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Abstract 
 

 
 We consider a simple model of stochastic evolution in 
population games.  In our model, each agent occasionally 
receives opportunities to update his choice of strategy.  When 
such an opportunity arises, the agent selects a strategy that is 
currently optimal, but only after his payoffs have been 
randomly perturbed.  We prove that the resulting 
evolutionary process converges to approximate Nash 
equilibrium in both the medium run and the long run in three 
general classes of population games:  stable games, potential 
games, and supermodular games.  We conclude by 
contrasting the evolutionary process studied here with 
stochastic fictitious play.  Journal of Economic Literature 
Classification Numbers:  C72, C73. 
 Keywords:  evolutionary game theory, convergence to 
approximate Nash equilibrium, equilibrium selection. 
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1.  Introduction 
 
  Nash equilibrium is the cornerstone of noncooperative game theory.  Nevertheless, 
the traditional theoretical justifications for predicting Nash equilibrium play, which are 
based on assumptions about the players’ rationality and equilibrium knowledge, are 
not always convincing, since in many applications these assumptions seem 
unreasonably demanding.  Because the strength of the equilibrium knowledge 
assumption increases as the number of players grows, the traditional justification of 
equilibrium behavior seems particularly questionable when the number of players is 
large. 
  Fortunately, the existence of large numbers of players enables us to consider 
alternative approaches to justifying the Nash prediction, in particular if the game is 
played repeatedly over time.  In this situation, it is natural to introduce a model in 
which players only occasionally consider revising their behavior, utilizing simple 
myopic decision rules when revision opportunities arise.1  With such a model in hand, 
one can attempt to justify the Nash prediction by showing that the resulting 
evolutionary process leads to equilibrium play. 
  In this paper, we study evolution in population games:  games played by large 
numbers of agents whose payoff functions are continuously differentiable in the 
proportions of agents choosing each strategy.  While this class of games includes the 
standard model of random matching in normal form games as a special case, it also 
allows one to capture nonlinearities in payoffs that arise in many applications. 
  Our model of evolution is quite simple.  Each player occasionally receives 
opportunities to revise his choice of strategy.  When such an opportunity arises, the 
player chooses a best response to the current population state.  However, this choice is 
made only after the player’s payoffs are randomly perturbed, with these perturbations 
occurring independently at each revision opportunity.  These payoff perturbations are 
analogous to those introduced by Harsanyi [19] in his model of purification of mixed 
equilibrium:  in both his model and in ours, players have a unique best response after 
almost every realization of payoffs. 
  Our main goal in this paper is to determine conditions under which this 
evolutionary process generates approximate Nash equilibrium play.  We consider two 
notions of convergence:  convergence in the medium run, which concerns the behavior of 
the population over long but finite time spans, and convergence in the long run, which 
                                                
1   While in some contexts myopia is untenable hypothesis, here inertia in opponents’ behavior and the 
anonymity of individual agents render this assumption quite reasonable. 
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concerns its behavior over the infinite time horizon.  We establish that evolution leads 
to equilibrium behavior under both notions of convergence for three general classes of 
games:  stable games (Sandholm [37]), potential games, and supermodular games.  Our 
convergence results do not depend on the distributions of the payoff perturbations, and, 
unlike many convergence results in the evolutionary literature, require no restrictions 
on the number of strategies in the underlying game. 
  To begin our analysis, we associate with our stochastic evolutionary process an 
ordinary differential equation that describes the process’ expected motion.  This 
equation, the perturbed best response dynamic, is a smoothly perturbed version of the best 
response dynamic of Gilboa and Matsui [18]; its rest points are approximate Nash 
equilibria of the underlying game.  Building on the work of Hofbauer [22], Hofbauer 
and Hopkins [24], and Hofbauer and Sandholm [25] for random matching settings, we 
establish stability properties for the perturbed best response dynamic in the three 
classes of population games noted above.  We then establish convergence results for the 
original stochastic process by relying on a variety of approximation theorems:  our 
medium run convergence theorems use results on the convergence of sequences of 
Markov processes (Kurtz [30]), while our long run convergence theorems utilize 
techniques from stochastic approximation theory (Benaïm [2], Benaïm and Hirsch [6]). 
  A number of authors have obtained convergence results for unperturbed best 
response dynamics in normal form games.  In stochastic, finite player frameworks, 
Monderer and Shapley [32] prove convergence to Nash equilibrium in potential games, 
while Kandori and Rob [28] establish convergence to equilibrium in supermodular 
games.  In the deterministic, continuum of player framework of Gilboa and Matsui [18], 
Hofbauer [21, 22] proves convergence to equilibrium in zero sum games, games with an 
interior ESS, and potential games.   
  There are a variety of reasons to focus instead on perturbed best response dynamics.  
For one, the unperturbed dynamics require an extreme sensitivity of players’ choices to 
the exact value of the population state.  This sensitivity manifests itself in the fact that 
Gilboa and Matsui’s [18] dynamic defines not a continuous differential equation, but 
rather a discontinuous differential inclusion.  In contrast, perturbed best responses 
change smoothly in the population state, and so generate well-behaved deterministic 
dynamics.  Moreover, unlike its counterpart for the unperturbed dynamic, the 
stochastic process underlying the perturbed best response dynamic is ergodic, with 
long run behavior described by a unique stationary distribution.  Ergodicity simplifies 
our long run analysis, and also introduces the possibility of establishing strong 
equilibrium selection results, in the spirit of those proved by Foster and Young [16], 
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Young [43], Kandori, Mailath, and Rob [27], Kandori and Rob [28], Blume [9, 10], and 
especially Benaïm and Weibull [7]. 
  In an earlier paper (Hofbauer and Sandholm [25]), we obtained convergence results 
for the learning process known as stochastic fictitious play (Fudenberg and Kreps [17]).  
In stochastic fictitious play, a group of n players repeatedly play an n player normal 
form game.  During each discrete time period, each player plays a best response to the 
time average of his opponents’ play, but only after his payoffs have been struck by 
random perturbations.  Like those of the evolutionary process studied here, the limiting 
properties of stochastic fictitious play can be characterized in terms of the perturbed 
best response dynamic.  But there are other respects in which the two processes are 
fundamentally different:  the two processes are specified in terms of distinct types of 
state variable, and different limiting operations are employed in order to obtain 
convergence results.  Furthermore, while our work on stochastic fictitious play 
concerned learning in normal form games, the present paper establishes convergence 
results in the more general context of population games.  Inter alia, this broader 
framework enables us to establish global convergence to a unique equilibrium in all 
stable games, a class of games containing many examples of economic interest that fall 
outside the random matching framework.  We discuss all of these issues in considerable 
detail in the final section of the paper. 
  Section 2 introduces our strategic framework and our model of stochastic evolution.  
Sections 3 analyzes the perturbed best response dynamics in stable games, potential 
games, and supermodular games.  Section 4 contains our results on convergence in the 
medium run and convergence in the long run.  Section 5 concludes by contrasting 
stochastic evolution with stochastic fictitious play.  All proofs are relegated to the 
Appendix. 
 

2.  The Model 
 
2.1  Population Games 
 
 We begin by defining population games with continuous player sets.  Let P = {1, ... , 

  p } be a set of   p  populations, where   p  ≥ 1.  Population p is of mass   mp , and the total 
mass of all populations is m = 

    
m

p

p!P
" ; for convenience, we assume that each   mp  is an 

integer. 
  Members of population p choose strategies from the set   Sp  = {1, ... ,   np }, so the total 
number of pure strategies in all populations is n = 

    
n

p

p!P
" .  We let   !p  = {  xp  ∈     R+

n p

:  
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xi

p

i!S p"  = 1} denote the set of probability distributions over strategies in   Sp .  The set of 
strategy distributions for population p is denoted   X p  =   mp

  !
p  = {  xp  ∈     R+

n p

:  
  

xi

p

i!S p"  = 

  m
p }, while X = {x = (    x1 , ... ,   x

p ) ∈     R+

n :    xp  ∈   X p } is the set of overall strategy distributions.  
While the population's aggregate behavior is always described by a point in X, it is 
useful to define payoffs on the set   X  = {x ∈     R+

n :    mp  – ε ≤ 
  

xi

p

i!  ≤   mp  + ε  ∀ p ∈ P}, 
where ε is a positive constant.  This set contains the strategy distributions that arise if 
the populations' masses vary slightly.  Defining payoffs on this set is useful because it 
enables us to speak directly about a player's marginal impact on his opponents' payoffs, 
but is not essential to our analysis. 
 The payoff function for strategy i ∈   Sp  is denoted   Fi

p :   X  → R, and is assumed to be 
continuously differentiable.  Note that the payoffs to a strategy in population p can 
depend on the strategy distribution within population p itself.  We let   F

p :   X  →     R
n p

 
refer to the vector of payoff functions for strategies belonging to population p, and we 
identify a population game with its payoff vector field F:   X  →     R

n . 
  We now introduce some examples of population games that we will revisit 
throughout the paper.   
  Random matching in normal form games.  Suppose that a single unit mass population of 
players is randomly matched to play a symmetric normal form game with payoff matrix 
A ∈     Rn!n , where Aij is the payoff a player obtains if he plays i and his opponent plays j.  
Then the payoffs for the corresponding population game are F(x) = Ax. 
  Alternatively, suppose that members of two unit mass populations are paired to 
play a normal form game with bimatrix (A, B) ∈       Rn

1
!n

2

 ×       Rn
1
!n

2

.  If two matched players 
play strategies i ∈     S1 and j ∈     S2 , they obtain payoffs of Aij and Bij, respectively.  The 
corresponding population game has payoffs 
 

    F(    x1 ,     x2 ) = 
    

0 A

! B 0

" 

# 

$ % 

& 

' 
x

1

x
2

" 

# 

$ 
% 

& 

' . 

