
Evolutionary Game Theory∗

William H. Sandholm
University of Wisconsin†

November 12, 2007

Article Outline

Glossary 2

I Definition and Importance 3

II Introduction 4

III Normal Form Games 5

IV Static Notions of Evolutionary Stability 8

V Population Games 10

VI Revision Protocols 12
VI.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
VI.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

VII Deterministic Dynamics 14
VII.1 Mean Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
VII.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
VII.3 Evolutionary Justification of Nash Equilibrium . . . . . . . . . . . . . . . 20
VII.4 Local Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

∗The figures in Sections VII and IX were created using Dynamo [184] and VirtualLabs [92], respectively.
I am grateful to Caltech for its hospitality as I completed this article, and I gratefully acknowledge financial
support under NSF Grant SES-0617753.
†Department of Economics, 1180 Observatory Drive, Madison, WI 53706, USA. e-mail:

whs@ssc.wisc.edu; website: http://www.ssc.wisc.edu/∼whs.



VII.5 Global Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
VII.6 Nonconvergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

VIII Stochastic Dynamics 36
VIII.1 Deterministic Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 36
VIII.2 Convergence to Equilibria and to Better-Reply Closed Sets . . . . . . . . 37
VIII.3 Stochastic Stability and Equilibirum Selection . . . . . . . . . . . . . . . . 38

IX Local Interaction 44
IX.1 Stochastic Stability and Equilibrium Selection Revisited . . . . . . . . . . 45
IX.2 Complex Spatial Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 46

X Applications 49

XI Future Directions 50

XII Bibliography 51

Glossary

Deterministic evolutionary dynamic: A deterministic evolutionary dynamic is a rule for
assigning population games to ordinary differential equations describing the evolution of
behavior in the game. Deterministic evolutionary dynamics can be derived from revision
protocols, which describe choices (in economic settings) or births and deaths (in biological
settings) on an agent-by-agent basis.

Evolutionarily stable strategy (ESS): In a symmetric normal form game, an evolutionarily
stable strategy is a (possibly mixed) strategy with the following property: a population in
which all members play this strategy is resistant to invasion by a small group of mutants
who play an alternative mixed strategy.

Normal form game: A normal form game is a strategic interaction in which each of n players
chooses a strategy and then receives a payoff that depends on all agents’ choices choices
of strategy. In a symmetric two-player normal form game, the two players choose from the
same set of strategies, and payoffs only depend on own and opponent’s choices, not on a
player’s identity.

Population game: A population game is a strategic interaction among one or more large
populations of agents. Each agent’s payoff depends on his own choice of strategy and the
distribution of others’ choices of strategies. One can generate a population game from a
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normal form game by introducing random matching; however, many population games
of interest, including congestion games, do not take this form.

Replicator dynamic: The replicator dynamic is a fundamental deterministic evolutionary
dynamic for games. Under this dynamic, the percentage growth rate of the mass of
agents using each strategy is proportional to the excess of the strategy’s payoff over the
population’s average payoff. The replicator dynamic can be interpreted biologically as a
model of natural selection, and economically as a model of imitation.

Revision protocol: A revision protocol describes both the timing and the results of agents’
decisions about how to behave in a repeated strategic interaction. Revision protocols are
used to derive both deterministic and stochastic evolutionary dynamics for games.

Stochastically stable state: In models of stochastic evolution in games described by irre-
ducible Markov processes, a population state is stochastically stable if it retains positive
weight in the process’s stationary distribution as the level of noise in agents’ choices
approaches zero, or as the population size approaches infinity.

I. Definition and Importance

Evolutionary game theory studies the behavior of large populations of agents who repeat-
edly engage in strategic interactions. Changes in behavior in these populations are driven
either by natural selection via differences in birth and death rates, or by the application of
myopic decision rules by individual agents.

The birth of evolutionary game theory is marked by the publication of a series of
papers by mathematical biologist John Maynard Smith [137, 138, 140]. Maynard Smith
adapted the methods of traditional game theory [151, 215], which were created to model
the behavior of rational economic agents, to the context of biological natural selection.
He proposed his notion of an evolutionarily stable strategy (ESS) as a way of explaining the
existence of ritualized animal conflict.

Maynard Smith’s equilibrium concept was provided with an explicit dynamic founda-
tion through a differential equation model introduced by Taylor and Jonker [205]. Schuster
and Sigmund [189], following Dawkins [58], dubbed this model the replicator dynamic, and
recognized the close links between this game-theoretic dynamic and dynamics studied
much earlier in population ecology [132, 214] and population genetics [73]. By the 1980s,
evolutionary game theory was a well-developed and firmly established modeling frame-
work in biology [106].
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Towards the end of this period, economists realized the value of the evolutionary
approach to game theory in social science contexts, both as a method of providing foun-
dations for the equilibrium concepts of traditional game theory, and as a tool for selecting
among equilibria in games that admit more than one. Especially in its early stages, work
by economists in evolutionary game theory hewed closely to the interpretation set out
by biologists, with the notion of ESS and the replicator dynamic understood as modeling
natural selection in populations of agents genetically programmed to behave in specific
ways. But it soon became clear that models of essentially the same form could be used
to study the behavior of populations of active decision makers [50, 76, 133, 149, 167, 191].
Indeed, the two approaches sometimes lead to identical models: the replicator dynamic it-
self can be understood not only as a model of natural selection, but also as one of imitation
of successful opponents [35, 188, 216].

While the majority of work in evolutionary game theory has been undertaken by
biologists and economists, closely related models have been applied to questions in a
variety of fields, including transportation science [143, 150, 173, 175, 177, 197], computer
science [72,173,177], and sociology [34,62,126,225,226]. Some paradigms from evolution-
ary game theory are close relatives of certain models from physics, and so have attracted
the attention of workers in this field [141, 201–203]. All told, evolutionary game theory
provides a common ground for workers from a wide range of disciplines.

II. Introduction

This article offers a broad survey of the theory of evolution in games. Section III intro-
duces normal form games, a simple and commonly studied model of strategic interaction.
Section IV presents the notion of an evolutionarily stable strategy, a static definition of
stability proposed for this normal form context.

Section V defines population games, a general model of strategic interaction in large
populations. Section VI offers the notion of a revision protocol, an individual-level de-
scription of behavior used to define the population-level processes of central concern.

Most of the article concentrates on these population-level processes: Section VII con-
siders deterministic differential equation models of game dynamics; Section VIII studies
stochastic models of evolution based on Markov processes; and Section IX presents deter-
ministic and stochastic models of local interaction. Section X records a range of applica-
tions of evolutionary game theory, and Section XI suggests directions for future research.
Finally, Section XII offers an extensive list of primary references.
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III. Normal Form Games

In this section, we introduce a very simple model of strategic interaction: the symmetric
two-player normal form game. We then define some of the standard solution concepts
used to analyze this model, and provide some examples of games and their equilibria.
With this background in place, we turn in subsequent sections to evolutionary analysis of
behavior in games.

