∈ Rn;
(ii) Convex valued: V(x) is convex for all x ∈ Rn;
(iii) Bounded: There exists a K ∈ R such that sup{|y| : y ∈ V(x)} ≤ K for all x ∈ Rn;
(iv) Upper semicontinuous: The graph of V, gr(V) = {(x, y) : y ∈ V(x)}, is closed.

Let X be a compact convex subset of Rn, and let

TX(x) = cl
Ä¶

z ∈ Rn : z = α
Ä
y − x

ä
for some y ∈ X and some α ≥ 0

©ä
be the tangent cone of X at x ∈ Rn. Suppose that

(1) V(x) ∈ TX(x) for all x ∈ X.

Then standard results (see Aubin and Cellina (1984) or Smirnov (2002)) imply that from any
initial point x ∈ X, the differential inclusion (DI) admits at least one positive Carathéodory
solution: that is, an absolutely continuous mapping x : R+ → X with x(0) = x satisfying
ẋ(t) ∈ V(x(t)) for almost every t ∈ R+. In the following, we will suppose that (DI) is a good
USC differential inclusion that satisfies (1).

Let C(R+,X) denote the space of continuous X-valued maps, endowed with the topol-
ogy of uniform convergence on compact sets. This topological space is metrizable with
the distance D given by

(2) D(x,y) :=
∑
k∈N

1
2k min{1, supt∈[0,k]

∣∣∣x(t) − y(t)
∣∣∣},

under which the space is complete.
Denote by Sx ⊂ C(R+,X) the set of solutions of (DI) with initial condition x(0) = x.

The set-valued dynamical system induced by the differential inclusion will be denoted
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Φ : R+ × X⇒ X, and defined by

Φt(x) := {x(t) : x ∈ Sx} .

Finally, SΦ := ∪x∈XSx is the set of all solution curves of (DI). Since X is compact, Barbashin’s
(1948) theorem implies that SΦ is a compact subset of C(R+,X).

The translation semi-flow Θ : R+ × C(R+,X) → C(R+,X) assigns each time t ∈ R+ and
trajectory x ∈ C(R+,X) the translated trajectory Θt(x) ∈ C(R+,X) defined by

Θt(x)(s) = x(t + s).

SΦ is invariant under Θ, meaning that Θt(SΦ) = SΦ for all t ≥ 0.
Finally, let the map π0 : C(R+,X)→ X be the time 0 projection, defined by π0(z) = z(0).

Evidently, π0 is Lipschitz continuous.

2.2 Stochastic approximation processes with constant step size

2.2.1 The discrete-time case

We now introduce a class of stochastic approximation processes with constant step size
defined on the probability space (Ω,F ,P). The processes we define here arise naturally
in the context of stochastic evolutionary game dynamics. We present this application in
detail in Section 4. Some readers may prefer to read Section 4.1 along with the present
section before proceeding to our main results in Section 3.

Let δ > 0 be a positive real number. Then Ṽδ : Rn ⇒ Rn is the set-valued map defined
by

Ṽδ(x) :=
¶

z ∈ Rn
| ∃y ∈ B(x, δ) such that dist(z,V(y)) < δ

©
.

Definition 2.2. For a sequence of values of ε approaching 0, let Uε = {Uε
k}
∞

k=0 be a sequence of
Rn-valued random variables and {Vε} be a family of set-valued maps onRn. Let ẋ ∈ V(x) be
a good USC differential inclusion. We say that {{Xε

k}
∞

k=0}ε>0 is a family of generalized stochastic
approximation processes (or a family of GSAPs) for the differential inclusion ẋ ∈ V(x) if the
following assumptions are satisfied:

(i) for all k ≥ 0, we have Xε
k ∈ X,

(ii) we have the recursive formula

Xε
k+1 − Xε

k − εUε
k+1 ∈ εVε(Xε

k),
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(iii) for any δ > 0, there exists an ε0 > 0 such that for all ε ≤ ε0 and x ∈ X,

Vε(x) ⊂ Ṽδ(x),

(iv) for all T > 0 and for all α > 0, we have

lim
ε→0
P

Ñ
max
k≤[ T

ε ]

∥∥∥∥∥∥
k−1∑
i=0
εUε

i+1

∥∥∥∥∥∥ > α
∣∣∣∣∣∣ Xε

0 = x

é
= 0

uniformly in x ∈ X, where [s] denotes the integer part of s.

The first three conditions of Definition 2.2 are basic, and the following propositions, which
provide versions of known estimates for stochastic approximation processes,2 describe
two standard settings in which the fourth condition holds. The propositions are proved
in Sections 5.1 and 5.2.

Proposition 2.3. For a sequence of values of ε approaching 0, let Uε = {Uε
k}
∞

k=0 be a martingale
difference sequence, i.e. a sequence of Rn-valued random variables such that E(Uε

k+1|F
ε

k ) = 0 for
all k ≥ 0, where {F ε

k }
∞

k=0 is the filtration induced by Uε. Suppose that for some q ≥ 2,

sup
ε>0

sup
k
E(
∥∥Uε

k+1
∥∥q) < ∞.

Then Uε satisfies condition (iv) of Definition 2.2.

Proposition 2.4. For a sequence of values of ε approaching 0, let Uε = {Uε
k}
∞

k=0 be a sequence of
Rn-valued random variables. Suppose there exist constants ε0 > 0 and Γ > 0 such that for all
ε ≤ ε0, Uε is sub-Gaussian, in the sense that for all θ ∈ Rn,

(3) E
Ä
exp(〈θ,Uε

k+1〉) | Fk
ä
≤ exp(1

2Γ ‖θ‖2).

Then Uε satisfies condition (iv) of Definition 2.2.

Remark 2.5. One can show that the sub-Gaussian condition (3) implies that Uε is a martin-
gale difference sequence. Thus the requirements of Proposition 2.4 are stronger than those
of Proposition 2.3. The sub-Gaussian condition provides stronger control of the rate of
convergence of the probability toward zero in condition (iv) of Definition 2.2; see Section
5.2 for details.

2See Métivier and Priouret (1987), Kushner and Yin (1997), and Benaı̈m (1999) for the classical setting
with decreasing step sizes, Benaı̈m and Weibull (2003) for the classical setting with constant step sizes, and
Benaı̈m et al. (2005) for the set-valued setting with decreasing step sizes.
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Remark 2.6. Our results can be extended to stochastic approximation processes in which
the step sizes vary over time, with the maximal length of a step approaching zero. Specif-
ically, we can replace condition (ii) from Definition 2.2 with

Xε
k+1 − Xε

k − γ
ε
k+1Uε

k+1 ∈ γ
ε
k+1Vε(Xε

k),

where γε = {γεk}k≥1 is a sequence of positive real numbers such that
∑

k≥1 γεk = ∞ and γεk ≤ ε
for all k, and condition (iv) with

(4) lim
ε→0
P

Ñ
max

k≤`(T,ε)

∥∥∥∥∥∥
k−1∑
i=0
γεi+1Uε

i+1

∥∥∥∥∥∥ > α
∣∣∣∣∣∣ Xε

0 = x

é
= 0

uniformly in x ∈ X, where `(T, ε) = max{k ∈ N :
∑k

i=1 γ
ε
i ≤ T}. Proposition 2.3 and 2.4

remain true in this setting, but with the conclusion being that Uε satisfies condition (4)
above. Moreover, the family of processes {{Xε

k}
∞

k=0}ε>0 is still a perturbed solution of the
differential inclusion (DI) (see Sections 3.1 and 5.3), and thus the conclusions of Theorems
3.1 and 3.5 continue to hold.

In applications to game theory and other population models, it is natural to suppose
that the process Xε undergoes ε−1 increments per unit of clock time. This feature is captured
in the following definition of the interpolated process X̄ε, which runs in continuous time.
Let Aε : XN → C(R+,X) be a map that assigns each sequence x ∈ XN its time-rescaled
affine interpolation Aε(x) ∈ C(R+,X), defined by

(5) Aε(x)(t) = x̄(t) = x`(t) + (t − ε`(t))
x`(t)+1 − x`(t)

ε
, where `(t) =

ï t
ε

ò
.

Applying this map to each sample path of the discrete-time process Xε generates the
interpolated process X̄ε, whose sample paths are in C(R+,X).

2.2.2 The Markovian continuous-time case

We now introduce continuous-time versions of generalized stochastic approximation
processes. We define these as Markov processes on the probability space (Ω,F ,P).

Definition 2.7. For a sequence of values of ε approaching 0, let {Lε}ε>0 be a family of
operators acting on bounded functions f : X→ R according to the formula

(6) Lε f (x) =
1
ε

∫
Rn

Ä
f (x + εz) − f (x)

ä
µεx(dz),
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where {µεx}ε>0
x∈X is a family of positive measures on Rn such that

(i) The function x 7→ µεx(A) is measurable for each Borel set A ⊂ Rn;

(ii) The support of µεx is contained in the set {z ∈ Rn : x + εz ∈ X} as well as in some
compact set independent of x and ε.

(iii) For any δ > 0, there exists ε0 > 0 such that for all ε ≤ ε0 and for all x ∈ X,

vε(x) :=
∫
Rn

zµεx(dz) ∈ Ṽδ(x).

Let the Markov processes {Yε(t)}ε>0
t≥0 solve the martingale problems for {Lε} (see Ethier

and Kurtz (1986)). We call this collection of processes a family of Markov continuous-time
generalized stochastic approximation processes for the differential inclusion ẋ ∈ V(x).

Remark 2.8. The following standard construction of the process {Yε
} will prove useful in

the proof of Theorem 3.2 and in Example 4.4. Let {τi}i≥1 be a sequence of independent
exponential random variables with rate ε−1. Define T0 = 0 and Tk = τ1 + · · · + τk for k ≥ 1,
and let κ(s) = max{k : Tk ≤ s} for s ≥ 0. Then define the Markov chain {Xε

k}k≥1 on X with
transition function

P
(
Xε

k+1 − Xε
k ∈ εA |Xε

k = x
)

= µεx(A)

for each Borel set A ⊂ Rn. Then the Markov process {Yε(t)}t≥0 defined by

Yε(t) = Xε
κ(t)

is a solution to the martingale problem for Lε.