 
  Because of the linearity of the expectation operator, random matching yields 
population games with linear or multilinear payoffs, and in which a player's payoffs do 
not depend on the behavior of other members of his population (when   p  ≥ 2).  
Population games that are not based on random matching need not possess either of 
these properties.  Our next class of examples provides a case in point. 
 Congestion games:  Congestion games are a natural tool for modeling externalities, 
such as those arising in traffic networks (see Sandholm [35, 38]).  In a congestion game, 
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each strategy i ∈   Sp  requires the use of some finite collection of facilities   ! i

p  !  Φ.  In 
traffic network models, each facility represents a link in the network, and each strategy 
corresponds to a path (i.e., a collection of links) connecting an origin/destination pair.  
In general, the set of facilities is simply an arbitrary finite set; in particular, there is no 
need to assume that a network structure on Φ exists. 
  Each facility φ has a cost function cφ: R+ → R that describes the penalty (delay) from 
using the facility.  The cost of facility φ is a function of its utilization uφ, the total mass of 
the players who use the facility: 
 
   

    
u! (x)  =

      

xi

p

i!" p (# )

$
p!P

$ ,  where   !
p (φ) = {i ∈   Sp :  φ ∈   ! i

p }. 

 
The congestion game is defined by the payoff functions 
 
     Fi

p (x) = –
    

c! (u! (x))
! "#

i
p

$ . 

 
In settings like traffic networks involving negative externalities, the cost functions cφ are 
increasing; positive externalities lead to decreasing cost functions.  Payoffs in 
congestion games depend on own-population behavior, and need only be linear if the 
underlying cost functions are linear themselves. 
 
2.2  Evolution with Randomly Disturbed Payoffs 
 
   We now introduce our model of evolution with randomly disturbed payoffs.  
Models of this sort were first considered by Blume [9, 10] and Young [44] in a random 
matching setting under a specific parametric assumption on the disturbance 
distributions.  Here we consider evolution in general population games, and place 
virtually no restrictions on the form that payoff disturbances take.2   
  Members of   p  finite populations of sizes (N    m

1, … , N  m
p ) recurrently play the 

population game F.  Players occasionally receive opportunities to switch strategies, with 
each player’s opportunities arriving via independent, rate 1 Poisson processes.  When a 
player from population p receives a revision opportunity, he evaluates the current 
expected payoff to each of his pure strategies, but his assessments are subject to random 
shocks that follow a given probability distribution   !

p  on     R
n p

.  The player selects the 
strategy that he evaluates as best. 

                                                
2   Blume and Young restrict attention to evolution under the logit choice rule, which we describe below.  
These authors also analyze models of local interaction, which we do not consider here. 
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  Although payoff and choice shocks drawn at random in each period are now 
common features of evolutionary models, it is worthwhile to provide a direct 
justification for their use.  Following Harsanyi [19], we can understand the payoff 
shocks as representing small, random influences on behavior; in this case, we consider 
distributions   !

p  that place nearly all of their mass in a neighborhood of the origin.  
Large payoff shocks may be a more natural assumption, for example, in cases where 
preferences for variety are at least as strong as the preferences described by the payoffs 
of the underlying game.  Of course, one can also take a middle course, under which 
payoff shocks are typically quite small but occasionally rather large, so that the more 
significant shocks only occur infrequently and irregularly. 
 Aggregate behavior in this model is described by a continuous time Markov chain 
    {Xt

N
}

t!0 , which takes values in the state space     X
N  = {x ∈ X:  Nx ∈     Z

n}.  The initial 
condition 

    
X

0

N  is arbitrary.  Let 
  
!

k
 denote the random time at which the kth revision 

opportunity arises.  For a switch from strategy i ∈   Sp  to strategy j ∈   Sp  to occur during 
this opportunity, the player granted the revision opportunity must be a member of 
population p who is playing strategy i, and the realization of his payoff disturbance 
must render strategy j his best response.  Transitions of 

  
X

t

N  are therefore described by 
 
   

    
P X

! r+1

N
= x + 1

N (ej

p
" ei

p
) X

! r

N
= x( )  =     

1
m xi

p
!

p (" p : argmax
k#S p Fk

p(x) + "k

p
= j)  

 
for i ≠ j, where   ei

p  and 
  
e j

p  are standard basis vectors.  With the remaining probability of 

      
1
m xi

p
!

p (" p : argmax
k#S p Fk

p(x) + "k

p
= i)

i#Sp$p#P
$ ,  no change in the state occurs. 

  To analyze this process, we introduce the notion of a perturbed best response 
function.  To begin, define the choice probability function   Cp :     Rn p

 →   !p  by 
 
(1)        Ci

p
(!

p
)  = 

    
!

p
"

p
: i #arg max

j#Sp $ j

p
+ " j

p( ) . 
 
If a player currently faces a base payoff vector of   !

p , then     Ci

p
(!

p
)  represents the 

probability that the realized payoff perturbation leads him to choose strategy i.  When 
  !

p  places most of its mass near the origin, then   C
p (  ! p ) puts most of its mass on the 

maximizer of   ! p , but places positive mass on all elements of   Sp . 
  Our regularity condition on perturbation distributions is defined in terms of the 
function   Cp .  We call   ! p  an admissible distribution if it admits a strictly positive density 
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on     Rn p

 and is smooth enough that   Cp  is continuously differentiable.  The profile ν = (  ! 1 , 
… ,   ! p ) is admissible if each of its components is admissible.3 
   Now let F be a population game, and let ν be a profile of admissible distributions.  
We define the perturbed best response function      

˜ B 
p : X →   !

p  for the pair (F, ν) by the 
composition     ˜ B 

p  =     Cp
! F

p . 
  With this definition in hand, we can express the transition rule above as follows: 
 
   

    
P X

! r+1

N
= x + 1

N (ej

p
" ei

p
) X

! r

N
= x( )  =     

1
m xi

p
!

p (" p : argmax
k#S p Fk

p(x) + "k

p
= j)  

     = 
    
1
m xi

p
Cj

p
(F

p
(x))  

    = 
    
1
m xi

p ˜ B j
p
(x)  

 
The expected increment in 

  
X

t

N  during a single revision opportunity is therefore 
described by 
 
   

  
E X

! r+1

N ,p
" X

! r

N ,p X
! r

N
= x( )  = 

    

1
N

j!S p

"
i!S p

" (ej

p
# ei

p
) 1

m xi

p ˜ B j
p
(x)  

          = 
    

1
Nm e j

p ˜ B j
p
(x) xi

p

i!Sp

" #
j!S p

" ei

p
xi

p ˜ B j
p
(x)

j!Sp

"
i!S p

"
$ 

% 

& 
' 

( 

)  

          = 
    

1
Nm m

p ˜ B 
p
(x) ! x

p( )  
 
Since each of the Nm players’ revision opportunities arrive according to independent 
rate 1 Poisson processes, the revision opportunities arriving in the society as a whole are 
described by the sum of these processes, which is a Poisson process with rate Nm.  We 
therefore multiply the expression above by Nm to obtain the expected increment in 

  
X

t

N  
per unit of time.  Writing the result as a differential equation, we obtain 
 
(P)        ̇ x 

p  =   mp

    
˜ B 

p (x) –   xp   for all p ∈ P. 
 