In a symmetric two-player normal form game, each of the two players chooses a (pure)
strategy from the finite set S; which we write generically as S = {1, . . . ,n}. The game’s
payoffs are described by the matrix A ∈ Rn×n. Entry Ai j is the payoff a player obtains when
he chooses strategy i and his opponent chooses strategy j; this payoff does not depend on
whether the player in question is called player 1 or player 2.

The fundamental solution concept of noncooperative game theory is Nash equilibrium
[151]. We say that the pure strategy i ∈ S is a symmetric Nash equilibrium of A if

(1) Aii ≥ A ji for all j ∈ S.

Thus, if his opponent chooses a symmetric Nash equilibrium strategy i, a player can do
no better than to choose i himself.

A stronger requirement on strategy i demands that it be superior to all other strategies
regardless of the opponent’s choice:

(2) Aik > A jk for all j, k ∈ S.

When condition (2) holds, we say that strategy i is strictly dominant in A.

Example III.1. The game below, with strategies C (“cooperate”) and D (“defect”), is an
instance of a Prisoner’s Dilemma:

C D
C 2 0
D 3 1 .

(To interpret this game, note that ACD = 0 is the payoff to cooperating when one’s opponent
defects.) Since 1 > 0, defecting is a symmetric Nash equilibrium of this game. In fact,
since 3 > 2 and 1 > 0, defecting is even a strictly dominant strategy. But since 2 > 1, both
players are better off when both cooperate than when both defect. §
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In many instances, it is natural to allow players to choose mixed (or randomized) strate-
gies. When a player chooses mixed strategy from the simplex X = {x ∈ Rn

+ :
∑

i∈S xi = 1},
his behavior is stochastic: he commits to playing pure strategy i ∈ S with probability xi.

When either player makes a randomized choice, we evaluate payoffs by taking expec-
tations: a player choosing mixed strategy x against an opponent choosing mixed strategy
y garners an expected payoff of

(3) x′Ay =
∑
i∈S

∑
j∈S

xiAi jy j.

In biological contexts, payoffs are fitnesses, and represent levels of reproductive success
relative to some baseline level; equation (3) reflects the idea that in a large population,
expected reproductive success is what matters. In economic contexts, payoffs are utilities:
a numerical representation of players’ preferences under which equation (3) captures
players’ choices between uncertain outcomes [215].

The notion of Nash equilibrium extends easily to allow for mixed strategies. Mixed
strategy x is a symmetric Nash equilibrium of A if

(4) x′Ax ≥ y′Ax for all y ∈ X.

In words, x is a symmetric Nash equilibrium if its expected payoff against itself is at least
as high as the expected payoff obtainable by any other strategy y against x. Note that we
can represent the pure strategy i ∈ S using the mixed strategy ei ∈ X, the ith standard basis
vector in Rn. If we do so, then definition (4) restricted to such strategies is equivalent to
definition (1).

We illustrate these ideas with a few examples.

Example III.2. Consider the Stag Hunt game:

H S
H h h
S 0 s .

Each player in the Stag Hunt game chooses between hunting hare (H) and hunting stag
(S). A player who hunts hare always catches one, obtaining a payoff of h > 0. But hunting
stag is only successful if both players do so, in which case each obtains a payoff of s > h.
Hunting stag is potentially more profitable than hunting hare, but requires a coordinated
effort.
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In the Stag Hunt game, H and S (or, equivalently, eH and eS) are symmetric pure
Nash equilibria. This game also has a symmetric mixed Nash equilibrium, namely x∗ =

(x∗H, x
∗
S) = ( s−h

s ,
h
s ). If a player’s opponent chooses this mixed strategy, the player’s expected

payoff is h whether he chooses H, S, or any mixture between the two; in particular, x∗ is a
best response against itself.

To distinguish between the two pure equilibria, we might focus on the one that is payoff
dominant, in that it achieves the higher joint payoff. Alternatively, we can concentrate on
the risk dominant equilibrium [89], which utilizes the strategy preferred by a player who
thinks his opponent is equally likely to choose either option (that is, against an opponent
playing mixed strategy (xH, xS) = (1

2 ,
1
2 )). In the present case, since s > h, equilibrium

S is payoff dominant. Which strategy is risk dominant depends on further information
about the value of s. If s > 2h, then S is risk dominant. But if s < 2h, H is risk dominant:
evidently, payoff dominance and risk dominance need not agree. §

Example III.3. In the Hawk-Dove game [139], the two players are animals contesting a
resource of value v > 0. The players choose between two strategies: display (D) or
escalate (E). If both display, the resource is split; if one escalates and the other displays,
the escalator claims the entire resource; if both escalate, then each player is equally likely
to claim the entire resource or to be injured, suffering a cost of c > v in the latter case.

The payoff matrix for the Hawk-Dove game is therefore

D E

D 1
2v 0

E v 1
2 (v − c) .

This game has no symmetric Nash equilibrium in pure strategies. It does, however,
admit the symmetric mixed equilibrium x∗ = (x∗D, x

∗
E) = ( c−v

c ,
v
c ). (In fact, it can be shown

that every symmetric normal form game admits at least one symmetric mixed Nash
equilibrium [151].)

In this example, our focus on symmetric behavior may seem odd: rather than ran-
domizing symmetrically, it seems more natural for players to follow an asymmetric Nash
equilibrium in which one player escalates and the other displays. But the symmetric
equilibrium is the most relevant one for understanding natural selection in a populations
that are randomly matched in pairwise contests—see Section IV. §

Example III.4. Consider the class of Rock-Paper-Scissors games:
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R P S
R 0 −l w
P w 0 −l
S −l w 0 .

Here w > 0 is the benefit of winning the match and l > 0 the cost of losing; ties are
worth 0 to both players. We call this game good RPS if w > l, so that the benefit of
winning the match exceeds the cost of losing, standard RPS if w = l, and bad RPS if w < l.
Regardless of the values of w and l, the unique symmetric Nash equilibrium of this game,
x∗ = (x∗R, x

∗
P, x
∗
S) = (1

3 ,
1
3 ,

1
3 ), requires uniform randomization over the three strategies. §

IV. Static Notions of Evolutionary Stability

In introducing game-theoretic ideas to the study of animal behavior, Maynard Smith
promoted a fundamental principle: that the evolutionary success of (the genes underlying)
a given behavioral trait can depend on the prevalences of all traits. It follows that natural
selection among the traits can be modeled as random matching of animals to play normal
form games [137–140]. Working in this vein, Maynard Smith offered a stability concept for
populations of animals sharing a common behavioral trait—that of playing a particular
mixed strategy in the game at hand. Maynard Smith’s concept of evolutionary stability,
influenced by the work of Hamilton [87] on the evolution of sex ratios, defines such a
population as stable if it is resistant to invasion by a small group of mutants carrying a
different trait.

Suppose that a large population of animals is randomly matched to play the symmetric
normal form game A. We call mixed strategy x ∈ X an evolutionarily stable strategy (ESS) if

(5) x′A((1 − ε)x + εy) > y′A((1 − ε)x + εy) for all ε ≤ ε̄(y) and y , x.