3. Results

3.1 Finite Horizon Deterministic Approximation

Our first main result shows that over any finite-time span, the interpolated process
X̄ε closely mirrors a solution trajectory of the differential inclusion ẋ ∈ V(x) with high
probability.
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Theorem 3.1. Suppose that {Xε
}ε>0 is a family of GASPs. Then for any T > 0 and any α > 0, we

have

lim
ε→0
P

(
inf
x∈SΦ

sup
0≤s≤T

∥∥∥X̄ε(s) − x(s)
∥∥∥ ≥ α ∣∣∣∣ X̄ε(0) = x

)
= 0

uniformly in x ∈ X.

Kurtz (1970) and Benaı̈m and Weibull (2003) prove similar results for classical (Lip-
schitz) dynamical systems. In their analyses, the key tool used to control the distance
between the process and the flow is Grönwall’s lemma. This approach cannot be adapted
to our setting. Here the mean set-valued map V may provide a multitude of directions
in which the flow can proceed at each point in time. In particular, two solutions from the
same initial condition can move away from each other. Instead of relying on Grönwall’s
lemma, we instead make use of Lemma 5.3, due to Faure and Roth (2010), which ap-
proximates solutions of the differential inclusion by approximate fixed points of a certain
set-valued operator; see Section 5.3 for details.

In the continuous-time framework, the direct analogue of Theorem 3.1 is true:

Theorem 3.2. Suppose that {Yε
}ε>0 is a family of Markov continuous-time GASPs. Then for any

T > 0 and any α > 0, we have

lim
ε→0
P

(
inf
z∈SΦ

sup
0≤s≤T

‖Yε(s) − z(s)‖ ≥ α
∣∣∣∣ Yε(0) = x

)
= 0

uniformly in x ∈ X.

Theorems 3.1 and 3.2, proved in Sections 5.3 and 5.4, are both derived from a more
general result, Proposition 5.2, that establishes finite horizon deterministic approximation
for so-called perturbed solutions of the differential inclusion (DI) (see Definition 5.1). Our
analyses show that both the family of interpolated processes {X̄ε

}ε>0 and the family of
interpolated versions of the processes {Yε

}ε>0 are perturbed solutions of (DI).

3.2 Limiting Stationary Distributions and Invariant Measures

In this section, we assume not only that {{Xε
k}
∞

k=0}ε>0 is a family of GSAPs for the
differential inclusion ẋ ∈ V(x), but also that for each ε > 0, {Xε

k}k=0 is a Markov chain
defined on probability space (Ω,F ,P). We study the asymptotic behavior of a continuous
family of probability measures associated with the resulting family of Markov chains.
The main result of this section shows us that any weak limit as ε approaches zero of a
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collection of invariant probability measures {µε}ε>0 of the Markov chains {Xε
}ε>0 is itself

an semi-invariant measure of the set-valued dynamical system Φ induced by ẋ ∈ V(x).
We recall some useful definitions and notations. Let M be a metric space, and let P(M)

be the space of Borel probability measures on M. The support of a measure ν in P(M),
denoted support(ν), is the smallest closed subset of measure 1. If M′ is also a metric space
and f : M→M′ is Borel measurable, then the induced map f ∗ : P(M)→ P(M′) associates
with ν ∈ P(M) the measure f ∗(ν) ∈ P(M′) defined by

f ∗(ν)(B) = ν( f −1(B))

for all Borel sets B in M′. If θ : R+ ×M → M is a semi-flow on M, a measure ν ∈ P(M)
is called θ-invariant if ν((θt)−1(A)) = ν(A) for all Borel sets A ∈ M and t ∈ R+. In the
following we will use this equivalent definition (see e.g. Theorem 6.8 in Walters (1982)): ν
is θ-invariant if for all bounded continuous functions f : M→ R and all t > 0,

(7)
∫

M
f (x)dν(x) =

∫
M

f ◦ θt(x)dν(x).

We now state the definition of semi-invariant measures for set-valued dynamical sys-
tems. The definition uses the translation semi-flow Θ introduced in Section 2.1.

Definition 3.3. A probability measure µ on X is an semi-invariant measure for the set-valued
dynamical system Φ if there exists a probability measure ν on C(R+,X) such that

(i) support(ν) ⊂ SΦ,
(ii) ν is Θ-invariant, and

(iii) π∗0(ν) = µ.

In words, condition (iii) requires that ν have time 0 marginal distribution µ. We use the
prefix “semi” because the measure ν places its mass on the set SΦ of forward solutions,
rather than on the smaller set of entire solutions (i.e., solutions defined on all R) as in
the definition of invariant measure from Faure and Roth (2011). Every invariant measure
is an semi-invariant measure, but whether the converse statement is also true is an open
question (see Remark 2.8 in Faure and Roth (2011)).

While the definition of a semi-invariant measure on X for a set-valued dynamical sys-
tem Φ is specified in terms of shift-invariant measures on the space C(R+,X) of continuous-
time trajectories through X, the stochastic approximation processes introduced in Section
2.2.1 run in discrete time. It is therefore useful to have a sufficient condition for invariance
on X that is stated in terms of shift-invariant measures on the sequence space XN. Propo-
sition 3.4 provides such a condition. To state it, we let Θ̃ be the left shift on XN, and let π̃0
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be the map which associates with each sequence in XN its first coordinate. In addition, we
let Nδ(A) denote the δ-neighborhood of a subset A ⊂ C(R+,X) for the distance D defined
in (2).

Proposition 3.4. Let µ be a probability measure on X. If there exist a vanishing sequence {εn}n≥0

of real numbers and a sequence {ν̃n}n≥0 of probability measures on XN satisfying

(IM1) for every δ > 0, lim
n→∞

νn(Nδ(SΦ)) = 1, where νn = (Aεn)∗(ν̃n),
(IM2) ν̃n is Θ̃-invariant, and
(IM3) lim

n→∞
π̃∗0(ν̃n) = µ (in the sense of weak convergence),

then µ is semi-invariant for the set-valued dynamical system Φ.

We present the proof of Proposition 3.4 in Section 5.5.
The following result shows us that the invariant measures of the Markov chains {Xε

}ε>0

tend to a semi-invariant measure of the set-valued dynamical system Φ. The correspond-
ing result was proved by Benaı̈m (1998) for the case of classical dynamical systems. We
follow a different line of proof here, since the definition of an semi-invariant measure of a
set-valued dynamical system forces us to work in a larger space.

Theorem 3.5. For each ε > 0, let µε be an invariant probability measure of the Markov chain
Xε. Let µ be a limit point of {µε}ε>0 in the topology of weak convergence, and let Φ be the set-
valued dynamical system induced by (DI). Then µ is an semi-invariant measure of the set-valued
dynamical system Φ.

We present the proof of Theorem 3.2 in Section 5.6.
In the continuous-time framework, the invariant measures of the Markov jump process

Yε are the invariant measures of the Markov chain Xε defined in Remark 2.8. Since this
Markov chain satisfies the conditions of Theorem 3.5, the following result is immediate.

Theorem 3.6. Let {Yε
}ε>0 be a family of Markov continuous-time GSAPs. Let µε be an invariant

probability measure of Yε, and let µ be a limit point of {µε}ε>0 in the topology of weak convergence.
Then µ is an semi-invariant measure of the set-valued dynamical system Φ.

It is generally difficult to compute the collection of semi-invariant measures of a set-
valued dynamical system Φ. It is therefore of interest to derive restrictions on the limit
measure µ that are easier to evaluate than those from Theorems 3.5 and 3.6. In order to
do so, we introduce the notion of the Birkhoff center of Φ.

Recall that the limit set L(z) of a solution z of (DI) is defined by

L(z) =
⋂
t≥0

cl(z([t,∞[)),
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and the limit set L(x) of a point x ∈ X is defined by

L(x) =
⋃

z∈Sx

L(z).

We define the set of recurrent points of Φ by

RL
Φ = {x ∈ X : x ∈ L(x)}.

The closure cl(RL
Φ) of the set of recurrent points is called the Birkhoff center of Φ and is

denoted by BC(Φ).

Remark 3.7. The limit set L(x) may be equal to or strictly contained in the ω-limit set of the
point x, defined by

ω(x) =
⋂
t≥0

cl(Φ[t,∞[)

= {y ∈ X | lim
n→∞

zn(tn) = y for some {tn} ↑ ∞ and {zn
} ⊂ SΦ with zn(0) = x}.

Unlike the definition of L(x), the definition of ω(x) allows one to move between different
solution trajectories starting from x as one considers later moments in time. For instance,
if V : [0, 1]⇒ R is defined by V(0) = [0, 1] and V(x) = 1 − x for x ∈ (0, 1], then L(0) = {0, 1}
but ω(0) = [0, 1]. Under our definition of recurrence based on L(x), point x is recurrent if
there exists at least one solution curve starting from x whose limit set contains x. _

The following theorem is a version of the Poincaré recurrence theorem for standard
set-valued dynamical systems for semi-invariant measures.

Theorem 3.8. Let µ be an semi-invariant measure for Φ, then

µ(BC(Φ)) = 1.

The proof of Theorem 3.8, which is directly inspired by the one of Faure and Roth (2011)
for invariant measures, is presented in Section 5.7.

The following result follows immediately from the previous theorems.

Corollary 3.9. Under the conditions of Theorem 3.5 or Theorem 3.6, the support of µ is contained
in the Birkhoff center of Φ.

–12–



4. Applications to Game Theory

We now define classes of Markov process from game theory that fit within the frame-
work introduced above. Convergence results for these stochastic evolutionary game
dynamics are presented in Section 4.4. For background on the material presented here,
see Sandholm (2010).

4.1 Population Games and Stochastic Evolutionary Game Dynamics

4.1.1 Population games

Consider a population of N ∈N agents, each of whom chooses a strategy from the set
S = {1, . . . ,n}. The distribution of strategies chosen by the members of this population is
represented by a point in the simplex X = {x ∈ Rn

+ :
∑

i xi = 1}, or, more precisely, in the
uniform grid X N = X ∩ 1

NZ
n. We typically refer to such a point as a population state.

A population game is defined by a continuous function F : X→ Rn. Here Fi(x) represents
the payoff to strategy i ∈ S when the population state is x. One could allow payoffs to
depend directly on the population size N, but to keep the notation manageable we do not
do so here.