We call this equation the perturbed best response dynamic for the pair (F, ν). 
  We call x ∈ X a perturbed equilibrium for (F, ν) if it is a fixed point of (    m1

    
˜ B 

1
(x) , … , 

  m
p 

    
˜ B 

p 
(x)), or, equivalently, if it is a rest point of (P).  We let PE(F, ν) denote the set of 

                                                
3   The assumption that νp has full support on Rn is stronger than necessary.  Once we fix a game F, we 
can compute a finite bound   MF

p  on the difference between the payoffs generated by any pair of strategies 
in Sp at any state in X.  Using this bound, we can construct a smooth distribution     ˆ ! 

p  that generates the 
same choice probabilities as νp at all payoff vectors feasible under F but whose support is contained in a 
compact set (namely, a cube with sides of length 2np

  MF

p ). 
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perturbed equilibria.  One can show that if most of the mass in each distribution   ! p  is 
near the origin, then the perturbed equilibria of (F, ν) approximate Nash equilibria of F.4 
  Our aim in this paper is to relate the behavior of the stochastic process 

  
X

t

N  to 
solutions of the deterministic dynamic (P).  Our analysis proceeds in three steps.  In the 
following section, we investigate the behavior of the dynamic (P) in three classes of 
games.  In Section 4.1, we combine the analysis of equation (P) with results on 
convergence of Markov processes to obtain finite horizon convergence results.  In 
Section 4.2, the deterministic analysis and tools from stochastic approximation theory 
are employed to establish infinite horizon convergence results. 
 

3.  Analysis of the Perturbed Best Response Dynamic 
 
  We now introduce three classes of population games for which the behavior of 
perturbed best response dynamics can be well characterized:  stable games, potential 
games, and supermodular games.  These characterizations generalize results 
established by Hofbauer [22], Hofbauer and Hopkins [24], and Hofbauer and Sandholm 
[25] for random matching games to general population games.  Our results for stable 
games substantially expand the set of games for which the dynamics are known to have 
a globally attracting state. 
  Our results for stable games and potential games rely on a discrete choice theorem 
from Hofbauer and Sandholm [25].  Recall that the choice probability function   Cp  from 
equation (1) is defined in terms of admissible stochastic payoff perturbations of the 
payoffs to each pure strategy.  Theorem 2.1 of Hofbauer and Sandholm [25] shows that 
there is always an alternative representation of   C

p  that relies on a deterministic 
perturbation of the payoffs to each mixed strategy.  
 More specifically, we call the function   V

p : int(  !p ) → R an admissible deterministic 
perturbation if it is differentiably strictly convex and becomes infinitely steep near the 
boundary of   !p .  Then if the function   Cp  is defined via equation (1) for some admissible 
distribution   ! p , there is an admissible deterministic perturbation   V p  such that 
 
(2)     C

p (  ! p ) = 
    
argmax
y

p
!int( "

p
)

y
p
#$

p
% V

p (yp )( ) . 

 
On the other hand, the converse statement is false:  there are choice functions defined 
by admissible deterministic perturbations that admit no stochastic representation. 

                                                
4   See Proposition 3.1 of Hofbauer and Sandholm [25]. 
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  One can interpret the function   V
p  as a "control cost" that is larger for "purer" 

elements of   !p  (van Damme [41, Ch. 4]).  Thus, the representation theorem shows that 
the choice probability functions obtained from additive random utility models can 
always be represented using a framework in which mixed strategies are chosen directly, 
but in which this choice is subject to convex control costs.  Further details on this result 
needed for our analysis are provided in the Appendix. 
  The best known example of a choice probability function is the logit choice function, 
 

    Ci(π) = 

    

exp(!"1
# i)

exp(!"1
# j )

j

$
. 

 
By varying the noise level η from zero to infinity, one obtains behavior that varies from 
pure optimization to uniform randomization.  It is well known that logit choice can be 
derived in terms of both stochastic and deterministic perturbations:  equation (1) yields 
logit choice if the stochastic perturbations are i.i.d. with the extreme value distribution 
exp(–exp(–  !

"1 x – γ)) (where γ !  0.5772 is Euler's constant), while equation (2) yields 
logit choice if   V p  is the entropy function   V p (  y

p ) = 
    
! yj

p
ln yj

p

j" .  The theorem described 

above shows that such a dual representation is possible regardless of the joint 
distribution of the stochastic perturbations. 
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3.1  Stable Games 
 
  Let TX = {z ∈     R

n : 
  

zi

p

i!S p"  = 0 for all p ∈ P} be the set of directions tangent to the set 
of population states X, and for any function f: X → R and direction z ∈ TX, let 
 
    

    

! f

!z
(x)  = 

    
lim
!"0

f (x + !z) # f (x)

!
 

 
denote the derivative of f at point x in direction z.  Following Sandholm [37], we say that 
F is a stable game if it satisfies 
 

(SE)  
    

zi

p !Fi

p

! zi"p" (x)  ≤ 0  for all z ∈ TX and all x ∈ X. 

 
Equivalently, F is stable if it satisfies the negative semidefiniteness condition 
 
    z · DF(x) z ≤ 0 for all x ∈ X and all z ∈ TX. 
 
Condition (SE) is called self-defeating externalities.  It requires that if a small group of 
players switches strategies, then the improvements in payoffs of the strategies they 
switch to are exceeded by the improvement in payoffs of the strategies they abandon.  
  When the population game F is defined via random matching, condition (SE) is 
quite restrictive.  For instance, in the two population random matching framework, it is 
easy to show that F is stable if and only if the underlying normal form game (A, B) is 
equivalent to a zero sum game.  However, if payoffs can depend on own-population 
behavior, then condition (SE) is far less limiting.  Indeed, congestion games with 
increasing facility costs (e.g., traffic network games) are all stable games, as are concave 
potential games, RL stable games (Cressman, Garay, and Hofbauer [14]), and negative 
diagonal dominant games.  For a presentation of all of these examples and further 
discussion of condition (SE), see Sandholm [37]. 
  If F is a stable game, then the set of all Nash equilibria of F is convex (see Hofbauer 
[23]); under a mild additional assumption, the Nash equilibrium of F is unique (see 
Sandholm [37]).  In Theorem 3.1 below, we establish that all perturbed best response 
dynamics for stable games admit a single globally asymptotically stable rest point.   
 The construction we use to prove this result generalizes one introduced by Hofbauer 
[22] in a single population random matching setting.  Consider the function Λ: X → R+ 
defined by 
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    Λ(x) = 
      

m
p

max
yp !int( "p )

y
p # F

p
(x) $V

p
(y

p
)( ) $ 1

mp x
p #F p

(x) $ V
p
( 1

mp x
p
)( )% 

& 

' 

( p!P

) , 

 
where   V p  is the deterministic perturbation associated with the distribution   ! p . 
 
Theorem 3.1:  Suppose F is a stable game and that ν is admissible. Then 
  (i)   The function Λ is a strict Lyapunov function for the dynamic (P):  its value 
decreases strictly along every non-constant solution trajectory. 
  (ii)  (F, ν) admits a unique and globally asymptotically stable perturbed equilibrium, 
which is the lone state at which  Λ(x) = 0. 
 
  Theorem 3.1 shows that if F is a stable game and ν a profile of admissible 
disturbance distributions, then the set of perturbed equilibria PE(F, ν) consists of a 
single state that is globally asymptotically stable under (P).  To establish this, we first 
show that the positive function Λ is a strict Lyapunov function for (P), and that the 
zeros of Λ are the rest points of (P).  We then use the stability of F and the strict 
convexity of   V

p  to prove that (P) admits exactly one rest point.  Together, these 
assertions imply that there is a unique, globally asymptotically stable perturbed 
equilibrium of (F, ν). 
  To understand the Lyapunov function Λ, recall that the payoff vector for population 
p at population state x is     F

p
(x) .  Fix this payoff vector, and suppose that the members of 

population p jointly choose a mixed strategy   y
p  in an attempt to maximize the 

difference between the aggregate payoff   y
p  ·     F

p
(x)  and the control cost     V

p
(y

p
) .  The 

bracketed expression in the definition of Λ is the gap between this maximized difference 
and the current difference, interpreting 

    
1

m p x
p  ∈   !

p  as the population’s current mixed 
strategy.  Theorem 3.1 shows that the weighted sum of these gaps over all populations 
decreases under the dynamic (P).  This sum is zero precisely when all populations 
maximize the difference between aggregate payoffs and control costs; the lone state 
where this occurs is the unique perturbed equilibrium of (F, ν). 
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3.2  Potential Games 
 
 We call the game F a potential game if it satisfies  
 

 (ES)  
    

! Fi

p

!xj

q (x) =
!Fj

q

!xi

p (x)  for all i ∈   Sp , j ∈   Sq , p, q ∈ P, and x ∈ X. 