To interpret condition (5), imagine that a population of animals programmed to play
mixed strategy x is invaded by a group of mutants programmed to play the alternative
mixed strategy y. Equation (5) requires that regardless of the choice of y, an incumbent’s
expected payoff from a random match in the post-entry population exceeds that of a
mutant so long as the size of the invading group is sufficiently small.

The definition of ESS above can also be expressed as a combination of two conditions:

x′Ax ≥ y′Ax for all y ∈ X;(4)

For all y , x,
[
x′Ax = y′Ax

]
implies that

[
x′Ay > y′Ay

]
.(6)
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Condition (4) is familiar: it requires that the incumbent strategy x be a best response to
itself, and so is none other than our definition of symmetric Nash equilibrium. Condition
(6) requires that if a mutant strategy y is an alternative best response against the incumbent
strategy x, then the incumbent earns a higher payoff against the mutant than the mutant
earns against itself.

A less demanding notion of stability can be obtained by allowing the incumbent and
the mutant in condition (6) to perform equally well against the mutant:

(7) For all y ∈ X,
[
x′Ax = y′Ax

]
implies that

[
x′Ay ≥ y′Ay

]
.

If x satisfies conditions (4) and (7), it is called a neutrally stable strategy (NSS) [139].
Let us apply these stability notions to the games introduced in Section III. Since every

ESS and NSS must be a Nash equilibrium, we need only consider whether the Nash
equilibria of these games satisfy the additional stability conditions, (6) and (7).

Example IV.1. In the Prisoner’s Dilemma game (Example III.1), the dominant strategy D
is an ESS. §

Example IV.2. In the Stag Hunt game (Example III.2), each pure Nash equilibrium is an
ESS. But the mixed equilibrium (x∗H, x

∗
S) = ( s−h

s ,
h
s ) is not an ESS: if mutants playing either

pure strategy enter the population, they earn a higher payoff than the incumbents in the
post-entry population. §

Example IV.3. In the Hawk-Dove game (Example III.3), the mixed equilibrium (x∗D, x
∗
E) =

( c−v
c ,

v
c ) is an ESS. Maynard Smith used this and other examples to explain the existence of

ritualized fighting in animals. While an animal who escalates always obtains the resource
when matched with an animal who merely displays, a population of escalators is unstable:
it can be invaded by a group of mutants who display, or who merely escalate less often. §

Example IV.4. In Rock-Paper-Scissors games (Example III.4), whether the mixed equilib-
rium x∗ = (1

3 ,
1
3 ,

1
3 ) is evolutionarily stable depends on the relative payoffs to winning and

losing a match. In good RPS (w > l), x∗ is an ESS; in standard RPS (w = l), x∗ is a NSS but
not an ESS, while in bad RPS (w < l), x∗ is neither an ESS nor an NSS. The last case shows
that neither evolutionary nor neutrally stable strategies need exist in a given game. §

The definition of an evolutionarily stable strategy has been extended to cover a wide
range of strategic settings, and has been generalized in a variety of directions. Prominent
among these developments are set-valued versions of ESS: in rough terms, these concepts
consider a set of mixed strategies Y ⊂ X to be stable if the no population playing a strategy
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in the set can be invaded successfully by a population of mutants playing a strategy
outside the set. Hines [95] provides a throrough survey of the first 15 years of research on
ESS and related notions of stability; key references on set-valued evolutionary solution
concepts include [15, 199, 206].

Maynard Smith’s notion of ESS attempts to capture the dynamic process of natural
selection using a static definition. The advantage of this approach is that his definition
is often easy to check in applications. Still, more convincing models of natural selection
should be explicitly dynamic models of natural selection, building on techniques from
the theories of dynamical systems and stochastic processes. Indeed, this thoroughgoing
approach can help us understand whether and when the ESS concept captures the notion
of robustness to invasion in a satisfactory way.

The remainder of this article concerns explicitly dynamic models of behavior. These
models will differ from approach taken in this section in two other important ways as
well. First, rather than looking at populations whose members all play a particular mixed
strategy, these models consider populations in which different members play different
pure strategies. Second, instead of maintaining a purely biological point of view, our
dynamic models will be equally well-suited to studying behavior in animal and human
populations.

V. Population Games

Population games provide a simple and general framework for studying strategic
interactions in large populations whose members play pure strategies. The simplest
population games are generated by random matching in normal form games, but the
population game framework allows for interactions of a more intricate nature.

We focus here on games played by a single population (i.e., games in which all agents
play equivalent roles). We suppose that there is a unit mass of agents, each of whom
chooses a pure strategy from the set S = {1, . . . ,n}. The aggregate behavior of these agents
is described by a population state x ∈ X, with x j representing the proportion of agents
choosing pure strategy j. We identify a population game with a continuous vector-valued
payoff function F : X → Rn. The scalar Fi(x) represents the payoff to strategy i when the
population state is x.

Population state x∗ is a Nash equilibrium of F if no agent can improve his payoff by
unilaterally switching strategies. More explicitly, x∗ is a Nash equilibrium if

(8) x∗i > 0 implies that Fi(x) ≥ F j(x) for all j ∈ S.
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Example V.1. Suppose that the unit mass of agents are randomly matched to play the
symmetric normal form game A. At population state x, the (expected) payoff to strategy
i is the linear function Fi(x) =

∑
j∈S Ai jx j; the payoffs to all strategies can be expressed

concisely as F(x) = Ax. It is easy to verify that x∗ is a Nash equilibrium of the population
game F if and only if x∗ is a symmetric Nash equilibrium of the symmetric normal form
game A. §

While population games generated by random matching are especially simple, many
games that arise in applications are not of this form. In the biology literature, games
outside the random matching paradigm are known as playing the field models [139].

Example V.2. Consider the following model of highway congestion [17, 143, 166, 173]. A
pair of towns, Home and Work, are connected by a network of links. To commute from
Home to Work, an agent must choose a path i ∈ S connecting the two towns. The payoff

the agent obtains is the negation of the delay on the path he takes. The delay on the path
is the sum of the delays on its constituent links, while the delay on a link is a function of
the number of agents who use that link.

Population games embodying this description are known as a congestion games. To
define a congestion game, let Φ be the collection of links in the highway network. Each
strategy i ∈ S is a route from Home to Work, and so is identified with a set of links Φi ⊆ Φ.
Each link φ is assigned a cost function cφ : R+ → R, whose argument is link φ’s utilization
level uφ:

uφ(x) =
∑

i∈ρ(φ)

xi , where ρ(φ) = {i ∈ S : φ ∈ Φi}

The payoff of choosing route i is the negation of the total delays on the links in this route:

Fi(x) = −
∑
φ∈Φi

cφ(uφ(x)).