Since we are concerned with behavior in large populations, the relevant notion of
equilibrium for F is that for the large N limit. We therefore call state x ∈ X a Nash
equilibrium of F if xi > 0 implies that Fi(x) ≥ F j(x) for all j ∈ S. In other words, at a Nash
equilibrium, no (infinitesimal) agent could improve his payoffs by switching strategies.

4.1.2 Revision protocols

In our model of game dynamics, each of the N agents occasionally receives opportu-
nities to switch strategies. The arrivals of these opportunities across agents are such that
the expected number of revision opportunities that each agent receives in a unit of clock
time is 1. Three specifications of the arrival process are introduced below. Each variant of
the model generates a Markov process on the grid X N; for a more general extension, see
Remark 4.8.

The behavior of an agent playing game F after receiving a revision opportunity is
governed by a revision protocol, a pair of functions (r F,N, σF,N) with r F,N : X N

→ [0, 1]n and
σF,N : X N

→ Xn. When a current i player receives a revision opportunity, he considers
switching strategies with probability r F,N

i (x); if he does consider a switch, he chooses
strategy j with probability σF,N

i, j (x). (To be clear, the choice probabilities of an i player at
state x are given by the probability vector σF,N

i (x) ∈ X.) Evidently, an agent’s decisions
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only depend on the revision protocol used in the game, the current population state, and
his own current strategy, and do not otherwise depend on the agent’s identity.

The dependence of r F,N and σF,N on N allows for vanishing finite-population effects—
for instance, the effects of sampling without replacement. We ensure that any such effects
are small by requiring the existence of a limit protocol (r F, σF) with r F : X → [0, 1]n and
σF : X→ Xn that satisfies

lim
N→∞

max
x∈X N

∣∣∣r F,N(x) − rF(x)
∣∣∣ = 0 and lim

N→∞
max
x∈X N

∣∣∣σF,N(x) − σF(x)
∣∣∣ = 0.

4.1.3 Mean dynamics

The mean dynamic (or mean field) v : X → Rn induced by the population game F and
revision protocol (rF, σF) represents the expected increment per time unit in the proportions
of agents playing each strategy. The mean dynamic is defined by

(8) vi(x) =
∑
j∈S

x j r F
j (x) σF

j,i(x) − xi r F
i (x).

The initial sum in (8) represents the expected inflow to strategy i from other strategies,
while the second term represents the expected outflow from strategy i to other strategies.

It is easy to verify that v(x) ∈ TX(x) for all x ∈ X for any choice of game and revision
protocol. While earlier papers (e.g., Benaı̈m and Weibull (2003), Sandholm (2003)) focus on
revision protocols under which the mean dynamic v is Lipschitz continuous, the examples
introduced in Section 4.2 lead to mean dynamics that are discontinuous selections from a
good USC differential inclusion.

4.1.4 Arrivals of revision opportunities and stochastic approximation processes

We now introduce three distinct models of the arrivals of revision opportunities:

I. A simple discrete-time model: Each unit of clock time is divided into subintervals of
length 1

N . At the end of each subinterval, one of the N agents is chosen at random to
receive a revision opportunity, with these choices being independent over time.

II. An alternative discrete-time model: Each unit of clock time is again divided into
subintervals of length 1

N . At the end of each subinterval, each of the N agents receives
a revision opportunity with probability 1

N , with these draws being independent across
agents and over time. Thus, the number of opportunities arriving at the end of each
subinterval follows a binomial(N, 1

N ) distribution.
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III. A continuous-time model: Each agent receives revision opportunities according to
independent, rate 1 Poisson processes.

Each of these models leads to a distinct collection of stochastic approximation processes.

Example 4.1. Discrete-time process, one revision opportunity per period. To construct the
Markov chain {XN

k }
∞

k=0 on X N corresponding to Model I, let ei denote the ith standard basis
vector in Rn, and define independent auxiliary random variables ζN,x with distributions

(9) P(ζN,x = z) =


xi r F,N

i (x) σF,N
i, j (x) if z = 1

N (e j − ei),∑
j∈S

x j
Ä
1 − r F,N

j (x) + r F,N
j (x) σF,N

j, j (x)
ä

if z = 0,

0 otherwise,

Then define the transition law of the Markov chain XN as

P(XN
k+1 = XN

k + z|XN
k = x) = P(ζN,x = z).

Since there are N periods per unit of clock time, the expected increment per time unit
of Markov chain XN is given by

vN(x) = NE(XN
k+1 − XN

k |X
N
k = x)(10)

= NEζN,x

=
∑
i∈S

∑
j∈S

xi r F,N
i (x) σF,N

i, j (x) (e j − ei)

=
∑
i∈S

ei

Ñ∑
j∈S

x j r F,N
j (x) σF,N

j,i (x) − xi r F,N
i (x)

é
.

Thus

(11) lim
N→∞

max
x∈X N

∣∣∣vN(x) − v(x)
∣∣∣ = 0,

where v : X→ Rn is defined by (8).
Now suppose that v is a selection from V : X⇒ Rn, a good USC differential inclusion.

If we let ε = 1
N , then conditions (i) and (ii) of Definition 2.2 are clearly satisfied with

(12) Uε
k+1 = UN

k+1 = N
Ä
XN

k+1 − XN
k − E(XN

k+1 − XN
k | F

N
k )
ä
,

and the uniform convergence in (11) implies condition (iii). Finally, since each UN is a
martingale difference sequence, and since the collection {UN

}
∞

N=N0
is uniformly bounded,
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Propsition 2.3 implies that condition (iv) of Definition 2.2 is satisfied as well. Thus, the
collection {{XN

k }
∞

k=0}
∞

N=N0
is a family of GSAPs. _

Example 4.2. Discrete-time process, random number of revision opportunities per period. To
construct the Markov chain corresponding to Model II, first define the auxiliary random
variables ξN,x

i,` , ` ∈ {1, . . . ,Nxi}, with distributions

P(ξN,x
i,` = z) =


r F,N

i (x) σF,N
i, j (x) if z = 1

N (e j − ei),

1 − r F,N
i (x) + r F,N

i (x) σF,N
i,i (x) if z = 0,

0 otherwise,

and define RN,x
i to be a binomial(Nxi, 1

N ) random variable, specifying all of the random
variables to be mutually independent. Then define the random variables ξN,x by

ξN,x =
∑
i∈S

RN,x
i∑
`=1
ξN,x

i,` .

Now define the transition law of the Markov chain XN by

P(XN
k+1 = XN

k + z|XN
k = x) = P(ξN,x = z).

The expected increment per time unit of this Markov chain is

wN(x) = NE(XN
k+1 − XN

k |X
N
k = x)(13)

= NEξN,x

=
∑
i∈S
ERN,x

i Eξ
N,x
i,1

=
∑
i∈S

xi
∑
j∈S

r F,N
i (x) σF,N

i, j (x) (e j − ei)

= vN(x).

So as before,

lim
N→∞

max
x∈X N

∣∣∣wN(x) − v(x)
∣∣∣ = 0,

where v : X→ Rn is again defined by (8).
Suppose again that v is a selection from a good USC differential inclusion. If we define

UN as in (12), then conditions (i), (ii), and (iii) of Definition 2.2 are clearly satisfied, so to
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prove that the collection {{XN
k }
∞

k=0}
∞

N=N0
is a family of GSAPs, we need only verify condition

(iv). Doing so requires the following lemma, which we prove in Section 5.8:

Lemma 4.3. There exists a constant M > 0 such that supk∈NE(
∥∥∥UN

k+1

∥∥∥2
) ≤M < ∞.

It follows from this lemma and Proposition 2.3 that the collection {{XN
k }
∞

k=0}}
∞

N=N0
is a family

of GSAPs. _

Example 4.4. Continuous-time process. We now construct the continuous-time Markov
chains {YN

t }t≥0 on X N corresponding to Model III. To do so, we let the Markov chain {XN
k }
∞

k=0

be defined as in Example 4.1, and we define YN(t) = XN
κ(t) as in Remark 2.8. If we let

Z = {ei − e j : 0 ≤ i, j ≤ n}, then the generator LN of the Markov process YN acts on bounded
functions f : X→ R according to

LN f (x) = N
∑
z∈Z

Ä
f (x + 1

N z) − f (x)
ä
µN

x (z),

where µN
x (z) = P(ζN,x = 1

N z) for the random variable ζN,x defined in equation (9).
Conditions (i) and (ii) of Definition 2.7 follow immediately from the definition of µN

x .
Moreover, it is easy to see that vN(x) =

∫
Z zµN

x (dz) is given by the last expression in display
(10), and so (11) implies that vN converges uniformly to the function v defined in (8). Thus,
if v is a selection from a good USC differential inclusion, then condition (iii) of Definition
2.7 holds, and so the collection {YN

}N≥1 is a family of Markov continuous-time GSAPs. _

4.2 Examples of Revision Protocols and their Mean Dynamics

We now present three examples of revision protocols whose mean fields are described
by differential inclusions. In all of the examples, a central role is played by the maximizer
correspondence M : Rn ⇒ X and the best response correspondence BF : X⇒ X, defined by

M(π) = argmax
y∈X

〈y, π〉 and BF = M ◦ F.

Because M is convex-valued and upper semicontinuous, the mean dynamics in the next
three examples are all selections from good USC differential inclusions.

To simplify the presentation, we suppose below that the revision protocol (r F,N, σF,N) ≡
(r F, σF) does not depend on the population size. Examples 4.1, 4.2, and 4.4 show that our
results for the examples coming next remain valid without this assumption, so long as the
protocol converges uniformly to its limit.
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Example 4.5. The best response dynamic. Suppose that an agent who receives a revision
opportunity only chooses a strategy with positive probability if it is optimal at the current
population state. This corresponds to revision protocols with r F

i ≡ 1 and σF
i (x) ∈ BF(x).

Note that by allowing revision probabilities to depend on the agent’s current strategy i,
one can allow players of different strategies to break ties in different ways; for instance,
one can suppose that an agent currently playing a best response does not switch to an
alternate best response. For a further generalization, see Remark 4.8 below, and for the
implications for stochastic approximation, see the examples in Section 4.3.

For any revision protocol of the form described above, the mean field v is a selection
from the differential inclusion

(14) ẋ ∈ V(x) = BF(x) − x.