 
This requirement is stated more concisely as 
 
    DF(x) is symmetric for all x ∈ X. 
 
Condition (ES) is called externality symmetry.  It requires that the effect on the payoffs to 
strategy j ∈   Sq  of introducing new players choosing strategy i ∈   Sp  is always equals the 
effect on the payoffs to strategy i of introducing new players choosing strategy j.  
Random matching games in which all players in a match receive the same payoff are 
potential games.  More interesting examples arise in nonlinear settings:  all congestion 
games are potential games, as are games generated by certain marginal externality 
pricing schemes.  For further details on these examples, see Sandholm [35, 38]. 
  Since the derivative of F is symmetric, every potential game F admits a potential 
function f:   X  → R:  that is, a function that satisfies     !f(x)  = F(x) for all x ∈ X.  Hofbauer 
[22] and Sandholm [35] show that this potential function serves as a Lyapunov function 
for a wide range of unperturbed evolutionary dynamics, and so can be used to establish 
global convergence results.  To obtain a Lyapunov function for the perturbed best 
response dynamics, one need only perturb the potential function by the deterministic 
perturbations   V p .  Define 
 
    Π(x) = f(x) – 

      

m
p
V

p
( 1

mp x
p
)

p!P

" . 

 
Theorem 3.2:  If F is a potential game and ν is admissible, then 
  (i)   Π is an (increasing) strict Lyapunov function for the dynamic (P). 
  (ii)  All solution trajectories of (P) converge to connected subsets of PE(F, ν), and PE(F, 
ν) = {x ∈ X:  x is a critical point of Π}.  If PE(F, ν) is a singleton it is globally asymptotically 
stable. 
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3.3  Supermodular Games. 
 
  We say that F is a supermodular game if it satisfies 
 

  (SC)  
    

!(Fi+ 1
p
" Fi

p )

!(e j+1

q
" ej

q
)

(x)  ≥ 0 for all i <   np , j <   nq , p, q ∈ P, and x ∈ X. 

 
When expanded, the leading inequality in this condition becomes 
 

    
    

!Fi+ 1

p

!xj+1

q (x) "
! Fi+1

p

!xj

q (x)  ≥ 
    

!Fi

p

!xj+1

q (x) "
! Fi

p

!xj

q (x) . 

 
We call condition (SC) strategic complementarity.  It states that if some players in 
population q switch from strategy j to strategy j + 1, the performance of strategy i + 1 ∈ 
  S

p  improves relative to that of strategy i.  This condition is an infinite player 
generalization of conditions for finite player games studied by Topkis [40], Vives [42], 
and Milgrom and Roberts [31]. These papers provide many microeconomic applications 
of supermodular games, while Cooper [13] offers a number of macroeconomic 
applications. 
  It is easiest to study perturbed best response dynamics for supermodular games 
after applying a change of coordinates.  Define the linear operator   T p :   X p  →       Rn p

! 1 by 
 

    (  T p
x

p )i = 
    

x j

p

j=i+1

n p

! . 

 
If we view   xp  as a discrete density function on the set of pure strategies   Sp  = {1, … ,   np } 
with total mass   mp , then   T p

  x
p  is the corresponding decumulative distribution function.  

Hence,   z
p  stochastically dominates   x

p  if and only if   T
p
  z

p  ≥   T
p
  x

p .  To compare 
complete population states, we let Tx = (    T1

x
1 , … ,    T p 

x
p ).   

  Our goal is to show that when F is supermodular, the dynamic (P) is strongly 
monotone with respect to the stochastic dominance order:   if {xt}t≥0 and {zt}t≥0 are two solutions 
to (P) with Tz0 ≥ Tx0 and z0 ≠ x0, then Tzt > Txt for all t > 0.  Doing so is valuable because 
as we shall see, strongly monotone dynamics have appealing convergence properties. 
  To establish strong monotonicity, we require a mild additional assumption on the 
game F.  Let     ˆ S  = {(k, p):  k ∈   Sp  – {  np }, p ∈ P}.  We say that the supermodular game F is 
irreducible if for all states x ∈ X and all nonempty proper subsets K of     

ˆ S , there exist a 
pair (k, p) ∈ K, a strategy i ∈   Sp  – {  np }, and a pair (j, q) ∈     ˆ S  – K such that condition (SC) 
holds strictly at x for the pairs (i, p) and (j, q).  Under this condition, a movement of 
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mass from strategy j ∈   Sq  to strategy j + 1 strictly improves the relative performance of 
some strategy belonging to the same population as strategy k.5  
  Theorem 3.3 shows that if F is supermodular and irreducible, then almost all 
solution trajectories of perturbed best response dynamics converge to perturbed 
equilibria. 
 
Theorem 3.3:  If F is an irreducible supermodular game and ν is admissible, then the dynamic 
(P) is strongly monotone with respect to the stochastic dominance order.  Hence, there is an 
open, dense, full measure set of initial conditions from which solutions to (P) converge to single 
points in PE(F, ν).  If PE(F, ν) is a singleton it is globally asymptotically stable. 
 
  The constructions used in Theorems 3.1 and 3.2 show that these results hold not only 
for perturbed best response dynamics based on stochastic payoff perturbations, but also 
for dynamics based on deterministic perturbations.  In contrast, Theorem 3.3 cannot be 
extended to all perturbed best response dynamics based on deterministic perturbations, 
as the extra structure provided by the stochastic perturbations is needed to establish the 
monotonicity of the dynamics. 
 
4.  Convergence Theorems 
 
 In this section, we use the prededing analysis to prove two sets of convergence 
results for the Markov processes 

  
X

t

N .  The first set, described in Theorem 4.1, shows 
that over finite time horizons, in the three classes of games studied above, the process 
  
X

t

N  converges to the set of perturbed equilibria.  The second set, stated in Theorem 4.2, 
demonstrates that over the infinite time horizon, 

  
X

t

N  converges to the set of Lyapunov 
stable equilibria.  While the medium analysis is simpler, the long run results evidently 
offer a more refined prediction of play.  However, we shall see that the notions of 
convergence used in each case differ in subtle but important ways, lending each set of 
results its own unique appeal. 
 

                                                
5   Irreducibility is a weaker assumption than strict supermodularity, the assumption utilized in 
Hofbauer and Sandholm [25] in the context of normal form games. 



–15– 

4.1  Convergence in the Medium Run 
 
 To state our finite horizon convergence result, we consider a sequence of Markov 
processes 

  
X

t

N  whose initial conditions 
    
X

0

N  ∈     X N  converge to some state x0 ∈ X as the 
population size N approaches infinity.  We say that these processes converge in the 
medium run to the closed set A !  X from the initial condition x0 if for each open set O 
containing A, there is a time T0 = T0(x0) such that for all T ≥ T0, 
 
    

    
lim
N!"

P X
t

N
#O for all t #[T0 ,T]( )  = 1. 

 
In words:  if a large group of players begins play near x0, then with probability close to 
1, their behavior approaches the set A and remains nearby for a long, finite time span.  
We say that convergence is uniform if the time T0 that the neighborhood of A is reached 
can be chosen independently of the initial condition x0 ∈ X. 
 
Theorem 4.1.  Consider stochastic evolution in the game F under the admissible disturbance 
distributions   ! p . 
  (i)  If F is a stable game, then 

  
X

t

N  converges in the medium run to the singleton PE(F, ν) 
from every initial condition x0 ∈ X. 
  (ii)  If F is a potential game, then 

  
X

t

N  converges in the medium run to a connected subset 
of PE(F, ν) from every initial condition x0 ∈ X. 
  (iii) If F is an irreducible supermodular game, then 

  
X

t

N  converges in the medium run to 
an element of PE(F, ν) from an open, dense, full measure set of initial conditions x0 ∈ X. 
  In all cases, convergence is uniform whenever PE(F, ν) is a singleton. 
 
  The proof of the theorem is based on an analogue of the law of large numbers for 
sequences of Markov chains that has been studied in game theoretic contexts by 
Binmore and Samuelson [8], Sandholm [36], and Benaïm and Weibull [7].  It is 
presented in the Appendix. 
 
4.2  Convergence in the Long Run 
 
  Theorem 4.1 cannot be extended to an infinite horizon result (T = ∞):  since the 
process 

  
X

t

N  is irreducible, all states in     X N  are visited infinitely often with probability 
one, and so large deviations from all rest points are certain to occur.  But it is precisely 
this fact that enables us to obtain tighter predictions of behavior over this time span.  
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While all states are visited and abandoned infinitely often, one expects that only states 
near attractors of (P) will be visited with nonvanishing frequency.  This observation is 
the basis for our infinite horizon convergence results. 
 We formally characterize infinite horizon behavior using the stationary distribution 
  
µ

N  of the process 
  
X

t

N .  Since 
  
X

t

N  is irreducible and aperiodic, the stationary distribution 
is unique, and it describes the long run behavior of 

  
X

t

N  in two distinct ways.6  
Regardless of initial behavior, 

  
µ

N  approximates the probability distribution of 
  
X

t

N  after 
a long enough time has passed: 
 
    

    
lim
t!"