Since driving on a link increases the delays experienced by other drivers on that link
(i.e., since highway congestion involves negative externalities), cost functions in models
of highway congestion are increasing; they are typically convex as well. Congestion
games can also be used to model positive externalities, like the choice between different
technological standards; in this case, the cost functions are decreasing in the utilization
levels. §
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VI. Revision Protocols

We now introduce foundations for our models of evolutionary dynamics. These
foundations are built on the notion of a revision protocol, which describes both the
timing and results of agents’ myopic decisions about how to continue playing the game at
hand [24,35,96,175,217]. Revision protocols will be used to derive both the deterministic
dynamics studied in Section VII and the stochastic dynamics studied in VIII; very similar
ideas underlie the local interaction models introduced in Section IX.

VI.1 Definition

Formally, a revision protocol is a map ρ : Rn
× X → Rn×n

+ that takes the payoff vectors π
and population states x as arguments, and returns nonnegative matrices as outputs. For
reasons to be made clear below, scalar ρi j (π, x) is called the conditional switch rate from
strategy i to strategy j.

To move from this notion to an explicit model of evolution, let us consider a population
consisting of N < ∞ members. (A number of the analyses to follow will consider the
limit of the present model as the population size N approaches infinity—see Sections
VII.1, VIII.1, and VIII.3.4.) In this case, the set of feasible social states is the finite set
X N = X ∩ 1

N Zn = {x ∈ X : Nx ∈ Zn
}, a grid embedded in the simplex X.

A revision protocolρ, a population game F, and a population size N define a continuous-
time evolutionary process—a Markov process {XN

t }—on the finite state space X N. A one-
size-fits-all description of this process is as follows. Each agent in the society is equipped
with a “stochastic alarm clock”. The times between rings of of an agent’s clock are inde-
pendent, each with a rate R exponential distribution. The ringing of a clock signals the
arrival of a revision opportunity for the clock’s owner. If an agent playing strategy i ∈ S
receives a revision opportunity, he switches to strategy j , i with probability ρi j/R. If a
switch occurs, the population state changes accordingly, from the old state x to a new state
y that accounts for the agent’s change in strategy.

While this interpretation of the evolutionary process can be applied to any revision
protocol, simpler interpretations are sometimes available for protocols with additional
structure. The examples to follow illustrate this point.
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VI.2 Examples

VI.2.1 Imitative Protocols and Natural Selection Protocols

In economic contexts, revision protocols of the form

(9) ρi j(π, x) = x jρ̂i j(π, x)

are called imitative protocols [35, 96, 216]. These protocols can be given a very simple
interpretation: when an agent receives a revision opportunity, he chooses an opponent
at random and observes her strategy. If our agent is playing strategy i and the opponent
strategy j, the agent switches from i to j with probability proportional to ρ̂i j. Notice that
the value of the population share x j is not something the agent need know; this term in
(9) accounts for the agent’s observing a randomly chosen opponent.

Example VI.1. Suppose that after selecting an opponent, the agent imitates the opponent
only if the opponent’s payoff is higher than his own, doing so in this case with probability
proportional to the payoff difference:

ρi j(π, x) = x j[π j − πi]+.

This protocol is known as pairwise proportional imitation [188]. §

Protocols of form (9) also appear in biological contexts, starting with the work of
Moran [144], and revisited more recently in [153, 158]; in these cases we refer to them as
natural selection protocols. The biological interpretation of (9) supposes that each agent is
programmed to play a single pure strategy. An agent who receives a revision opportunity
dies, and is replaced through asexual reproduction. The reproducing agent is a strategy j
player with probability ρi j(π, x) = x jρ̂i j(π, x), which is proportional both to the number of
strategy j players and to some function of the prevalences and fitnesses of all strategies.
Note that this interpretation requires the restriction∑

j∈S

ρi j(π, x) ≡ 1.

Example VI.2. Suppose that payoffs are always positive, and let

(10) ρi j(π, x) =
x j π j∑

k∈S xk πk
.

Understood as a natural selection protocol, (10) says that the probability that the repro-
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ducing agent is a strategy j player is proportional to x jπ j, the aggregate fitness of strategy
j players.

In economic contexts, we can interpret (10) as an imitative protocol based on repeated
sampling. When an agent’s clock rings he chooses an opponent at random. If the opponent
is playing strategy j, the agent imitates him with probability proportional to π j. If the
agent does not imitate this opponent, he draws a new opponent at random and repeats
the procedure. §

VI.2.2 Evaluative Protocols

In the previous examples, only strategies currently in use have any chance of being
chosen by a revising agent (or of being the programmed strategy of the newborn agent).
Under other protocols, agents’ choices are not mediated through the population’s current
behavior, except indirectly via the effect of behavior on payoffs. These evaluative protocols
require agents to directly evaluate the payoffs of each strategy, rather than to indirectly
evaluate them as under an imitative procedure.

Example VI.3. Suppose that choices are made according to the logit choice rule:

(11) ρi j(π, x) =
exp(η−1π j)∑

k∈S exp(η−1πk)
.

The interpretation of this protocol is simple. Revision opportunities arrive at unit rate.
When an opportunity is received by an i player, he switches to strategy j with probability
ρi j(π, x), which is proportional to an exponential function of strategy j’s payoffs. The
parameter η > 0 is called the noise level. If η is large, choice probabilities under the logit
rule are nearly uniform. But if η is near zero, choices are optimal with probability close to
one, at least when the difference between the best and second best payoff is not too small.
§

Additional examples of revision protocols can be found in the next section, and one
can construct new revision protocols by taking linear combinations of old ones; see [183]
for further discussion.

VII. Deterministic Dynamics

Although antecedents of this approach date back to the early work of Brown and von
Neumann [45], the use of differential equations to model evolution in games took root
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with the introduction of the replicator dynamic by Taylor and Jonker [205], and remains
an vibrant area of research; Hofbauer and Sigmund [108] and Sandholm [183] offer recent
surveys. In this section, we derive a deterministic model of evolution: the mean dynamic
generated by a revision protocol and a population game. We study this deterministic
model from various angles, focusing in particular on local stability of rest points, global
convergence to equilibrium, and nonconvergent limit behavior.

While the bulk of the literature on deterministic evolutionary dynamics is consistent
with the approach we take here, we should mention that other specifications exist, in-
cluding discrete time dynamics [5,59,131,218], and dynamics for games with continuous
strategy sets [41, 42, 77, 100, 159, 160] and for Bayesian population games [62, 70, 179].
Also, deterministic dynamics for extensive form games introduce new conceptual issues;
see [28, 30, 51, 53, 55] and the monograph of Cressman [54].

VII.1 Mean Dynamics

As described in Section VI.1, a revision protocol ρ, a population game F, and a popu-
lation size N define a Markov process {XN

t } on the finite state space X N. We now derive
a deterministic process—the mean dynamic—that describes the expected motion of {XN

t }.
In Section VIII.1, we will describe formally the sense in which this deterministic process
provides a very good approximation of the behavior of the stochastic process {XN

t }, at least
over finite time horizons and for large population sizes. But having noted this result, we
will focus in this section on the deterministic process itself.