Equation (14) is the best response dynamic of Gilboa and Matsui (1991) and Hofbauer (1995).3

_

Example 4.6. Tempered best response dynamics. It may be more realistic to assume that
an agent who receives a revision opportunity becomes less likely to bother to revise
as his current payoff becomes closer to the optimal payoff. This is achieved by letting
r F

i (x) = ρ(ÛFi(x)), where ÛFi(x) = max j F j(x)−Fi(x) is the payoff deficit of strategy i at population
state x, and ρ : R+ → [0, 1] is a nondecreasing, Lipschitz continuous function satisfying
ρ(0) = 0 and ρ(s) > 0 when s > 0. If we again let σF

i (x) ∈ BF(x), then the mean field v is a
selection from the differential inclusion

(15) ẋ ∈ V(x) =
∑
i∈S

xi ρ(ÛFi(x)) (BF(x) − ei),

Equation (15) defines the tempered best response dynamic of Zusai (2011). _

Example 4.7. Sampling best response dynamics. If agents cannot directly observe the popula-
tion state, they can estimate this state by taking a finite sample from the population, and
using the empirical distribution of strategies in the sample as an estimate of the actual
population state. Dynamics based on this idea are introduced by Oyama et al. (2012).

Let Zn,k
+ = {z ∈ Zn

+ :
∑

i∈S zi = k} be the set of possible outcomes of samples of size k,

3In some games, the best response protocol may be seen as too permissive, as it allows agents to switch
to strategies that are optimal at the current state, but that fail to be optimal at any nearby states. To remedy
this, Balkenborg et al. (2011) suppose that players only switch to strategies that are not only best responses
to the current state, but also unique best responses at certain states arbitrarily close to the current state. This
refinement of the best response correspondence leads to a refinement of (14) called the refined best response
dynamic. See Balkenborg et al. (2011) for further discussion and analysis.
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and define the k-sampling best response correspondence BF,k : X⇒ X by

(16) BF,k(x) =
∑

z∈Zn,k
+

(
k

z1 . . . zn

) (
xz1

1 · · · x
zn
n
)

BF
Ç

1
k

z
å
.

If an agent who receives a revision opportunity takes a sample of size k from the population
and switches to a best response to its empirical distribution, we obtain a revision protocol
with r F

i ≡ 1 and σF
i (x) ∈ BF,k(x). The resulting mean field is a selection from the differential

inclusion

(17) ẋ ∈ V(x) ∈ BF,k(x) − x,

which is known as the k-sampling best response dynamic.
More generally, one can allow the size of a revising agent’s sample to itself be random.

If the sample size is determined by the probability distribution λ = {λk}
∞

k=1 on N, so that
r F

i ≡ 1 and σF
i (x) ∈

∑
k∈N λkBF,k(x), the mean dynamic is a selection from the λ-sampling

response dynamic,

(18) ẋ ∈ V(x) =
∑
k∈N

λkBF,k(x) − x. _

Remark 4.8. Since the processes introduced in Section 4.1 are Markov processes, the maps
(10) and (13) describing the expected increment per time unit as a function of the state x
are single-valued. Thus the mean fields in Examples 4.5–4.7 are (single-valued) selections
from good USC differential inclusions.

Since our discrete-time deterministic approximation result, Theorem 3.1, does not
require the underlying processes to be Markov, it can also be applied to more general
processes. Let (R F,N,ΣF,N) with R F,N : X N ⇒ [0, 1]n and ΣF,N : X N ⇒ Xn be nonempty,
convex-valued, and upper semicontinuous correspondences. When a current i player
receives a revision opportunity, he considers switching strategies with probability given
by a random variable r F,N

i (x) that takes values in R F,N(x); if he does consider a switch, his
choice probabilities are given by a random variable σF,N

i (x) that takes values in ΣF,N(x). We
make no assumptions about the dependence of these random variables on the history of
the process.

Let XN be the resulting stochastic process, with revision opportunities arriving as in
Example 4.1 or 4.2, and suppose that R F,N and ΣF,N converge to R F : X ⇒ [0, 1]n and
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ΣF : X⇒ Xn uniformly in the Hausdorff topology. If

(19) ẋ ∈ V(x) =
∑
i∈S

ei

Ñ∑
j∈S

x j R F
j (x) ΣF

j,i(x) − xi R F
i (x)

é
.

is a good USC differential inclusion, as is true under the protocols from Examples 4.5–4.7,
then it is easy to verify that {{XN

k }
∞

k=0}}
∞

N=N0
is a family of GSAPs for ẋ = V(x). _

4.3 Which Solution Trajectories Approximate Sample Paths?

When the mean field is Lipschitz, it admits a unique solution trajectory from every ini-
tial condition, but when it is a differential inclusion, there may be multiple solutions. While
sometimes more than one such solution can approximate sample paths of the stochastic
process, it need not be the case that all solutions do so. Thus, if the differential inclusion
is understood as an approximation of the underlying stochastic process, not all of its solu-
tions need be relevant. We show in the following examples that solutions sometimes can
be ruled out by basic considerations about the stochastic processes. For definiteness, we
assume below that revision opportunities arrive in discrete time as specified in Example
4.1 or 4.2.

Example 4.9. When considering two-strategy games, it is convenient to let the strategy
set be S = {0, 1}, to let x = x1 denote the mass of agents using strategy 1, and to abuse
notation by using this x ∈ X = [0, 1] as our state variable. Doing so now, we define the
coordination game F : X → R2 by

F(x ) =

Ñ
x ∗ 0
0 1 − x ∗

éÑ
1 − x

x

é
=

Ñ
(1 − x ) x ∗

x (1 − x ∗)

é
.

where x ∗ ∈ (0, 1). This game has three Nash equilibria, x = 0, x = 1, and x = x ∗.
Suppose that agents follow a best response protocol as introduced in Example 4.5,

and let XN denote the resulting N-agent stochastic process. By Theorem 3.1, finite horizon
behavior of sample paths must be approximated by solutions to the best response dynamic
for F, here given by the differential inclusion

(20) ẋ = BF(x ) − x =


{−x } if x < x ∗,
[−x , 1 − x ] if x = x ∗,
{1 − x } if x > x ∗.
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From each initial condition x , x ∗, this differential inclusion admits a unique solution,
which converges to state 0 or state 1 according to whether x is less than or greater than
x ∗:

x < x ∗ implies that x(t) = e−tx ,(21)

x > x ∗ implies that x(t) = 1 − e−t(1 − x ).(22)

From initial condition x ∗ itself, (20) admits infinitely many solutions: there is the station-
ary solution x(t) ≡ x ∗, solutions of forms (21) and (22) that proceed directly to a pure
equilibrium, and solutions that stay at x ∗ for a finite amount of time before proceeding to
a pure equilibrium.

Which solutions of (20) approximate sample paths of the process XN? If x ∗ is not a
state in the set X N = {0, 1

N , . . . , 1} where the process XN runs, the only solutions of (20) are
relevant for stochastic approximation are those of forms (21) and (22). Of course, this is
necessarily the case whenever x ∗ is irrational.

If instead x ∗ is in X and is the initial condition of XN, then which solutions of (20)
are relevant depends on just how XN is specified. If one assumes that indifferent agents
do not switch strategies, then XN never leaves state x ∗, so only the stationary solution of
(20) is relevant. If any other Markovian specification is used, so that there is a positive
probability that the initial increment of XN is not null, then for large N only the solutions of
(20) that immediately leave x ∗ can approximate sample paths of XN. Thus, the solutions
of (20) that leave x ∗ after some delay are only relevant if a non-Markovian specification
of XN is followed, as described in Remark 4.8.4 _

Example 4.10. Now suppose that agents follow a best response protocol when playing the
following game (Zeeman (1980), Hofbauer (1995)):

F(x) =

Ü
0 6 −4
−3 0 5
−1 3 0

êÜ
x1

x2

x3

ê
.

The phase diagram for the best response dynamic in this game is presented in Figure
Figure 1(i). Solution trajectories from most initial conditions are unique and converge
to the Nash equilibrium e1. However, from Nash equilibrium x∗ = ( 1

3 ,
1
3 ,

1
3 ), there is a

4If the population game is intended to model random matching in a normal form game, then adjustments
should be made to F and σ to account for the absence of self-matching. If this is done, then the only solutions
of (20) starting from x ∗ that are relevant for stochastic approximation are those that immediately leave x ∗.
See Sandholm (2010, Sec. 11.4 and 12.5.3) for related observations.
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e1

e2 e3

(i)

e1

e2 e3

(ii)

Figure 1: The best response dynamic in two variations on Zeeman’s game.

stationary solution at x∗, as well as solutions that head toward e1, possibly after some
delay. Other solutions head toward the Nash equilibrium y∗ = ( 4

5 , 0,
1
5 ). Some of these

converge to y∗; others leave segment x∗y∗ before reaching y∗. Of those that leave, some
head to e1, while others head toward e3 and then return to x∗. If x∗ is revisited, any of the
behaviors just described can occur again.

Suppose that the initial state x of the process XN lies in the interior of segment x∗y∗.
The possible increments in the state are of the form 1

N (e j − ei). In terms of the figure, the
direction of any such increment is parallel to a face of the simplex, and in particular is not
parallel to segment x∗y∗. Therefore, any non-null transition must take the state off of the
segment. This implies that the only solutions to the best response dynamic starting in the
interior of segment x∗y∗ that can be relevant for stochastic approximation are those that
immediately leave the segment.

The game

G(x) =

Ü
0 3 −2
−9 0 10
−1 2 0

êÜ
x1

x2

x3

ê
has a similar incentive structure to F, but in this game the segment between the Nash
equilibria x∗ = (1

3 ,
1
3 ,

1
3 ), and y∗ = ( 2

3 , 0,
1
3 ) is parallel to the e2e1 face of the simplex (Figure

1(ii)). Now suppose that the process XN begins at some state x in the interior this segment.
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(Such a state is in X N if and only if N is a multiple of 3). If one assumes that agents playing
an optimal strategy do not switch, and that strategy 2 players who are indifferent between
strategies 1 and 3 always switch to strategy 1, then the process XN will stay on segment
x∗y∗, sometimes remaining in place and sometimes moving toward y∗. So in this case, the
only approximating solution of the best response dynamic for G is the unique one that
starts at state x and converges to equilibrium y∗. _

4.4 Convergence of Stochastic Evolutionary Game Dynamics

We now use our main results to understand the finite-horizon and infinite-horizon
behavior of the processes introduced in Section 4.2 in certain classes of well-behaved
games. Analyses of this sort were performed by Hofbauer and Sandholm (2007) for
processes based on perturbed best responses, under which agents choose optimally after
the payoffs to each of their strategies is subject to a random perturbation. These random
perturbations ensure that the relevant mean dynamics are smooth, allowing results on
stochastic approximation in classical contexts to be applied. The main results in the present
paper allow us to understand the behavior of processes based on exact best responses.