P X
t

N
#A X

0

N
= x

0

N( )  = 
  
µ

N (A)  for all 
    
x

0

N  ∈   X
N . 

 
More importantly, 

  
µ

N  also describes the limiting time average of play: 
 
    

  
P lim

T!"

1

T
1

{X
t

N #A}
dt

0

T

$ = µN (A) X
0

N = x
0

N( )  = 1. 
 
  Our notion of infinite horizon convergence is defined in terms of the stationary 
distributions 

  
µ

N . We say that the processes 
  
X

t

N  converge in the long run to the closed set 
A !  X if for each open set O containing A, we have that 
 
    

    
lim
N!"

µ
N

(O)  = 1. 

 
  Our two notions of convergence differ not only in terms the time horizons under 
consideration, but also in terms of the fixedness of behavior at the predicted set A.  
Under medium horizon convergence, after the time T0 at which a neighborhood of A is 
reached, the process 

  
X

t

N  may not leave this neighborhood for a long, finite span.  This 
form of convergence is appealing because of its stringency.  However, the time scale on 
which this notion of convergence is useful is one that does not allow us to discard 
unstable rest points of (P).   
  By considering infinite horizon behavior, we are able to use the randomness of the 
process 

  
X

t

N  to rule out unstable rest points.  But the time scale that permits unstable rest 
points to be abandoned is also one on which convergence to stable rest points is 
temporary.  This relative weakness is embodied in our convergence criterion.  By 
defining our notion of long run convergence in terms of the stationary distributions 

  
µ

N , 
we concern ourselves with the time average of play.  In doing so, we allow for 

                                                
6   For more on these properties, see, e.g., Durrett [15]. 
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departures from the predicted set A, so long as these departures are sufficiently 
uncommon.   
 To state Theorem 4.2, we recall that the rest point x* ∈ PE(F, ν) is Lyapunov stable if 
for each neighborhood O of x*, there is another neighborhood Q of x* such that 
solutions to (P) that begin in Q remain in O for all positive times.  Let LS(F, ν) !  PE(F, ν) 
denote the set of Lyapunov stable rest points of (P). 
 
Theorem 4.2:  Consider stochastic evolution in the game F under the admissible disturbance 
distributions   ! p . 
  (i)  Suppose that F is a stable game.  Then 

  
X

t

N  converges in the long run to the singleton 
PE(F, ν) = LS(F, ν). 
  (ii)  Suppose that F is a potential game and that PE(F, ν) is finite.  Then 

  
X

t

N  converges in 
the long run to LS(F, ν). 
  (iii)Suppose that F is an irreducible supermodular game. Then 

  
X

t

N  converges in the long run 
to LS(F, ν). 
 
 Part (i) of the theorem shows that if F is a stable game, then in the long run a large 
population is nearly always in a neighborhood of the unique perturbed equilibrium of 
(F, ν).  Part (ii) shows that if F is a potential game, then under a mild regularity 
condition, the population only stays near Lyapunov stable rest points of (P).  Part (iii) 
shows that this conclusion also holds if F is supermodular and irreducible.7  The proof 
of the theorem, which combines our earlier analysis with stochastic approximation 
results due to Benaïm [2] and Benaïm and Hirsch [6], is provided in the Appendix.8 
 

                                                
7   Benaïm and Hirsch [6] establish this last result for the case of normal form supermodular games with 
exactly two strategies per player. 
8   It is worth noting that our convergence results, in particular our results for supermodular games, 
impose no restrictions on the number of strategies in the underlying game.  In Hofbauer and Sandholm 
[25], our convergence theorem for stochastic fictitious play in normal form supermodular games requires 
the dimension of the state space to be no greater than 2.  However, if a conjecture of Benaïm [4] is correct 
this dimensionality condition is actually not needed to establish convergence. 
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5.  Contrasting Stochastic Evolution and Stochastic Fictitious Play 
 
  We conclude the paper by contrasting the stochastic evolutionary process studied 
here with stochastic fictitious play.  In standard fictitious play (Brown [11]), a group of 
players repeatedly plays a normal form game.  In every period, each player chooses a 
best response to his beliefs, which are given by the time average of past play.  In 
stochastic fictitious play (Fudenberg and Kreps [17]), best responses are chosen after 
each player's payoffs are randomly perturbed.  Like the process considered above, the 
expected motion of stochastic fictitious play is described by the perturbed best response 
dynamic (P).  Using this observation, Fudenberg and Kreps [17], Kaniovski and Young 
[29] and Benaïm and Hirsch [5] prove that stochastic fictitious play converges in 2 x 2 
games, while Hofbauer and Sandholm [25] establish convergence in games with an 
interior ESS, zero-sum games, potential games, and certain supermodular games. 
  While stochastic fictitious play is model of behavior in normal form games, 
stochastic evolution can be used to model behavior in any population game, allowing 
us to establish convergence results in a broader class of strategic settings.  For example, 
in settings with two player roles, stochastic fictitious play converges to an interior 
equilibrium only in games that are essentially zero-sum (Hofbauer and Hopkins [24]).  
Theorems 4.1 and 4.2 show that in the evolutionary model, such convergence occurs in 
all stable games whose Nash equilibria are not on the boundary of the state space; these 
include, for example, games used to model highway congestion. 
  The most important differences between the two models lie in the definitions of their 
state variables and in the limits taken in establishing convergence results.  The state 
variable of stochastic fictitious play is the time average of past play, so the increment in 
the state at time t is of size 

    
1

t
.  Because these increments become vanishingly small, one 

can obtain convergence results by simply studying the limit behavior of the state 
variable as t grows large.  In contrast, the state variable under stochastic evolution 
describes the proportions of players choosing each strategy, so the increments of the 
state are of fixed size 

    
1

N
.  Since the state space of the process is a finite grid for each 

fixed value of N, proving convergence to perturbed equilibrium requires us to consider 
limits as the population size grows large.  Because limits are taken in N rather than in t, 
it is possible to prove separate limit results for finite and infinite time horizons. 
  These distinguishing features also underlie a more subtle difference between the two 
processes.  Suppose that the dynamic (P) has the phase diagram in Figure 1, flowing 
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clockwise around a circle except at a single rest point.9  Then the expected motions of 
both processes are described by this picture, although in each case actual motions are 
random. 
 

 
 

Figure 1:  A deterministic flow. 
 
 Under stochastic fictitious play, the state variable is the time average of past play.  
Here it proceeds clockwise on average, but moves quite slowly near the top of the circle.  
When the rest point is reached, the expected change in the state is zero, but since the 
actual increments are stochastic, the process eventually clears the rest point and begins 
another circuit.  Consequently, while time averaged behavior under stochastic fictitious 
play can in principle converge to a single limit point, in this case the set of limit points is 
the entire state space.   
  Under stochastic evolution, the state represents the current proportions of players 
choosing each strategy, and this too perpetually rounds the circle.  Because the 
evolutionary process is ergodic, convergence to a single limit point is impossible even in 
principle.  Therefore, when studying long run behavior, we examine the stationary 
distribution of the process, which describes its limiting time average.  Since the 
expected motion of the process becomes vanishingly slow only in a neighborhood of the 
rest point, in the long run the time average of play is concentrated entirely on this 
segment. 
 This difference in the strength of the convergence results is due to a reversal in the 
order of two operations:  time averaging and deterministic approximation.  Under 
stochastic fictitious play, the state variable is defined as the time average of play, and 

                                                
9   Of course, the state space of (P) cannot be a circle, but pretending this is possible simplifies our 
discussion. 
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the dynamics of the time average are studied using a deterministic approximation.  
Under stochastic evolution, the state variable represents current behavior, the evolution 
of which is analyzed through a deterministic approximation, and only after this is a 
time average taken to describe long run play. 
  This distinction is reflected in the different notions of recurrence applied to the 
dynamic (P) when analyzing the two models.  Benaïm and Hirsch [5] show that the 
limiting time average of stochastic fictitious play lies in the chain recurrent set of (P), a set 
containing those states that can occur repeatedly if the flow of (P) is subjected to small 
shocks at isolated points in time.  In contrast, Benaïm and Weibull [7] show that the 
limiting stationary distribution under stochastic evolution is concentrated on the 
minimal center of attraction of (P).10  The chain recurrent set always contains the minimal 
center of attraction, and the example above shows that this inclusion can be strict.  Thus, 
the basic prediction generated by the stochastic evolution model is finer than that 
derived from stochastic fictitious play. 
 