To compute the expected increment of {XN
t } over the next dt time units, recall first that

each of the N agents receives revision opportunities via a rate R exponential distribution,
and so expects to receive R dt opportunities during the next dt time units. If the current state
is x, the expected number of revision opportunities received by agents currently playing
strategy i is approximately Nxi R dt. Since an i player who receives a revision opportunity
switches to strategy j with probability ρi j/R, the expected number of such switches during
the next dt time units is approximately Nxi ρi j dt. Therefore, the expected change in the
number of agents choosing strategy i during the next dt time units is approximately

(12) N

∑
j∈S

x jρ ji(F(x), x) − xi

∑
j∈S

ρi j(F(x), x)

 dt.

Dividing expression (12) by N and eliminating the time differential dt yields a differential
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equation for the rate of change in the proportion of agents choosing strategy i:

(M) ẋi =
∑
j∈S

x jρ ji(F(x), x) − xi

∑
j∈S

ρi j(F(x), x).

Equation (M) is the mean dynamic (or mean field) generated by revision protocol ρ in
population game F. The first term in (M) captures the inflow of agents to strategy i from
other strategies, while the second captures the outflow of agents to other strategies from
strategy i.

VII.2 Examples

We now describe some examples of mean dynamics, starting with ones generated by
the revision protocols from Section VI.2. To do so, we let

F(x) =
∑
i∈S

xiFi(x)

denote the average payoff obtained by the members of the population, and define the excess
payoff to strategy i, F̂i(x) = Fi(x)− F(x), to be the difference between strategy i’s payoff and
the population’s average payoff.

Example VII.1. In Example VI.1, we introduced the pairwise proportional imitation pro-
tocol ρi j(π, x) = x j[π j − πi]+. This protocol generates the mean dynamic

(13) ẋi = xiF̂i(x).

Equation (13) is the replicator dynamic [205], the best-known dynamic in evolutionary game
theory. Under this dynamic, the percentage growth rate ẋi/xi of each strategy currently in
use is equal to that strategy’s current excess payoff; unused strategies always remain so.
There are a variety of revision protocols other than pairwise proportional imitation that
generate the replicator dynamic as their mean dynamics; see [35, 96, 108, 217]. §

Example VII.2. In Example VI.2, we assumed that payoffs are always positive, and in-
troduced the protocol ρi j ∝ x j π j, which we interpreted both as a model of biological
natural selection and as a model of imitation with repeated sampling. The resulting mean
dynamic,

(14) ẋi =
xiFi(x)∑

k∈S xkFk(x)
− xi =

xiF̂i(x)

F(x)
,
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is the Maynard Smith replicator dynamic [139]. This dynamic only differs from the standard
replicator dynamic (13) by a change of speed, with motion under (14) being relatively fast
when average payoffs are relatively low. (In multipopulation models, the two dynamics
are less similar, and convergence under one does not imply convergence under the other—
see [183, 216].) §

Example VII.3. In Example VI.3 we introduced the logit choice rule ρi j(π, x) ∝ exp(η−1π j).
The corresponding mean dynamic,

(15) ẋi =
exp(η−1Fi(x))∑

k∈S exp(η−1Fk(x))
− xi,

is called the logit dynamic [82].
If we take the noise level η to zero, then the probability with which a revising agent

chooses the best response approaches one whenever the best response is unique. At such
points, the logit dynamic approaches the best response dynamic [84]:

(16) ẋ ∈ BF(x) − x,

where

BF(x) = argmax
y∈X

y′F(x)

defines the (mixed) best response correspondence for game F. Note that unlike the other
dynamics we consider here, (16) is defined not by an ordinary differential equation, but
by a differential inclusion, a formulation proposed in [97]. §

Example VII.4. Consider the evaluative protocol

ρi j(π, x) =
[
π j −

∑
k∈S

xkπk

]
+
.

When an agent’s clock rings, he chooses a strategy at random; if that strategy’s payoff is
above average, the agent switches to it with probability proportional to its excess payoff.
The resulting mean dynamic,

ẋi = [F̂i(x)]+ − xi

∑
k∈S

[F̂k(x)]+,

is called the Brown-von Neumann-Nash (BNN) dynamic [45]; see also [98, 176, 194, 200, 217].
§
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Revision protocol Mean dynamic Name and source

ρi j = x j[π j − πi]+ ẋi = xiF̂i(x) replicator [205]

ρi j =
exp(η−1π j)∑

k∈S exp(η−1πk)
ẋi =

exp(η−1Fi(x))∑
k∈S exp(η−1Fk(x))

− xi logit [82]

ρi j = 1{ j=argmaxk∈S πk} ẋ ∈ BF(x) − x best response [84]

ρi j = [π j −
∑

k∈S xkπk]+ ẋi = [F̂i(x)]+ − xi
∑
j∈S

[F̂ j(x)]+ BNN [45]

ρi j = [π j − πi]+

ẋi =
∑
j∈S

x j[Fi(x) − F j(x)]+

−xi
∑
j∈S

[F j(x) − Fi(x)]+

Smith [197]

Table I: Five basic deterministic dynamics.

Example VII.5. Consider the evaluative revision protocol

ρi j(π, x) = [π j − πi]+.

When an agent’s clock rings, he selects a strategy at random. If the new strategy’s
payoff is higher than his current strategy’s payoff, he switches strategies with probability
proportional to the difference between the two payoffs. The resulting mean dynamic,

(17) ẋi =
∑
j∈S

x j[Fi(x) − F j(x)]+ − xi

∑
j∈S

[F j(x) − Fi(x)]+,

is called the Smith dynamic [197]; see also [178]. §

We summarize these examples of revision protocols and mean dynamics in Table I.
Figure 1 presents phase diagrams for the five basic dynamics when the population is

randomly matched to play standard Rock-Paper-Scissors (Example III.4). In the phase
diagrams, colors represent speed of motion: within each diagram, motion is fastest in the
red regions and slowest in the blue ones.

The phase diagram of the replicator dynamic reveals closed orbits around the unique
Nash equilibrium x∗ = (1

3 ,
1
3 ,

1
3 ). Since this dynamic is based on imitation (or on reproduc-

tion), each face and each vertex of the simplex X is an invariant set: a strategy initially
absent from the population will never subsequently appear.

The other four dynamics pictured are based on evaluative protocols, which allow
agents to select strategies that are currently unused. In these cases, the Nash equilibrium
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R

P S

(i) replicator

R

P S

(ii) logit(.08)

R

P S

(iii) best response

R

P S

(iv) BNN

R

P S

(v) Smith

Figure 1: Five basic deterministic dynamics in standard Rock-Paper-Scissors. Colors represent speeds: red
is fastest, blue is slowest
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is the sole rest point, and attracts solutions from all initial conditions. (In the case of
the logit dynamic, the rest point happens to coincide with the Nash equilibrium only
because of the symmetry of the game; see [101, 104].) Under the logit and best response
dynamics, solution trajectories quickly change direction and then accelerate when the
best response to the population state changes; under the BNN and especially the Smith
dynamic, solutions approach the Nash equlibrium in a less angular fashion.