4.4.1 Notions of convergence

Following Hofbauer and Sandholm (2007), we introduce two notions of convergence
for stochastic evolutionary game dynamics, focusing for convenience on the discrete time
processes XN from Examples 4.1 and 4.2. We say that the processes XN converge in the
medium run from initial conditions in A to the closed set C ⊂ X if for each x ∈ A and α > 0,
there is a time T = T(x) such that for all U ≥ T,

lim
N→∞
P

(
sup

t∈[T,U]
dist(XN

[Nt],C) ≥ α
∣∣∣∣XN

0 = x
)

= 0.

The time index in XN
[Nt] accounts for the fact that each period in the discrete time process

lasts 1
N units of clock time. If the set of initial conditions is not specified, it is understood

to be the entire simplex X.
We say that the processes XN converge in the long run to the closed set C ⊂ X if for

any sequence of invariant measures {µN
}
∞

N=N0
of these processes, and for each open set O

containing C, we have that limN→∞ µN(O) = 1.

–23–



4.4.2 Best response protocols in potential games

The population game F : X → Rn is a potential game (Monderer and Shapley (1996),
Sandholm (2001b, 2009)) if it admits a C1 potential function f : X→ R, meaning that

ΦF(x) = ∇ f (x) for all x ∈ X,

whereΦ = I − 1
n11′ ∈ Rn×n is the orthogonal projection of Rn onto TX = {z ∈ Rn : z′1 = 0},

the tangent space of the simplex X. Applications of potential games include models
of genetic competition, firm competition, network congestion, externality pricing, and
evolutionary implementation.

The Nash equilibria of a potential game are the states that (along with appropriate
multipliers) satisfy the Kuhn-Tucker first order conditions for maximizing the potential
function f on the set X. Moreover, all solutions of a wide range of deterministic evolu-
tionary dynamics ascend the potential function and converge to connected sets of Nash
equilibria (Sandholm (2001b, 2010)). Combining these ideas with the analysis above, we
obtain

Theorem 4.11. Consider evolution under any best response protocol for the potential game F.
Then the processes {XN

}
∞

N=N0
converge in the medium run and in the long run to the set of Nash

equilibria of F.

The proof of this result proceeds as follows. Sandholm (2010, Theorem 7.1.3) (also see
Hofbauer (1995)) shows that the potential function f is a strict Lyapunov function for the
best response dynamic (14): along every solution x of (14), we have d

dt f (x(t)) ≥ 0 at all
points of differentiability of x, with equality holding only at Nash equilibria of F. Since (14)
is a good USC differential inclusion, it follows that the limit set of every solution trajectory
of (14) is contained in the set of Nash equilibria of F (cf. Sandholm (2010, Theorem 7.B.4)).
Since the mean field of any best response protocol is a selection from (14), convergence
in the medium run follows from Theorem 3.1, and convergence in the long run from
Theorem 3.5 and Corollary 3.9.

4.4.3 Best response protocols in contractive games

The population game F : X→ Rn is a contractive game5 (Hofbauer and Sandholm (2009))
if

(23) (y − x)′(F(y) − F(x)) ≤ 0 for all x, y ∈ X.
5Hofbauer and Sandholm (2009) and Sandholm (2010) call these games stable games. The term negative

semidefinite game is sometimes used in the literature as well.
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Contractive games include zero-sum games, games with an interior ESS (Maynard Smith
and Price (1973)), wars of attrition, and perturbed concave potential games as instances.

It can be shown that the set of Nash equilibria of any contractive game is convex.
The term “contractive game” refers to the game’s out-of-equilibrium properties: if one
considers an adjustment process from any two initial states, assuming that the trajectories
“follow the payoff vectors” to the greatest possible extent while remaining in the simplex,
then the two trajectories move (weakly) closer together over time.6 In fact, it can be
shown that in stable games, solutions of a range of evolutionary dynamics converge to
Nash equilibrium from all initial conditions. However, unlike in the case of potential
games, there is no single function serves as a Lyapunov function for all dynamics; instead,
a distinct Lyapunov function must be constructed for each dynamic under consideration.

In the case of the best response dynamic, Hofbauer (1995, 2000) and Hofbauer and
Sandholm (2009) show that the function

Λ(x) = max
y∈X

(y − x)′F(x)

serves as a strict Lyapunov function. Combining this fact with our earlier analyses yields

Theorem 4.12. Consider evolution under any best response protocol for game F, and assume that
F is a stable game. Then the processes {XN

}
∞

N=N0
converge in the medium run and in the long run

to the set of Nash equilibria of F.

Remark 4.13. Zusai (2011) shows that in potential games, the potential function serves as
a strict Lyapunov function for any tempered best response dynamic. Zusai (2011) also
constructs Lyapunov functions for stable games for all such dynamics. By combining
these results with our earlier analyses, one can establish versions of Theorems 4.11 and
4.12 for evolutionary processes derived from tempered best response protocols.

4.4.4 Sampling best response protocols in games with iterated p-dominant equilibria

We conclude the paper by presenting a convergence result for sampling best response
processes. We say that strategy i is p-dominant in game F (Morris et al. (1995)) if i is the
unique best response whenever it is used by at least fraction p of the population:

BF(x) = {ei} for all x ∈ X with xi ≥ p.

6The dynamic that “follows the payoff vectors” in this sense is the projection dynamic of Nagurney and
Zhang (1997) (see also Lahkar and Sandholm (2008)). For a detailed presentation of the contraction property,
see Sandholm (2012).
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Evidently, lowering the value of p strengthens the p-dominance criterion, and in any
population game F, at most one strategy can be p-dominant with p ≥ 1

2 .
To define stronger solution concepts, we call a nonempty set of strategies S∗ ⊂ S a

p-best response set of F if

BF(x) ⊂ S∗ for all x ∈ X with
∑
i∈S∗

xi ≥ p.

Thus S∗ is a p-best response set if whenever at least fraction p of the population plays
actions in S∗, all best responses are themselves in S∗. We call a nonempty set of strate-
gies S∗ ⊂ S an iterated p-best response set of F (Tercieux (2006)) if there exists a sequence
S0,S1, . . . ,Sm with S = S0

⊃ S1
⊃ · · · ⊃ Sm = S∗ such that S` is a p-best response set in F|S`−1 ,

the restricted version of F in which only strategies in S`−1 are allowed, for each ` = 1, . . . ,m.
Strategy i ∈ S is an iterated p-dominant equilibrium of F if {i} is an iterated p-best response
set of F.

To link these concepts with sampling best response processes, we say that the proba-
bility distribution λ = {λk}

∞

k=1 onN is k-good if

k∑
`=1
λ`
Ä
1 − ( k−1

k )`
ä
> 1

k .

Oyama et al. (2012) show that if distribution λ is k-good, and if strategy i is an iterated
1
k -dominant equilibrium that is initially played by a positive mass of agents, then the
λ-sampling best response dynamic converges to state ei.7 Combining this fact with our
results from Section 3, we obtain

Theorem 4.14. Suppose that strategy i is an iterated 1
k -dominant equilibrium of F, and that λ is

k-good. Consider evolution under any λ-sampling best response protocol in F. Then the processes
{XN
}
∞

N=N0
converge in the medium run from the set X+

i = {x ∈ X : xi > 0} to the singleton {ei}.

Theorem 4.14 ensures that starting from most initial conditions, any λ-sampling best
response process proceeds to a neighborhood of the equilibrium ei and remains in this
neighborhood for a long period of time. Unlike many of the processes studied in stochastic
evolutionary game theory (e.g., those in Hofbauer and Sandholm (2007)), sampling best
response processes are not irreducible: if the process reaches a state at which all agents
choose the same strategy, it remains in that state forever. This suggests the possibility
of strengthening the conclusion of Theorem 4.14 to that of absorption at state ei with
probability approaching 1. For work in this direction, see Sandholm (2001a).

7Analogous results hold for iterated k-best response sets that are not singletons.
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5. Proofs

5.1 Proof of Proposition 2.3

To simplify the proof, we suppose that q = 2. Using the familiar Hölder inequality, the
proof of the general case is almost the same.

Fix T > 0. By the assumption on the second moment of Uε, there exists a constant
M > 0 such thatE

Ä∥∥Uε
i+1
∥∥2ä < M, for all i ≥ 1. Since Uε is a martingale difference sequence,

Burkholder’s inequality (see, e.g., Stroock (1993)) yields

E

Ñ
max

0≤k≤[ T
ε ]

∥∥∥∥∥∥
k−1∑
i=0
εUε

i+1

∥∥∥∥∥∥
2é
≤ E

Ö
[ T
ε ]−1∑
i=0

ε2 ∥∥Uε
i+1
∥∥2

è
≤

ñ
T
ε

ô
Mcε2

≤ C(T)ε,

where c > 0 is a constant given by Burkholder’s inequality and C(T) = T(cM+1). Markov’s
inequality then implies that

P

Ñ
max
k≤[ T

ε ]

∥∥∥∥∥∥
k−1∑
i=0
εUε

i+1

∥∥∥∥∥∥ > α
é
≤

C(T)ε
α2 ,

so we conclude the proof by taking the limit as ε goes to zero. �

5.2 Proof of Proposition 2.4

For k ∈N and θ ∈ Rn, let

Zk(θ) = exp

Ñ
k−1∑
i=0
〈θ, εUε

i+1〉 −
Γ
2 kε2
‖θ‖2

é
.