Appendix 
 
 We begin by reviewing the discrete choice characterization theorem from Hofbauer 
and Sandholm [25].  Define the choice probability function   Cp :     Rn p

 →   !
p  in terms of 

admissible distribution   ! p , as in equation (1): 
 
        Ci

p
(!

p
)  = 

    
!

p
"

p
: i #arg max

j#Sp $ j

p
+ " j

p( ) . 
 
We now summarize a number of properties of this function and provide an explicit 
formula for its deterministic representation (2). 
 
(P1)       Ci

p
(!

p
+ "1)  =     Ci

p
(!

p
)  for all   ! p  ∈     Rn p

 and λ ∈ R. 
(P2) For all   ! p  ∈     Rn p

,     DC
p
(!

p
)  is symmetric, has positive diagonal elements  

    and negative off-diagonal elements, and has rows and columns  
    that sum to zero. 
(P3)    C

p  admits a potential function   W p :     Rn p

 → R (i.e., a function satisfying 
        C

p
(!

p
)  !      !W

p
("

p
)) that is convex, strictly so on 

      R0

n p

. 
(P4)  Let   V p : int(  !p ) → R be the Legendre transform of   W p : 

      R0

n p

 → R: 
                                                
10   The minimal center of attraction is closure of the union of the supports of all probability measures on 
X that are invariant under (P).  This set is contained in (and often identical to) the more easily computed 
Birkhoff center, which is the closure of the set of recurrent points of (P).  For more on notions of recurrence 
for deterministic flows, see Nemytskii and Stepanov [33], Conley [12], Akin [1], Robinson [34], and 
Benaïm [2, 3]. 
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        V

p
(y

p
)  = 

      
max
!

p
"R 0

n
p

y
p
#!

p
$W

p
(!

p
)( ) . 

 
   Then   V p  is an admissible deterministic perturbation that satisfies 
 
        W

p
(!

p
)  = 

    
max

yp
!int( "p )

y
p
# $

p
% V

p
(y

p
)( )  and 

        C
p
(!

p
)  = 

    
argmax
y

p
!int( "

p
)

y
p
#$

p
% V

p (y
p )( )  

 
   for all   ! p  ∈ 

      R0

n p

, and   !V
p : int(  !p ) → 

      R0

n p

 is the inverse of   Cp : 
      R0

n p

 →  int(  !p ). 
 
 To prove Theorems 3.1 and 3.2, it is convenient to define the virtual payoffs for the 
pair (F, ν) by 
 
        

ˆ F 
p
(x)  =     F

p
(x)  – 

    
!V

p
( 1

m p x
p
) , 

 
where   V p  is the deterministic perturbation corresponding to   ! p .  The next two lemmas 
provide two justifications for this definition.   
  The proofs of these lemmas require two additional definitions.  Let     F 

p
(x)  = 

    
1

n p Fi

p
(x)

i!S p"  denote the average payoff obtained by population p strategies, and let 

    
˜ F 

p
(x)  =     F

p
(x)  –     F 

p
(x)1 ∈ 

      R0

n p

 be a normalized version of the payoff vector     F
p
(x) . 

   The first lemma shows that perturbed equilibria are those states that equalize virtual 
payoffs in each population. 
 
Lemma A.1:  x ∈ PE(F, ν) if and only if     ˆ F 

p
(x)  =   cp 1 for some   cp  ∈ R and all p ∈ P. 

 
  Proof:  Observe that by properties (P1) and (P4), 
 
      x ∈ PE(F, ν)  ⇔   xp  =   mp

    
˜ B 

p
(x)  for all p ∈ P 

        ⇔   xp  =   mp

    C
p
(F

p
(x))  for all p ∈ P 

        ⇔   xp  =   mp

      C
p
(F

p
(x) ! F 

p
(x)1)  for all p ∈ P   

        ⇔ 
    
!V

p
( 1

m p x
p
)  =     F

p
(x)  –     F 

p
(x)1 for all p ∈ P   

        ⇔     ˆ F 
p
(x)  =     F 

p
(x)1 for all p ∈ P. 

 
This establishes the "only if" direction.  To prove the "if" direction, note that since 

    
!V

p
( 1

m p x
p
)  ∈ 

      R0

n p

 by property (P4), 1 ·     ˆ F 
p
(x)  = 1 · F(x).  Therefore, if     ˆ F 

p
(x)  =   cp 1, then 

1 · F(x) = 1 ·     ˆ F 
p
(x)  =   cp

  n
p , and so   cp  =     F 

p
(x) .  Thus, the "if" direction follows from the 

equivalence derived above.  ■ 
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  In settings without perturbations, one appealing monotonicity property for 
evolutionary dynamics requires that each population's direction of motion always 
forms an acute angle with its payoff vector:  in other words, that     ̇ x 

p
!F

p
(x)  ≥ 0 for all x ∈ 

X.  Sandholm [38] calls this condition positive correlation.  The next lemma, first proved 
by Hofbauer [22] for a single population setting, establishes a corresponding property 
for the perturbed best response dynamics expressed in terms of virtual payoffs.  We use 
the properties listed above to provide a simple proof. 
 
Lemma A.2:  (  mp

    
˜ B 

p
(x)  –   x

p ) ·     
ˆ F 

p
(x)  ≥ 0 for all p ∈ P and x ∈ X, with equality only if 

  m
p

    
˜ B 

p
(x)  =   xp . 

 
  Proof:  Since   mp

    
˜ B 

p
(x)  –   xp  is a direction of motion through   X p , (  mp

    
˜ B 

p
(x)  –   xp ) · 1 = 0.  

Also, note that   y
p  ≡     

˜ B 
p
(x)  =     C

p
(F

p
(x))  =     C

p
( ˜ F 

p
(x))  by property (P1), so property (P4) 

implies that     !V
p
(y

p
)  =     ˜ F 

p
(x) .  Using these observations in turn, we find that 

 
    (  mp

    
˜ B 

p
(x)  –   xp ) ·     ˆ F 

p
(x)  = (  mp

    
˜ B 

p
(x)  –   xp ) · (    F

p
(x)  – 

    
!V

p
( 1

m p x
p
)) 

 = (  mp

    
˜ B 

p
(x)  –   xp ) · (    ˜ F 

p
(x)  – 

    
!V

p
( 1

m p x
p
)) 

  =   mp (  y
p  – 

    
1

m p   x
p ) · (    !V

p
(y

p
)  – 

    
!V

p
( 1

m p x
p
)), 

 
which is positive by the strict convexity of   V p , strictly so unless   mp

    
˜ B 

p
(x)  =   xp .  ■ 

 
The Proof of Theorem 3.1 
  We first prove part (i).  Properties (P3) and (P2) and the definition of     ˜ B 

p  imply that 
along any solution of (P), 
 

        
˙ ! (x)  = 

      

d
dt mp

max
yp !int(" p )

yp #F p
(x) $ V p

(yp
)( ) $ 1

mp xp # Fp
(x) $V p

( 1

mp xp
)( )% 

& 

' 

( p!P

)  

     = 
      

d
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(Fp
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(x) ! mpV p
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m
p
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p
(F

p
(x)) "DF

p
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p
"DF
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p
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The first term of the last expression is negative by condition (SE); the second term is 
negative by Lemma A.2, strictly so only if x is a rest point of (P).  This establishes part (i) 
of the theorem. 
  We now prove part (ii).  First, standard results (e.g., Theorem 7.6 of Hofbauer and 
Sigmund [26]) tell us that since (P) admits a strict Lyapunov function, all solution 
trajectories of (P) converge to connected sets of rest points of (P).  By definition, these 
rest points are the perturbed equilibria of (F, ν).  Moreover, Lemma A.1 and property 
(P4) imply that 
 
    x ∈ PE(F, ν) ⇔ 

    
!V

p
( 1

m p x
p
)  =     F

p
(x)  +   cp 1  for all p ∈ P 

     ⇔ 
    

1

m p   x
p  = 

    
argmax

y
p
!int("

p
)

y
p
#F

p (x) $V
p (yp )( )   for all p ∈ P 

     ⇔ Λ(x) = 0. 
 
  It remains to show that PE(F, ν) is a singleton.  For each x ∈ X and h ∈ TX, define 
 
    

    
ˆ f x ,h(t)  = h ·     

ˆ F (x + th)  
 
for all t such that x + th ∈ X.  Since F is stable and each   V

p  is differentiably strictly 
convex, we find that 
 
    

    
ˆ ! f x ,h(t)  =     h !D

ˆ F (x + t h)h  =     h !DF(x + t h)h  – 
      

1

mp hp
!D2V p

( 1

mp (xp
+ t hp

))hp

p"P

#  < 0. 

 
Thus, 

    
ˆ f x ,h(t)  is decreasing in t. 