VII.3 Evolutionary Justification of Nash Equilibrium

One of the goals of evolutionary game theory is to justify the prediction of Nash
equilibrium play. For this justification to be convincing, it must be based on a model that
makes only mild assumptions about agents’ knowledge about one another’s behavior.
This sentiment can be captured by introducing two desiderata for revision protocols:

(C) Continuity: ρ is Lipschitz continuous.
(SD) Scarcity of data: ρi j only depends on πi, π j, and x j.

Continuity (C) asks that revision protocols depend continuously on their inputs, so that
small changes in aggregate behavior do not lead to large changes in players’ responses.
Scarcity of data (SD) demands that the conditional switch rate from strategy i to strategy j
only depend on the payoffs of these two strategies, so that agents need only know those
facts that are most germane to the decision at hand [178]. (The dependence of ρi j on x j

is included to allow for dynamics based on imitation.) Protocols that respect these two
properties do not make unrealistic demands on the amount of information that agents in
an evolutionary model possess.

Our two remaining desiderata impose restrictions on mean dynamics ẋ = VF(x), linking
the evolution of aggregate behavior to incentives in the underlying game.

(NS) Nash stationarity: VF(x) = 0 if and only if x ∈ NE(F).
(PC) Positive correlation: VF(x) , 0 implies that VF(x)′F(x) > 0.

Nash stationarity (NS) is a restriction on stationary states: it asks that the rest points of
the mean dynamic be precisely the Nash equilibria of the game being played. Positive
correlation (PC) is a restriction on disequilibrium adjustment: it requires that away from
rest points, strategies’ growth rates be positively correlated with their payoffs. Condition
(PC) is among the weakest of the many conditions linking growth rates of evolutionary
dynamics and payoffs in the underlying game; for alternatives, see [76, 110, 149, 162, 170,
173, 200].
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Dynamic Family (C) (SD) (NS) (PC)

replicator imitation yes yes no yes
best response no yes∗ yes∗ yes∗

logit perturbed best response yes yes∗ no no
BNN excess payoff yes no yes yes
Smith pairwise comparison yes yes yes yes

Table II: Families of deterministic evolutionary dynamics and their properties; yes∗ indicates that a weaker
or alternate form of the property is satisfied.

In Table II, we report how the the five basic dynamics fare under these criteria. For
the purposes of justifying the Nash prediction, the most important row in the table is the
last one, which reveals that the Smith dynamic satisfies all four desiderata at once: while
the revision protocol for the Smith dynamic (see Example VII.5) requires only limited
information on the part of the agents who employ it, this information is enough to ensure
that rest points of the dynamic and Nash equilibria coincide.

In fact, the dynamics introduced above can be viewed as members of families of
dynamics that are based on similar revision protocols and that have similar qualitative
properties. For instance, the Smith dynamic is a member of the family of pairwise compar-
ison dynamics [178], under which agents only switch to strategies that outperform their
current choice. For this reason, the exact functional forms of the previous examples are
not essential to establishing the properties noted above.

In interpreting these results, it is important to remember that Nash stationarity only
concerns the rest points of a dynamic; it says nothing about whether a dynamic will
converge to Nash equilibrium from an arbitrary initial state. The question of convergence
is addressed in Sections VII.5 and VII.6. There we will see that in some classes of games,
general guarantees of convergence can be obtained, but that there are some games in
which no reasonable dynamic converges to equilibrium.

VII.4 Local Stability

Before turning to the global behavior of evolutionary dynamics, we address the ques-
tion of local stability. As we noted at the onset, an original motivation for introducing
game dynamics was to provide an explicitly dynamic foundation for Maynard Smith’s
notion of ESS [205]. Some of the earliest papers on evolutionary game dynamics [105,224]
established that being an ESS is a sufficient condition for asymptotically stablity under
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the replicator dynamic, but that it is not a necessary condition. It is curious that this
connection obtains despite the fact that ESS is a stability condition for a population whose
members all play the same mixed strategy, while (the usual version of) the replicator
dynamic looks at populations of agents choosing among different pure strategies.

In fact, the implications of ESS for local stability are not limited to the replicator
dynamic. Suppose that the symmetric normal form game A admits a symmetric Nash
equilibrium that places positive probability on each strategy in S. One can show that this
equilibrium is an ESS if and only if the payoff matrix A is negative definite with respect
to the tangent space of the simplex:

(18) z′Az < 0 for all z ∈ TX =
{
ẑ ∈ Rn :

∑
i∈S

ẑi = 0
}
.

Condition (18) and its generalizations imply local stability of equilibrium not only under
the replicator dynamic, but also under a wide range of other evolutionary dynamics:
see [52, 98, 99, 102, 111, 179] for further details.

The papers cited above use linearization and Lyapunov function arguments to establish
local stability. An alternative approach to local stability analysis, via index theory, allows
one to establish restrictions on the stability properties of all rest points at once—see [60].

VII.5 Global Convergence

While analyses of local stability reveal whether a population will return to equilib-
rium after a small disturbance, they do not tell us whether the population will approach
equilibrium from an arbitrary disequilibrium state. To establish such global convergence
results, we must restrict attention to classes of games defined by certain interesting payoff

structures. These structures appear in applications, lending strong support for the Nash
prediction in the settings where they arise.

VII.5.1 Potential Games

A potential game [17, 106, 143, 166, 173, 181] is a game that admits a potential function: a
scalar valued function whose gradient describes the game’s payoffs. In a full potential
game F : Rn

+ → Rn (see [181]), all information about incentives is captured by the potential
function f : Rn

+ → R, in the sense that

(19) ∇ f (x) = F(x) for all x ∈ Rn
+.
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If F is smooth, then it is a full potential game if and only if it satisfies full externality
symmetry:

(20)
∂Fi

∂x j
(x) =

∂F j

∂xi
(x) for all i, j ∈ S and x ∈ Rn

+.

That is, the effect on the payoff to strategy i of adding new strategy j players always equals
the effect on the payoff to strategy j of adding new strategy i players.

Example VII.6. Suppose a single population is randomly matched to play the symmetric
normal form game A ∈ Rn×n, generating the population game F(x) = Ax. We say that A
exhibits common interests if the two players in a match always receive the same payoff.
This means that Ai j = A ji for all i and j, or, equivalently, that the matrix A is symmetric.
Since DF(x) = A, this is precisely what we need for F to be a full potential game. The full
potential function for F is f (x) = 1

2x′Ax, which is one-half of the average payoff function
F̄(x) =

∑
i∈S xiFi(x) = x′Ax. The common interest assumption defines a fundamental model

from population genetics, where the common interest assumption reflects the shared fate
of two genes that inhabit the same organism [73, 106, 107]. §

Example VII.7. In Example V.2, we introduced congestion games, a basic model of network
congestion. To see that these games are potential games, observe that an agent taking path
j ∈ S affects the payoffs of agents choosing path i ∈ S through the marginal increases in
congestion on the links φ ∈ Φi ∩ Φ j that the two paths have in common. But since the
marginal effect of an agent taking path i on the payoffs of agents choosing path j is
identical, full externality symmetry (20) holds:

∂Fi

∂x j
(x) = −

∑
φ∈Φi∩Φ j

c′φ(uφ(x)) =
∂F j

∂xi
(x).