According to (3), {Zk(θ)}∞k=0 is a supermartingale. Thus, for any β > 0 and any n ∈ N,
Doob’s supermartingale inequality implies that

P

Ñ
max
1≤k≤n
〈θ,

k−1∑
i=0
εUε

i+1〉 ≥ β

é
= P

Å
max
1≤k≤n

Zk(θ) ≥ exp(β − Γ
2 ‖θ‖

2 nε2)
ã

≤ exp
Ä

Γ
2 ‖θ‖

2 nε2
− β
ä
.
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Let e1, . . . , em be the canonical basis ofRn, δ > 0, and e = ±ei for some i. Set β = δ2

Γnε2 and
θ =

β
δe. Then

P

Ñ
max
1≤k≤n
〈e,

k−1∑
i=0
εUε

i+1〉 ≥ δ

é
= P

Ñ
max
1≤k≤n
〈θ,

k−1∑
i=0
εUε

i+1〉 ≥ β

é
≤ exp

Ç
−δ2

2Γnε2

å
.

Fixing γ > 0, and using the previous inequality with δ = γ
m and n =

î
T
ε

ó
, we conclude that

P

Ñ
max

1≤k≤[ T
ε ]

∥∥∥∥∥∥
k−1∑
i=0
εUε

i+1

∥∥∥∥∥∥ ≥ γ
é
≤ P

Ñ ⋃
e=±ei

max
1≤k≤n
〈e,

k−1∑
i=0
εUε

i+1〉 ≥
γ
m


é

≤ 2m exp
Ç
−γ2

2ΓεTm2

å
. �

5.3 Proof of Theorem 3.1

We introduce the notations ‖x‖[0,T] := sups∈[0,T] ‖x(s)‖, d[0,T](x,y) :=
∥∥∥x − y

∥∥∥
[0,T]

and
d[0,T](x,A) := infa∈A d[0,T](x, a) for x,y ∈ C(R+,X) and A ⊂ C(R+,X). In addition we let
S[0,T] denote the set of all solution curves of (DI) restricted to time interval [0,T].

To prove Theorem 3.1, we first demonstrate a similar result for so-called perturbed
solutions of the differential inclusion (DI). We then show that a family of GSAPs is a
perturbed solution of (DI).

The following definition builds on one of Benaı̈m et al. (2005) for the decreasing step
size case.

Definition 5.1. Let δ = {δT(ε)}ε>0,T>0 be a family of real random variables and U = {Uε(t)}ε>0

a family of stochastic process Uε : Ω ×R+ → Rn. A family {yε}ε>0 of continuous processes
yε : Ω ×R+ → Rn is a (δ,U)-perturbed solution of the differential inclusion (DI) if

(i) for almost all ω ∈ Ω and all ε > 0, yε is absolutely continuous in t.
(ii) for all T > 0 and α > 0, limε→0P (δT(ε) > α) = 0,
(iii) for almost all ω ∈ Ω, all T > 0 and almost all 0 < t < T,

dyε(t)
dt

−Uε(t) ∈ ṼδT(ε)(yε(t)),

(iv) for all ε > 0, Uε is almost surely locally integrable,
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(v) for all T > 0 and α > 0,

(24) lim
ε→0
P

(
sup

0≤v≤T

∥∥∥∥∫ v

0
Uε(s) ds

∥∥∥∥ ≥ α
)

= 0.

Theorem 3.1 is a corollary of the following proposition, which generalizes the theorem
to (δ,U)-perturbed solutions.

Proposition 5.2. Let {yε}ε>0 be a (δ,U)-perturbed solution of the differential inclusion (DI). Then
for any α > 0 and any T > 0, we have

lim
ε→0
P
(
d[0,T](yε,SΦ) ≥ α

)
= 0,

Before starting the proof, we introduce a useful technical lemma due to Faure and Roth
(2010). Let T > 0, define ‖V‖ = supx∈X supy∈V(x) |y|, and consider the compact set

KV :=
¶

y ∈ Lip([0,T],X) : Lip(y) ≤ ‖V‖ + 1
©
,

where Lip([0,T],X) is the set of Lipschitz functions from [0,T] to X and Lip(y) is the
Lipschitz constant of the function y. Note that KV contains every solution curve of (DI),
restricted to [0,T].

For γ ∈ [0, 1], we define the set-valued map Λγ : KV ⇒ KV by letting y ∈ Λγ(z) if and
only if there exists an integrable h : [0,T]→ Rn such that

h(u) ∈ Ṽγ(z(u)) for all u ∈ [0,T], and

y(τ) = z(0) +
∫ τ

0
h(u) du for all τ ∈ [0,T].

We adopt the convention that Λ0 = Λ. Observe that Fix(Λ) := {z ∈ KV : z ∈ Λ(z)} = S[0,T].
The following lemma of Faure and Roth (2010) says that if z is almost a fixed point of Λγ

for some small enough γ, then it is almost a solution of ẋ ∈ V(x).

Lemma 5.3. Let α > 0. There exist β > 0 and γ0 > 0 such that for any γ < γ0

d[0,T](z,Λγ(z)) < β⇒ d[0,T](z,S[0,T]) < α

for all z ∈ KV.

Proof of Proposition 5.2. Let {yε}be a (δ,U)-perturbed solution of the differential inclusion
(DI). Fix T > 0 and α > 0. For 0 ≤ t ≤ T, set

vε(t) := ẏε(t) −Uε(t) ∈ ṼδT(ε)(yε(t)) and
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zε(t) := yε(0) +
∫ t

0
vε(s) ds.

Then

(25) yε(t) − yε(0) = zε(t) − yε(0) +
∫ t

0
Uε(s) ds.

Thus ∆(ε,T) := d[0,T]
(
zε,yε

)
= sup0≤s≤T

∥∥∥∫ s
0 Uε(u) du

∥∥∥, and in addition, the definitions of vε
and of Λγ imply that

zε ∈ Λ∆(ε,T)+δT(ε)(zε).

By Lemma 5.3, there exists a γ0 such that for all ε > 0,

∆(ε,T) + δT(ε) < γ0 ⇒ d[0,T](zε,S[0,T]) < α
2 .

Furthermore, equality (25) implies that

d[0,T](yε,S[0,T]) ≤ d[0,T](zε,S[0,T]) + ∆(ε,T).

We therefore have

P
(
d[0,T](yε,S[0,T]) > α

)
≤ P

(
d[0,T](zε,S[0,T]) + ∆(ε,T) > α

)
≤ P

Ä
d[0,T](zε,S[0,T]) > α

2

ä
+ P

Ä
∆(ε,T) > α

2

ä
≤ P

Ä
∆(ε,T) > γ0

2

ä
+ P

Ä
δT(ε) > γ0

2

ä
+ P

Ä
∆(ε,T) > α

2

ä
.

We conclude the proof by taking the limit in ε and using hypotheses (ii) and (v) on yε. �

The last step in the proof of Theorem 3.1 is to show that the family of interpolated
processes {X̄ε

}ε>0 induced by a family of GSAPs is a (δ,U)-perturbed solution of the
differential inclusion (DI), where

δT(ε) := inf{δ : Vε(x) ⊂ Ṽδ(x) ∀x ∈ X} + εmax
k≤[ T

ε ]

(∥∥Uε
k+1
∥∥ + ‖V‖ + 1

)
,

and where Uε is the piecewise constant process induced by the sequence of random
variables Uε from Definition 2.2:

Uε(t) = Uε
`(t)+1 for t ≥ 0, where `(t) =

ï t
ε

ò
.
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To do this, we must verify the five conditions of Definition 5.1. Conditions (i), (iv) and
(v) are direct consequences of the definitions of X̄ε and Uε, so we need only consider
conditions (ii) and (iii).

To show that δT(ε) satisfies condition (ii), fix α > 0. Then for ε small enough we have

P (δT(ε) > α) ≤ P
Ç
εmax

k≤`(T)
{
∥∥Uε

k
∥∥} > α

2

å
≤ P

Ñ
2εmax

k≤`(T)

∥∥∥∥∥∥
k−1∑
i=0

Uε
i+1

∥∥∥∥∥∥ > α
2

é
.

Condition (ii) of Definition 5.1 then follows from condition (iv) of Definition 2.2.
To establish condition (ii) of Definition 5.1, fix T > 0. By the definition of X̄ε and by

assumption (ii) of Definition 2.2, we have for any 0 ≤ t ≤ T that

(26) X̄ε(t) ∈ Xε
`(t) + (t − ε`(t))

Ä
Uε(t) + Vε(Xε

`(t))
ä
.

By assumption (iii) of Definition 2.2, the last inclusion implies that for ε > 0 small enough,

∥∥∥X̄ε(t) − Xε
`(t)

∥∥∥ ≤ εmax
k≤[ T

ε ]
(
∥∥Uε

k+1
∥∥ + ‖V‖ + 1),

and thus, using this assumption once more, that

(27) Vε(Xε
`(t)) ⊂ ṼδT(ε)(X̄ε(t)).

Condition (iii) of Definition 5.1 follows from expressions (26) and (27). This completes the
proof of Theorem 3.1.

5.4 Proof of Theorem 3.2

Denote by {Xε
k}k≥1 the Markov chain associated with the process Yε as defined in Remark

2.8. The continuous time affine interpolated process Ȳε(·) induced by Yε can be defined as

(28) Ȳε(t) = Xε
κ(t) + (t − Tκ(t))

Xε
κ(t)+1 − Xε

κ(t)

τκ(t)+1
.

Fix T > 0. By assumption (ii) on the measure µεx, there is a constant M > 0 such that

(29)
∥∥Xε

n+1 − Xε
n
∥∥ ≤Mε a.s.,
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which implies that

(30) sup
0≤t≤T

∥∥∥Yε(t) − Ȳε(t)
∥∥∥ ≤Mε a.s..

For each n ∈N, define Uε
n+1 by

Uε
n+1 =

1
τn+1

(Yε(Tn+1) − Yε(Tn)) − vε(Yε(Tn))

=
1
τn+1

(
Xε

n+1 − Xε
n
)
− vε(Xε

n),

where vε is the vector field introduced in assumption (iii) of Definition 2.7. Let Uε(t) be
the piecewise constant process induced by the sequence of random variables {Uε

n}:

Uε(t) = Uε
κ(t)+1 for t ≥ 0.

We claim that {Ȳε
} is a (δ,U)-perturbed solution of the differential inclusion (DI) for

δT(ε) := inf{δ : vε(x) ∈ Ṽδ(x) ∀x ∈ X} + Mε.