  If x ∈ PE(F, ν), then Lemma A.1 implies that 
    
ˆ f x ,h(0)  = h ·     ˆ F (x)  = 0 for all h ∈ TX.  Now 

let y be a state in X distinct from x, so that y = x + tyhy for some ty > 0 and nonzero hy ∈ 
TX.  Then hy ·     

ˆ F (y)  = hy ·     
ˆ F (x + tyhy )  = 

    
ˆ f x ,hy

(ty )  < 0, and so y cannot be in PE(F, ν).  We 

therefore conclude that PE(F, ν) is a singleton containing the unique state at which Λ 
equals zero, and that this state is globally asymptotically stable under (P).  ■ 
 
The Proof of Theorem 3.2 
  Condition (ES) implies that along solutions of (P), 
 
       

˙ ! (x)   =     !f(x) " ˙ x  – 
      

!V
p
( 1

mp x
p
) " ˙ x 

p

p#P

$  

     = 
      

F
p
(x) ! "V

p
( 1

mp x
p
)( ) # ˙ x 

p

p$P

%  
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      = 
      

ˆ F 
p
(x) ! ˙ x 

p

p"P

#  

 
By Lemma A.2, this expression is positive and equals zero only at rest points of (P).  
Hence, Π is a strict Lyapunov function for (P), implying global convergence of solution 
trajectories of (P) to connected subsets of x ∈ PE(F, ε).  Finally, Lemma A.1 tells us that 
 
    x is a critical point of Π in X ⇔     F

p
(x)  –   cp 1 =

    
!V

p
( 1

m p x
p
)  for all p ∈ P 

              ⇔ x ∈ PE(F, ε).  ■ 
 
The Proof of Theorem 3.3 
  It is useful to study the dynamic (P) after applying the change of variable T.  To do 
so, we let   T p [  X p ] = {  vp  ∈       Rn p

! 1:    mp  ≥ 
    v1

p  ≥ … ≥ 
    
v

n p
! 1

p  ≥ 0}, so that T[X] = 
    

T
p
[X

p
]

p!  is 

the transformation of the state space X by T.  Note that if v ∈ T[X], the set of 
components of v is     ˆ S .  If we then define     ˆ B 

p : T[X] →   T p [  !p ] by     ˆ B 
p (v) =     T

p ˜ B 
p
(T

!1
v) , the 

transformed dynamic is given by 
 
(T)       ̇ v 

p  =   mp

    
ˆ B 

p
(v) ! v

p . 
 
One can verify (P) and (T) are linearly conjugate:  {xt}t≥0 solves (P) if and only if {Txt}t≥0 
solves (T). 
  Our goal is to show that the dynamic (T) is cooperative and irreducible.  A 
differential equation     ̇ v  = g(v) on T[X] is called cooperative if 

  

!gk
p

!v j
q (v) ≥ 0 for all v ∈ T[X] 

and all distinct pairs (k, p), (j, q) ∈     ˆ S .  The equation is irreducible if for each v ∈ T[X] and 
each nonempty proper subset K of     ˆ S , there is an (k, p) ∈ K and a (j, q) ∈     ˆ S  – K such that 

  

!gk
p

!v j
q (v) ≠ 0.  Theorem 4.1.1 of Smith [39] shows that the flow of a cooperative irreducible 

dynamic is strongly monotone with respect to the standard vector order.  Thus, if (T) is 
cooperative and irreducible, our first claim follows from this result and the conjugacy of 
(P) and (T), the second claim follows in turn from Theorem 2.4.7 of Smith [39] and 
Theorem 1.1 of Hirsch [20], and the third claim is proved as follows:  Suppose that x* is 
the unique perturbed equilibrium of (F, ν).  Then if x and   x  are the minimal and 
maximal points in X, Theorem 1.2.1 of Smith [39] implies that the solutions to (P) from 
these points converge to rest points, and hence to x*.  Thus, for any x ∈ X, strong 
monotonicity implies that at all times t, the solutions to (P) starting from x, x, and   x  are 
ranked by T.  Therefore, the solution to (P) from x must also converge to x*, and x* is 
Lyapunov stable. 
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 We now show that (T) is cooperative and irreducible.  Fix v ∈ T[X], and let x =     T!1
v  

∈ X.  Since     B
p
(x)  =     C

p
(F

p
(x)) , the off-diagonal elements of the derivative matrix for (T) 

are given by 
    
mp ! ˆ B k

p

! v j
q (v) , where 

 

   
    

! ˆ B k
p

!vj

q (v)  = 
    

!Bl

p

!(e j+1

q
" ej

q
)l= k+1

np

# (x)  

     = 
    

!Cl

p

!"i

p (Fp
(x))

!Fi

p

!(e j+1

q
# ej

q
)i=1

np

$ (x)
l= k+1

np

$  

     = 
    

! Fi

p

!(e j+1

q
" ej

q
)
(x)

!Cl

p

!# i

p (F p
(x))

l=k +1

n p

$
i= 1

np

$  

     = 
    

! F
n p

p

!(e j+ 1

q " ej

q
)
(x)

!Cl

p

!# i

p (F p
(x))

i= 1

np

$
l =k + 1

n p

$
% 

& 
' 

( 

) 
* 
"

!(Fh+ 1

p " Fh

p
)

!(ej +1

q " e j

q
)

(x)
!Cl

p

!# i

p (Fp
(x))

i =1

h

$
l= k +1

np

$
% 

& 
' 

( 

) 
* 

h= 1

np

$ , 

 
where the last equality follows from the fact that 
 

    
    

fi ci
i= 1

np

!  = 
    
f
n p ci

i=1

n p

! " ( fh+1 " fh )
h= 1

np "1

! ci
i=1

h

!  

 
for any pair of vectors f, c ∈     R

n p

.  Property (P2) implies that the first expression in 
brackets is zero and that the second expression in brackets is strictly negative for all h < 
  n

p  and equals zero if h =   np .  Furthermore, condition (SC) implies that the directional 
derivative from the second term is always positive.  Thus, 

    
mp ! ˆ B k

p

! v j
q (v)  ≥ 0 for all distinct 

pairs (α, k), (β, j) ∈     ˆ S , and so (T) is cooperative.   
  To show that (T) is irreducible, fix a nonempty proper subset K of     

ˆ S .  Since F is 
irreducible by assumption, there exist a pair (k, p) ∈ K, a strategy h ∈   Sp  – {  np }, and a 
pair (j, q) ∈     ˆ S  – K such that 

    

! (Fh+1

p
"Fh

p
)

!(e j+1

q
" ej

q
)
(x)  > 0.  Hence, the reasoning above implies that 

    
mp ! ˆ B k

p

! v j
q (v)  > 0, so (T) is irreducible.  This completes the proof of the theorem.  ■ 

 
The Proof of Theorem 4.1 
  Theorem 4.1 of Sandholm [36], based on results of Kurtz [30], shows that over any 
finite horizon, the stochastic process 

  
X

t

N  stays within 
  
!

2
 of the solution trajectory of (P) 

with the same initial condition with probability close to 1 when N is large.  Theorems 
3.1 and 3.2 show that in the games considered in parts (i) and (ii), all solution 
trajectories of (P) converge to PE(F, ν); Theorem 3.3 shows that in supermodular games, 
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this is true of trajectories starting from almost every initial condition.  Combining these 
results proves parts (i), (ii), and (iii) of the theorem. 
   To prove the final claim, suppose that F has a unique equilibrium.  Theorems 3.1, 
3.2, and 3.3 imply that for our three classes of games, a unique equilibrium is globally 
asymptotically stable.  The final claim then follows from this classical result from 
dynamical systems. 
 
Lemma A.3:  Let x* be globally asymptotically stable the flow φ on the compact set X.  Fix γ > 
0, and let τ(x) = inf{T:  

    
!(t, x) " x*  ≤ γ for all t ≥ T}.  Then supx∈X τ(x) < ∞. 

 
 Proof:  Since x* is globally asymptotically stable, τ(x) < ∞ for all x ∈ X.  Now suppose 
that the lemma is false.  Then there is a sequence of initial conditions {  xk } !  X such that 
limk→∞τ(  xk ) = ∞.  Since X is compact, this sequence has an accumulation point   x  ∈ X.  
Because x* is Lyapunov stable, there is an η > 0 such that whenever 

    
x ! x*  ≤ η, 

    
!(t, x) " x*  ≤ γ for all t ≥ 0.  Because x* is a global attractor, there is a time   T  < ∞ such 

that 
    
!(T , x ) " x*  ≤ 

  

!