In congestion games, the potential function takes the form

f (x) = −
∑
φ∈Φ

∫ uφ(x)

0
cφ(z) dz,

and so is typically unrelated to aggregate payoffs,

F(x) =
∑
i∈S

xiFi(x) = −
∑
φ∈Φ

uφ(x) cφ(uφ(x)).

However, potential is proportional to aggregate payoffs if the cost functions cφ are all
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monomials of the same degree [56, 173]. §

Population state x is a Nash equilibrium of the potential game F if and only if it
satisfies the Kuhn-Tucker first order conditions for maximizing the potential function f
on the simplex X [17, 173]. Furthermore, it is simple to verify that any dynamic ẋ = VF(x)
satisfying positive correlation (PC) ascends the potential function:

d
dt f (xt) = ∇ f (xt)′ẋt = F(xt)′VF(xt) ≥ 0.

It then follows from classical results on Lyapunov functions that any dynamic satisfying
(PC) converges to a connected set of rest points. If the dynamic also satisfies Nash
stationarity (NS), these sets consist entirely of Nash equilibria. Thus, in potential games,
very mild conditions on agents’ adjustment rules are sufficient to justify the prediction of
Nash equilibrium play.

In the case of the replicator dynamic, one can say more. On the interior of the simplex
X, the replicator dynamic for the potential game F is a gradient system for the potential
function f (i.e., it always ascends f in the direction of maximum increase). However, this
is only true after one introduces an appropriate Riemannian metric on X [123, 192]. An
equivalent statement of this result, due to Akin [2], is that the replicator dynamic is the
gradient system for f under the usual Euclidean metric if we stretch the state space X
onto the radius 2 sphere. This stretching is accomplished using the Akin transformation
Hi(x) = 2

√
xi, which emphasizes changes in the use of rare strategies relative to changes

in the use of common ones [2,4,185]. (There is also a dynamic that generates the gradient
system for f on X under the usual metric: the so-called projection dynamic [130, 150, 185].)

Example VII.8. Consider evolution in 123 Coordination:

1 2 3
1 1 0 0
2 0 2 0
3 0 0 3 .

Figure 2(i) presents a phase diagram of the replicator dynamic on its natural state space
X, drawn atop of a contour plot of the potential function f (x) = 1

2 ((x1)2 + 2(x2)2 + 3(x3)2)).
Evidently, all solution trajectories ascend this function and converge to one of the seven
symmetric Nash equilibria, with trajectories from all but a measure zero set of initial
conditions converging to one of the three pure equilibria.

Figure 2(ii) presents another phase diagram for the replicator dynamic, this time after
the solution trajectories and the potential function have been transported to the surface of
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the radius 2 sphere using the Akin transformation. In this case, solutions cross the level
sets of the potential function orthogonally, moving in the direction that increases potential
most quickly. §

VII.5.2 Stable Games

A population game F is a stable game [102] if

(21) (y − x)′(F(y) − F(x)) ≤ 0 for all x, y ∈ X.

If the inequality in (21) always holds strictly, then F is a strictly stable game.
If F is smooth, then F is a stable game if and only if it satisfes self-defeating externalities:

(22) z′DF(x)z ≤ 0 for all z ∈ TX and x ∈ X,

where DF(x) is the derivative of F : X → Rn at x. This condition requires that the
improvements in the payoffs of strategies to which revising agents are switching are
always exceeded by the improvements in the payoffs of strategies which revising agents
are abandoning.

Example VII.9. The symmetric normal form game A is symmetric zero-sum if A is skew-
symmetric (i.e., if A = −A′), so that the payoffs of the matched players always sum to
zero. (An example is provided by the standard Rock-Paper-Scissors game (Example III.4).)
Under this assumption, z′Az = 0 for all z ∈ Rn; thus, the population game generated by
random matching in A, F(x) = Ax, is a stable game that is not strictly stable. §

Example VII.10. Suppose that A satisfies the interior ESS condition (18). Then (22) holds
strictly, so F(x) = Ax is a strictly stable game. Examples satisfying this condition include
the Hawk-Dove game (Example III.3) and any good Rock-Paper-Scissors game (Example
III.4). §

Example VII.11. A war of attrition [33] is a symmetric normal form game in which strategies
represent amounts of time committed to waiting for a scarce resource. If the two players
choose times i and j > i, then the j player obtains the resource, worth v, while both players
pay a cost of ci: once the first player leaves, the other seizes the resource immediately. If
both players choose time i, the resource is split, so payoffs are v

2 − ci each. It can be shown
that for any resource value v ∈ R and any increasing cost vector c ∈ Rn, random matching
in a war of attrition generates a stable game [102]. §
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2 3

(i) on the original state space

1

2

3

(ii) on the transformed state space

Figure 2: The replicator dynamic in 123 Coordination. Colors represent the value of the game’s potential
function.
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Dynamic Lyapunov function for stable games

replicator Hx∗(x) =
∑

i∈S(x∗) x∗i log
x∗i
xi

logit G̃(x) = max
y∈int(X)

(
y′F̂(x) − η

∑
i∈S yi log yi

)
+ η

∑
i∈S xi log xi

best response G(x) = max
i∈S

F̂i(x)

BNN Γ(x) = 1
2

∑
i∈S[F̂i(x)]2

+

Smith Ψ(x)= 1
2

∑
i∈S

∑
j∈S

xi[F j(x)−Fi(x)]2
+

Table III: Lyapunov functions for five basic deterministic dynamics in stable games.

The flavor of the self-defeating externalities condition (22) suggests that obedience of
incentives will push the population toward some “central” equilibrium state. In fact, the
set of Nash equilibria of a stable game is always convex, and in the case of strictly stable
games, equilibrium is unique. Moreover, it can be shown that the replicator dynamic
converges to Nash equilibrium from all interior initial conditions in any strictly stable
game [4, 105, 224], and that the evaluative dynamics introduced above converge to Nash
equilibrium from all initial conditions in all stable games, strictly stable or not [98,102,104,
197]. In each case, the proof of convergence is based on the construction of a Lyapunov
function that solutions of the relevant dynamic descend. The Lyapunov functions for the
five basic dynamics are presented in Table III.

Interestingly, the convergence results for evaluative dynamics are not restricted to the
dynamics listed in Table III, but extend to other dynamics in the same families (cf Table
II). But compared to the conditions for convergence in potential games, the conditions for
convergence in stable games demand additional structure on the adjustment process [102].

VII.5.3 Perturbed Best Response Dynamics in Supermodular Games

Supermodular games are defined by the property that higher choices by one’s op-
ponents (with respect to the natural ordering on S = {1, . . . ,n}) make one’s own higher
strategies look relatively more desirable. Let Σ ∈ R(n−1)×n satisfy Σi j equal 1 if j > i and
equal 0 otherwise, so that Σx ∈ Rn−1 is the “decumulative distribution function” corre-
sponding to the “density function” x. The population game F is a supermodular game if it
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exhibits strategic complementarities:

(23) If Σy ≥ Σx, then Fi+1(y) − Fi(y) ≥ Fi+1(x) − Fi(x) for all i < n and x ∈ X.