If this claim is true, then the theorem follows from Proposition 5.2 and inequality (30).
To prove the claim, we check the five conditions of Definition 5.1. Conditions (i), (ii)

and (iv) are direct consequences of the definition of {X̄ε
}. Moreover, by differentiating (28)

and using the definition of Uε
n, we have almost surely for almost all t ≥ 0 that

d
dtȲ

ε(t) =
1

τκ(t)+1
(Xε

κ(t)+1 − Xε
κ(t))

= Uε(t) + vε(Xε
κ(t))

∈ Uε(t) + Ṽγ(Xε
κ(t))

⊂ Uε(t) + ṼδT(ε)(Ȳε(t)).

where γ = inf{γ : vε(x) ∈ Ṽγ(x) for all x ∈ X}; the second step is a consequence of assump-
tion (iii) of Definition 2.7, and the last inclusion is a consequence of (29) and the definition
of δT(ε). This establishes condition (iii). Finally, condition (v) is a consequence of the
following lemma.

Lemma 5.4. Under the hypotheses of Theorem 3.2, we have

lim
ε→0
P

(
sup
0≤t≤T

∥∥∥∥∥
∫ t

0
Uε(s) ds

∥∥∥∥∥ ≥ α
∣∣∣∣Xε

0 = x
)

= 0,
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uniformly in x ∈ X.

Proof of Lemma 5.4. Note first that for all t ≤ T,

∥∥∥∥∥
∫ t

0
Uε(s)ds

∥∥∥∥∥ =

∥∥∥∥∥∥
κ(t)∑
k=0
τk+1Uε

k+1 − (Tκ(t)+1 − t)Uε
κ(t)+1

∥∥∥∥∥∥
=

∥∥∥∥∥∥Xε
κ(t)+1 − Xε

0 −

κ(t)∑
k=0
τk+1vε(Xε

k) + (Tκ(t)+1 − t)vε(Xκ(t)) −
Tκ(t)+1 − t
τκ(t)+1

(Xε
κ(t)+1 − Xε

κ(t))

∥∥∥∥∥∥
=

∥∥∥∥∥Yε(t) − Xε
0 −

∫ t

0
vε(Yε(s)) ds +

t − Tκ(t)+1

τκ(t)+1
(Xε

κ(t)+1 − Xε
κ(t))

∥∥∥∥∥
≤

∥∥∥∥∥Yε(t) − Xε
0 −

∫ t

0
vε(Yε(s)) ds

∥∥∥∥∥ + εM.

It remains to estimate the probability that the right hand side of the last inequality is
small. We proceed as in the proof of Proposition 4.6 in Benaı̈m (1999). Fix θ ∈ Rn, x ∈ X
and T > 0. Let f : X→ R be the map defined by f (y) = exp(〈θ, y − x〉). By standard results
(see Lemma 4.3.2 of Ethier and Kurtz (1986)),

f (Yε(t)) exp
Ç
−

∫ t

0

Lε f (Yε(s))
f (Yε(s))

ds
å

is a martingale for the natural filtration. Moreover, if we set g(u) = eu
− u − 1, then it

follows from the definition of Lε that

Lε f (y)
f (y)

= 〈θ, vε(y)〉 +
1
ε

∫
Rn

g(ε〈θ, z〉)µεy(dz).

From this expression we deduce that there exists a constant Γ > 0 such that for all θ ∈ Rn

with ‖θ‖ ≤ 1
ε ,

Lε f (y)
f (y)

− 〈θ, vε(y)〉 ≤ εΓ ‖θ‖2 .

It follows that the process

Zθ(t) = exp
ÇÆ
θ,Yε(t) − x −

∫ t

0
vε(Yε(s))ds

∏
− tεΓ ‖θ‖2

å
is a supermartingale.

Now fix α > 0 small enough. Using Doob’s inequality as in the proof of Proposition

–33–



2.4, we obtain

P

(
sup
0≤t≤T

∥∥∥∥∥Yε(t) − x −
∫ t

0
vε(Yε(s))ds

∥∥∥∥∥ ≥ α
∣∣∣∣ Yε(0) = x

)
< C exp

Ç
−
α2

ε4ΓT

å
for some constant C > 0. This concludes the proof of the lemma. �

5.5 Proof of Proposition 3.4

Let the probability measure µ be given, and let the vanishing sequence {εn}
∞

n=1 and
the sequence of probability measures {ν̃n}

∞

n=1 satisfy (IM1), (IM2) and (IM3). Our aim is
to show that µ is semi-invariant for the set-valued dynamical system Φ. We begin by
introducing a candidate measure ν on C(R+,X) such that µ and ν satisfy the requirements
of Definition 3.3.

As in hypothesis (IM1) we write νn for (A tn)∗ (ν̃n). We first establish

Lemma 5.5. {νn}
∞

n=1 admits a tight subsequence.

Proof. By hypothesis (IM1) there is an increasing sequence {Nk}k≥0 of positive integers
such that

νn
Ä
N

1/k(SΦ)
ä
> 1 − 1

k

for every k ≥ 1 and n ≥ Nk. We now show that the subsequence {νNk}k≥1 is tight, i.e., for all
m ≥ 1, there exists a compact subset Km of C(R+,X) such that νNk(Km) > 1 − 1

m for all k ≥ 1.
Let K be the subset of C(R+,X) defined by

K := SΦ ∪

Ñ⋃
k≥1

Ä
N

1/k(SΦ) ∩AεNk (XN)
äé

.

One can prove that K is a compact subset of C(R+,X) by showing that every sequence in
K has a convergent subsequence.

Now fix m ≥ 1, and let Km be the compact subset of C(R+,X) defined by

(31) Km :=
m−1⋃
k=1

AεNk (XN) ∪ K.

For all k ≤ m, the definition of νNk implies directly that νNk(Km) = 1. Moreover, for all k > m
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we have that

νNk(Km) ≥ νNk

Ä
N

1/k(SΦ) ∩AεNk (XN)
ä

(32)

= νNk

Ä
N

1/k(SΦ)
ä

> 1 − 1
k ≥ 1 − 1

m .

This proves that {νNk}k≥1 is tight. �

Lemma 5.5 implies that the sequence {νn} admits a weak limit point ν. Without loss of
generality we henceforth write ν = limn→∞ νn.

We now verify conditions (i), (ii), and (iii) of Definition 3.3. By construction, we have
that π0 ◦Aεn = π̃0 for all n ≥ 0, which implies that π∗0(νn) = π̃∗0(ν̃n). Since π0 is continuous,
we conclude from hypothesis (IM3) that π∗0(ν) = µ. This is condition (iii). Moreover,
hypothesis (IM1) implies that

ν
Ä
N

1/k(SΦ)
ä

= 1

for all k ≥ 1. By taking the limit as k goes to infinity, we conclude that support(ν) ⊂ SΦ.
This is condition (i).

To complete the proof of the proposition, we show that ν is invariant under the shift
operator Θ, which is condition (ii) of Definition 3.3. Let f : SΦ → R be a continuous
function and let T ≥ 0; by equation (7), it is sufficient to prove that

(33)
∫

SΦ

f (z) dν(z) =
∫

SΦ

f (ΘT(z)) dν(z).

Since SΦ is closed, the Tietze extension theorem implies that f can be extended to a
continuous function defined on all of C(R+,X) with

∥∥∥ f
∥∥∥
∞

= supz∈C(R+,X)

∣∣∣ f (z)
∣∣∣ < ∞. We

write

ξn =
∫

C(R+,X)
f (z) dνn(z) and ξT

n =
∫

C(R+,X)
f ◦ΘT(z) dνn(z),

so that the two sides of equation (33) can be expressed as

ξ := lim
n→∞

ξn and ξT := lim
n→∞

ξT
n .

The definition of A t implies that Θt
◦ A t = A t

◦ Θ̃ for all t > 0. Thus if βn = T − [ T
εn

]εn,
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then

ΘT
◦Aεn = Θβn ◦ (Θεn)[ T

εn ]
◦Aεn

= Θβn ◦Aεn ◦ Θ̃[ T
εn ].

This observation and the Θ̃-invariance of νn (from hypothesis (IM2)) imply that

ξT
n =

∫
C(R+,X)

f ◦ΘT(z) d(Aεn)∗(ν̃n)(z)

=
∫

XN
f ◦ΘT

◦Aεn(x) dν̃n(x)

=
∫

XN
f ◦Θβn ◦Aεn(x) dν̃n(x)

=
∫

C(R+,X)
f ◦Θβn(z) d(Aεn)∗(ν̃n)(z)

=
∫

C(R+,X)
f ◦Θβn(z) dνn(z)

We now show that
∣∣∣ξn − ξT

n

∣∣∣ converges to zero. Fix m > 0, and let Km be the compact
subset of C(R+,X) defined in (31). Since Θ : R+ × C(R+,X)→ C(R+,X) is continuous, one
can prove that the set

K∗ :=
⋃
n≥1

Θβn(Km) ∪ Km

is a compact subset of C(R+,X) by showing that every sequence in K has a convergent
subsequence. Since Θ : [0, 1] × Km → C(R+,X) is uniformly continuous with Θ0(·) the
identity function on Km, βn vanishes, and f is uniformly continuous on K∗, there exists an
N0 ∈N large enough that

∣∣∣ f ◦Θβn(z) − f (z)
∣∣∣ < 1

m

for all n ≥ N0 and all z ∈ Km. Using this fact and inequality (32), we see that

∣∣∣ξn − ξ
T
n

∣∣∣ ≤ ∫
Km

∣∣∣ f ◦Θβn(z) − f (z)
∣∣∣dνn(z) +

∫
Kc

m

∣∣∣ f ◦Θβn(z) − f (z)
∣∣∣dνn(z)

≤
1
m + 2

∥∥∥ f
∥∥∥
∞

1
m

Taking the limit as m grows large yields equation (33). This completes the proof of the
theorem.
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5.6 Proof of Theorem 3.5

For each ε > 0, let µε be an invariant probability measure of the Markov chain Xε, and
let µ be a weak limit point of {µε}ε>0. Then there is a vanishing sequence {αk}

∞

k=1 of positive
real numbers such that µαk converges to µ ∈ P(X). In addition, let νk be the measure on the
path space XN induced by the Markov chain {Xαk} when it is run from initial distribution
µαk : that is, νk(A) := Pµαk (Xαk ∈ A) for each Borel set A ⊂ XN.