2
.  Finally, since the flow is continuous in the initial condition x, we 

know that for all x sufficiently close to   x , 
    
!(T , x) " !(T ,x )  ≤ 

  

!

2
.  Therefore, for all 

sufficiently large k, the triangle inequality implies that 
    
!(T , x

k
) " x*  ≤ η, and hence that 

    
!(t, x

k
) " x*  ≤ γ for all t ≥   T .  But then τ(  xk ) ≤   T  for all sufficiently large k, contradicting 

the definition of the sequence {  xk }.  ❏ 

 

This completes the proof of Theorem 4.1.  ■ 
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The Proof of Theorem 4.2 
  The proof of parts (i) and (ii) rely on results from Benaïm [2] (hereafter B98).  One 
can verify that Hypotheses 2.1, 2.3, and 3.4 of B98 are all satisfied (cf. B98 Example 1.1).  
Thus, part (i) of theorem follows directly from B98 Corollary 3.2 and our Theorem 3.1 
(in particular, from the fact that the lone element of PE(F, ν) is the unique ω-limit point 
of (P)). 
  The proof of part (ii) utilizes B98 Theorem 4.3.  Condition (i) of this theorem follows 
from Proposition 3.2 and the finiteness of PE(F, ν).  Condition (ii) follows from B98 
Remark 3.10 (iii) and the fact that all rest points of (P) are in int(X).  Condition (iii) 
follows from the fact that 

  
X

t

N  is defined on X.  Finally, since PE(F, ν) is finite, and since 
by our Theorem 3.2 (P) is gradient-like, the discussion on p.69 of B98 implies that the 
weakly stable equilibria are those that coincide with their own unstable manifolds; 
these are simply the local maximizers of Π, or equivalently the Lyapunov stable rest 
points LS(F, ν).  This completes the proof of part (ii) of the theorem. 
  We now turn to the proof of part (iii).  To begin, we establish a nondegeneracy 
condition on the motions of 

  
X

t

N .  For each x ∈ X, let 
  
! x  be a random vector that is 

defined on an arbitrary probability space Ω and that describes the normalized 
increments of the process 

  
X

t

N  from state x.  The distribution of 
  
! x  is described by 

 
   P(

  
! x  = 

  
e j

p  –   ei

p ) = 
    
1

m     
x i

p ˜ B j
p
(x)  whenever i, j ∈   Sp , i ≠ j and p ∈ P; 

   P(
  
! x  = 0) = 

      

1
m xi

p ˜ B i
p
(x)

i!S p

"
p!P

" . 

 
Let   !

x  ∈     R
n!n  denote the covariance matrix of 

  
! x .  Since   !

x  is symmetric, its 
eigenvalues are real.  Let   !

x  be the smallest eigenvalue of   !
x  corresponding to an 

eigenvector in TX.  (One can show that the remaining eigenvectors are orthogonal to TX 
and have eigenvalues of zero.)  We want to show that   !x  is uniformly bounded away 
from zero.  Intuitively, this means that for any current state x and any direction of 
motion z in TX, the amount of randomness in the motion of the process 

  
X

t

N  in the 
direction z is nonnegligible. 
 To establish the bound on   !x , we let 
 
   β ≡ 

      
min

x!"
min

p!P

min
i!S p

˜ B i
p
(x)  > 0. 

 
Lemma A.4:  For all x ∈ X, the minimum eigenvalue   !x  is at least 

  

!

m
. 
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 Proof:  Since   ! x  is symmetric, we know that if θ ∈ TX is a unit length eigenvector of 
  !

x , the corresponding eigenvalue is θ·  ! xθ = Var(θ ·
  
! x ).  It is therefore sufficient to 

bound Var(θ ·
  
! x ) for all unit length θ ∈ TX. 

  Partition the probability space Ω into events   I
p , where   I

p  is the event that the 
individual who receives the revision opportunity is from population p.  Then P(  Ip ) = 
  
m p

m , and all realizations of 
  
! x  involving nonzero increments for population p occur on 

  I
p .  Letting   y

p  = 
    

1

m p x
p , we note the following conditional probabilities and expectations: 

 
    

  
P ! x

= e j

p
" ei

p
I

p( )  = 
    
yi

p ˜ B j
p
(x)        if i ≠ j ; 

    
  
P ! x

= e j

q
" ei

q
I

p( )  = 0         if i ≠ j and q ≠ p; 
   

    
P ! x

= 0 I
p( )  = 

    
yi

p ˜ B i
p
(x)

i!S p

" ; 

   
    
E !i

x, p
I

p( )  =     
˜ B i

p
(x) ! yi

p ; 
    

    
E !i

x, p! j

x ,p
I

p( )  = 
    
!yi

p ˜ B i
p
(x) ! yj

p ˜ B j
p
(x)      if i ≠ j; 

    
    
E (!i

x, p
)

2
I

p( )  =     yi

p
(1! ˜ B i

p
(x)) + (1 ! yi

p
) ˜ B i

p
(x) ; 

    
    
Cov !i

x, p
,!j

x, p
I

p( )  = 
    
! ˜ B i

p
(x) ˜ B j

p
(x) ! yi

p
yj

p      if i ≠ j; 
    

    
Var !i

x ,p
I

p( )  =     !( ˜ B i
p
(x))

2
! (yi

p
)

2
+ ˜ B i

p
(x) + yi

p . 
 
  Fix a unit length θ ∈ TX, and let F be the σ-algebra generated by the events   Ip .  A 
standard decomposition of variance (see, e.g., Durrett [15]) yields 
 
    Var(θ ·

  
! x ) = 

    
E Var ! " # x

F[ ][ ]  + 
    
Var E ! " # x

F[ ][ ]  
     ≥ 

    
E Var ! " # x

F[ ][ ]  
     = 

    

mp

m
p!P

" Var # $% x
I

p( )  

     = 
      

mp

m
p!P

" Var # p
$ % x,p

I
p( ) , 

 
where the final equality follows from the fact that 

  
P ! x

= e j

q
" ei

q
I

p( )  = 0 for q ≠ p.  Since 

  y
p  and     ˜ B 

p
(x)  lie in the simplex   !p  and since 

  
! i

p

i"S p#  = 0 for all p (because θ ∈ TX), we 
can use the conditional probabilities and expectations above to compute that 
 
    

    
Var ! p

" # x,p
I

p( )   
      =     !

p
" diag( ˜ B p (x))!

p      !"
p
# ˜ B 

p
(x) ˜ B 

p
(x) #"

p  +     !
p
" diag(yp

)!
p
#!

p
" yp yp

"!
p  
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     = 
    

(! i

p
)

2 ˜ B i
p
(x)

i"S p

# $ ! j

p ˜ B i
p
(x)

j"Sp

#
% 

& 

' 
( 

) 

* 

2

+ (! i

p
)

2
yi

p

i"Sp

# $ ! j

p
yj

p

j"S p

#
% 

& 

' 
( 

) 
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2

 

      = 
    

! i

p " ! j

p ˜ B j
p
(x)

j#S p

$
% 

& 

' 
( 

) 

* 

2

i#S p

$ ˜ B i
p
(x) + !i

p " ! j

p
y j

p

j#S p

$
% 

& 
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i#S p

$ yi
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      ≥ 
    

! " i
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p ˜ B j
p
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i$Sp
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Since each   mp  is a positive integer and since 

      
(! i

p
)

2

i"Sp#p"P
#  = 1, we conclude that 

 
    Var(θ ·

  
! x ) ≥ 

      

! mp

m
p"P

# ($ i

p
)

2

i"S p

#  ≥ 
  

!

m
.  ❏ 

 

 Now, if we can show that the conditions supporting Theorem 1.5 of Benaïm and 
Hirsch [6] (henceforth BH) hold, part (iii) of our theorem immediately follows.  The 
proof of Theorem 3.3 shows that after a linear transformation, the dynamics (P) form a 
cooperative, irreducible dynamical system on X, so BH Hypothesis 1.2 is satisfied.  
Since the increments are uniformly bounded above, and since   !x  is uniformly bounded 
below by Lemma A.4, BH Proposition 2.3 implies that BH Hypothesis 1.4 holds.  
Finally, since each 

  
X

t

N  takes values in the compact set X, the tightness assumption in 
BH Theorem 1.5 is satisfied.  Therefore, BH Theorem 1.5 implies that limN→∞  

µ
N (O) = 1 

for any open set O containing the Lyapunov stable rest points of (P).  ■ 
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