To show that µ is semi-invariant for the set-valued dynamical system Φ, we apply
Proposition 3.4 to the sequences {αk}

∞

k=1 and {νk}
∞

k=1. Because µαk is an invariant probability
measure for {Xαk}, the measure νk is Θ̃-invariant, establishing condition (IM2). Moreover,
π̃∗0(νk) = µαk by construction, and so {π̃∗0(νk)}∞k=1 converges to µ, establishing condition
(IM3).

It remains to verify condition (IM1). Fix δ > 0, and then choose T > 0 and γ > 0 such
that

∑
∞

i=[T]
1

2i+1 <
1
2δ and γ

∑[T]
i=0

1
2i+1 <

1
2δ. These choices imply that

{
z ∈ C(R+,X) : inf

y∈SΦ

sup
0≤s≤T

∥∥∥z(s) − y(s)
∥∥∥ ≤ γ} ⊂ Nδ(SΦ).

It follows that

ν̃k(Nδ(SΦ)) = νk
Ä
(Aαk)−1(Nδ(SΦ))

ä
= Pµαk

Ä
Xαk ∈ (Aαk)−1(Nδ(SΦ))

ä
=
∫

X
Px
Ä
Xαk ∈ (Aαk)−1(Nδ(SΦ))

ä
dµαk(x)

≥

∫
X
Px

(
inf
z∈SΦ

sup
0≤s≤T

‖X̄αk(s) − z(s)‖ ≤ γ
)

dµαk(x).

This inequality and Theorem 3.1 imply condition (IM1), completing the proof of the
theorem.

5.7 Proof of Theorem 3.8

In the classical framework of a semi-flow on a separable metric space, the Poincaré
recurrence theorem is stated as follows.

Theorem 5.6 (Poincaré). Let (X, d) be a separable metric space and θ = {θt}t∈R a semi-flow on
X. Define the ω-limit set of x ∈ X by ωθ(x) =

⋂
t>0 cl(θ[t,∞)(x)), the set of recurrent points by

Rω
θ = {x ∈ X : x ∈ ωθ(x)}, and the Birkhoff center of θ and denoted BC(θ) = cl(Rω

θ ). If µ is an
invariant measure for θ, then µ(BC(θ)) = 1.
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See Mañé (1987) for further discussion.
We now show that Theorem 3.8 is a corollary of Poincaré’s recurrence theorem. Let

µ be a semi-invariant measure for Φ and ν be an invariant measure for Θ|SΦ
(henceforth

written as Θ) such that π∗0(ν) = µ. To begin, notice that

π0(BC(Θ)) ⊂ BC(Φ).

Indeed, let z be a recurrent point of Θ. Then there exists a sequence of positive real
numbers tn approaching infinity such that limn→∞Θtn(z) = z. In particular, π0(z) = z(0) =

limn→∞ z(tn), which means that z(0) ∈ L(z(0)). Since π0 is continuous, we obtain the
inclusion. The inclusion implies that

µ(BC(Φ)) ≥ µ(π0(BC(Θ)))

= ν(π−1
0 ◦ π0(BC(Θ)))

≥ ν(BC(Θ)),

and the last quantity is equal to 1 by Theorem 5.6 applied to semi-flow Θ. �

5.8 Proof of Lemma 4.3

Observe that

(34) E
Å∥∥∥UN

k+1

∥∥∥2
ã

= N2
∑
i∈S
E

á∥∥∥∥∥∥∥∥∥
R

N,Xk
i∑
r=0

ξN,Xk
i,r − E

Ü
R

N,XN
k

i∑
r=0

ξ
N,XN

k
i,r

ê∥∥∥∥∥∥∥∥∥
2ë

.

We therefore evaluate the conditional expectation

(35) E

á∥∥∥∥∥∥∥∥∥
R

N,XN
k

i∑
r=0

ξ
N,XN

k
i,r − E

Ü
R

N,XN
k

i∑
r=0

ξ
N,XN

k
i,r

ê∥∥∥∥∥∥∥∥∥
2 ∣∣∣∣∣∣XN

k = x

ë
= E

Ü∥∥∥∥∥∥∥
RN,x

i∑
r=0
ξN,x

i,r − E
Ä
RN,x

i

ä
E
Ä
ξN,x

i,r

ä∥∥∥∥∥∥∥2
ê
.

To do so, we compute the conditional expectation of the right hand side of (34) given that
RN,x

i = R, taking advantage of the fact that
∥∥∥ξN,x

i,r

∥∥∥ ≤ √
2

N :

E

Ü∥∥∥∥∥∥∥
RN,x

i∑
r=0
ξN,x

i,r − E
Ä
RN,x

i

ä
E
Ä
ξN,x

i,r

ä∥∥∥∥∥∥∥2 ∣∣∣∣∣∣RN,x
i = R

ê
= E

Ñ∥∥∥∥∥∥ R∑
r=0
ξN,x

i,r − E
Ä
RN,x

i

ä
E
Ä
ξN,x

i,r

ä∥∥∥∥∥∥2é
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≤ E

Ñ( R∑
r=0

∥∥∥ξN,x
i,r

∥∥∥ + E
Ä
RN,x

i

ä ∥∥∥E ÄξN,x
i,r

ä∥∥∥)2é
≤

2
N2

Ä
(R + ERN,x

i )2
ä
.

Since ERN,x
i = xi ≤ 1 and E

Ä
RN,x

i

ä2
=
Ä
ERN,x

i

ä2
+ Var

Ä
RN,x

i

ä
= x2

i + N−1
N xi ≤ 2, we find that

E

á∥∥∥∥∥∥∥∥∥
R

N,XN
k

i∑
r=0

ξ
N,XN

k
i,r − E

Ü
R

N,XN
k

i∑
r=0

ξ
N,XN

k
i,r

ê∥∥∥∥∥∥∥∥∥
2ë
≤

2
N2

Nxi∑
R=0
P
Ä
RN,x

i = R
ä Ä

(R + ERN,x
i )2

ä
(36)

≤
2

N2

(
E
Ä
RN,x

i

ä2
+ 2
Ä
ERN,x

i

ä2
+
Ä
ERN,x

i

ä2)
=

10
N2 .

We therefore conclude from (34), (35), and (36) that E
Å∥∥∥UN

k+1

∥∥∥2
ã
≤ 10 |S|. �
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M., Ledoux, M., and Yor, M., editors, Séminaire de Probabilités XXXIII, volume 1709 of
Lecture Notes in Mathematics, pages 1–68. Springer, Berlin.

Benaı̈m, M. and Hirsch, M. W. (1996). Asymptotic pseudotrajectories and chain recurrent
flows, with applications. Journal of Dynamics and Differential Equations, 8:141–176.

Benaı̈m, M. and Hirsch, M. W. (1999). Mixed equilibria and dynamical systems arising
from fictitious play in perturbed games. Games and Economic Behavior, 29:36–72.

Benaı̈m, M., Hofbauer, J., and Sorin, S. (2005). Stochastic approximations and differential
inclusions. SIAM Journal on Control and Optimization, 44:328–348.

–39–



Benaı̈m, M. and Weibull, J. W. (2003). Deterministic approximation of stochastic evolution
in games. Econometrica, 71:873–903.

Benveniste, A., Métivier, M., and Priouret, P. (1990). Adaptive Algorithms and Stochastic
Approximations. Springer, Berlin.

Brown, G. W. (1949). Some notes on computation of games solutions. Report P-78, The
Rand Corporation.

Brown, G. W. (1951). Iterative solutions of games by fictitious play. In Koopmans, T. C.
et al., editors, Activity Analysis of Production and Allocation, pages 374–376. Wiley, New
York.

Duflo, M. (1996). Algorithmes Stochastiques. Springer, New York.

Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence.
Wiley, New York.

Faure, M. and Roth, G. (2010). Stochastic approximations of set-valued dynamical systems:
Convergence with positive probability to an attractor. Mathematics of Operations Research,
35:624–640.

Faure, M. and Roth, G. (2011). Ergodic properties of weak asymptotic pseudotrajectories
for set-valued dynamical systems. arXiv:1101.2154v3.

Fudenberg, D. and Kreps, D. M. (1993). Learning mixed equilibria. Games and Economic
Behavior, 5:320–367.

Fudenberg, D. and Levine, D. K. (1998). The Theory of Learning in Games. MIT Press,
Cambridge.

Gast, N. and Gaujal, B. (2010). Mean-field limit of non-smooth systems and differential
inclusions. ACM SIGMETRICS Performance Evaluation Review, 38:30–32.

Gilboa, I. and Matsui, A. (1991). Social stability and equilibrium. Econometrica, 59:859–867.

Gorodeisky, Z. (2008). Stochastic approximation of discontinuous dynamics. Unpublished
manuscript, Hebrew University.

Gorodeisky, Z. (2009). Deterministic approximation of best-response dynamics for the
Matching Pennies game. Games and Economic Behavior, 66:191–201.

Hofbauer, J. (1995). Stability for the best response dynamics. Unpublished manuscript,
University of Vienna.

Hofbauer, J. (2000). From Nash and Brown to Maynard Smith: Equilibria, dynamics, and
ESS. Selection, 1:81–88.

–40–



Hofbauer, J. and Sandholm, W. H. (2002). On the global convergence of stochastic fictitious
play. Econometrica, 70:2265–2294.

Hofbauer, J. and Sandholm, W. H. (2007). Evolution in games with randomly disturbed
payoffs. Journal of Economic Theory, 132:47–69.

Hofbauer, J. and Sandholm, W. H. (2009). Stable games and their dynamics. Journal of
Economic Theory, 144:1665–1693.

Hofbauer, J. and Sorin, S. (2006). Best response dynamics for continuous zero-sum games.
Discrete and Continuous Dynamical Systems B, 6:215–224.

Kurtz, T. G. (1970). Solutions of ordinary differential equations as limits of pure jump
Markov processes. Journal of Applied Probability, 7:49–58.

Kushner, H. J. and Yin, G. G. (1997). Stochastic Approximation Algorithms and Applications.
Springer, New York.

Lahkar, R. and Sandholm, W. H. (2008). The projection dynamic and the geometry of
population games. Games and Economic Behavior, 64:565–590.

Ljung, L. (1977). Analysis of recursive stochastic algorithms. IEEE Transactions on Automatic
Control, 22:551–575.
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