If F is smooth, condition (23) is equivalent to

(24)
∂(Fi+1 − Fi)
∂(e j+1 − e j)

(x) ≥ 0 for all i, j < n and x ∈ X.

Example VII.12. Consider this model of search with positive externalities. A population of
agents choose levels of search effort in S = {1, . . . ,n}. The payoff to choosing effort i is

Fi(x) = m(i) b(a(x)) − c(i),

where a(x) =
∑

k≤n kxk is the aggregate search effort, b is some increasing benefit function,
m is an increasing multiplier function, and c is an arbitrary cost function. Notice that
the benefits from searching are increasing in both own search effort and in the aggregate
search effort. It is easy to check that F is a supermodular game. §

Complementarity condition (23) implies that the agents’ best response correspondence
is monotone in the stochastic dominance order, which in turn ensures the existence of min-
imal and maximal Nash equilibria [207]. One can take advantage of the monotoncity of
best responses in studying evolutionary dynamics by appealing to the theory of mono-
tone dynamical systems [196]. To do so, one needs to focus on dynamics that respect
the monotonicity of best responses and that also are smooth, so that the the theory of
monotone dynamics can be applied. It turns out that the logit dynamic satisfies these cri-
teria; so does any perturbed best response dynamic defined in terms of stochastic payoff

perturbations. In supermodular games, these dynamics define cooperative differential
equations; consequently, solutions of these dynamics from almost every initial condition
converge to an approximate Nash equilibrium [104].

VII.5.4 Imitation Dynamics in Dominance Solvable Games

Suppose that in the population game F, strategy i is a strictly dominated by strategy
j: Fi(x) < F j(x) for all x ∈ X. Consider the evolution of behavior under the replicator
dynamic (13). Since for this dynamic we have

d
dt

xi

x j
=

ẋix j − ẋ jxi

(x j)2 =
xiF̂i(x)x j − x jF̂ j(x)xi

(x j)2 =
xi

x j

(
F̂i(x) − F̂ j(x)

)
,
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solutions from every interior initial condition converge to the face of the simplex where
the dominated strategy is unplayed [3]. It follows that the replicator dynamic converges in
games with a strictly dominant strategy, and by iterating this argument, one can show that
this dynamic converges to equilibrium in any game that can be solved by iterative deletion
of strictly dominated strategies. In fact, this argument is not specific to the replicator
dynamic, but can be shown to apply to a range of dynamics based on imitation [110,170].
Even in games which are not dominance solvable, arguments of a similar flavor can be
used to restrict the long run behavior of imitative dynamics to better-reply closed sets [162];
see Section VIII.2 for a related discussion.

While the analysis here has focused on imitative dynamics, it is natural to expect the
results described above to extend to any reasonable evolutionary dynamic. But we will
see in Section VII.6.4 that this is not the case: the elimination of dominated strategies that
obtains under imitative dynamics is the exception, not the rule.

VII.6 Nonconvergence

The previous section revealed that when certain global structural conditions on payoffs
are satisfied, one can establish global convergence to equilibrium under various classes
of evolutionary dynamics. Of course, if these conditions are not met, convergence cannot
be guaranteed. In this section, we offer examples to illustrate some of the possibilities for
nonconvergent limit behavior.

VII.6.1 Conservative Properties of the Replicator Dynamic in Zero-Sum Games

In Section VII.5.2, we noted that in strictly stable games, the replicator dynamic con-
verges to Nash equilibrium from all interior initial conditions. To prove this, one shows
that interior solutions descend the function

Hx∗(x) =
∑

i∈S(x∗)

x∗i log
x∗i
xi
,

until converging to its minimizer, the unique Nash equilibrium x∗.
Now, random matching in a symmetric zero-sum game generates a population game

that is stable, but not strictly stable (Example VII.9). In this case, for each Nash equilibrium
x∗, the function Hx∗ is a constant of motion for the replicator dynamic: its value is fixed
along every interior solution trajectory.

Example VII.13. Suppose that agents are randomly matched to play the symmetric zero-
sum game A, given by
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1

3

4

Figure 3: Solutions of the replicator dynamic in a zero-sum game. The solutions pictured lie on the level set
Hx∗ (x) = .58.

1 2 3 4
1 0 −1 0 1
2 1 0 −1 0
3 0 1 0 −1
4 −1 0 1 0 .

The Nash equilibria of F(x) = Ax are the points on the line segment NE connecting states
( 1

2 , 0,
1
2 , 0) and (0, 1

2 , 0,
1
2 ), a segment that passes through the barycenter x∗ = (1

4 ,
1
4 ,

1
4 ,

1
4 ).

Figure 3 shows solutions to the replicator dynamic that lie on the level set Hx∗(x) = .58.
Evidently, each of these solutions forms a closed orbit. §

Although solution trajectories of the replicator dynamic do not converge in zero-sum
games, it can be proved that the the time average of each solution trajectory converges to
Nash equilibrium [190].

The existence of a constant of motion is not the only conservative property enjoyed
by replicator dynamics for symmetric zero-sum games: these dynamics are also volume
preserving after an appropriate change of speed or change of measure [5, 96].

VII.6.2 Games with Nonconvergent Dynamics

The conservative properties described in the previous section have been established
only for the replicator dynamic (and its distant relative, the projection dynamic [185]).
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Starting with Shapley [193], many researchers have sought to construct games in which
large classes of evolutionary dynamics fail to converge to equilibrium.

Example VII.14. Suppose that players are randomly matched to play the following sym-
metric normal form game [107, 109]:

1 2 3 4
1 0 0 −1 ε

2 ε 0 0 −1
3 −1 ε 0 0
4 0 −1 ε 0 .

When ε = 0, the payoff matrix Aε = A0 is symmetric, so F0 is a potential game with
potential function f (x) = 1

2x′A0x = −x1x3 − x2x4. The function f attains its minimum of −1
4

at states v = ( 1
2 , 0,

1
2 , 0) and w = (0, 1

2 , 0,
1
2 ), has a saddle point with value −1

8 at the Nash
equilibrium x∗ = (1

4 ,
1
4 ,

1
4 ,

1
4 ), and attains its maximum of 0 along the closed path of Nash

equilibria γ consisting of edges e1e2, e2e3, e3e4, and e4e1.
Let ẋ = VF(x) be an evolutionary dynamic that satisfies Nash stationarity (NS) and

positive correlation (PC), and that is based on a revision protocol that is continuous (C). If
we apply this dynamic to game F0, then the foregoing discussion implies that all solutions
to ẋ = VF0(x) whose initial conditions ξ satisfy f (ξ) > −1

8 converge toγ. The Smith dynamic
for F0 is illustrated in Figure 4(i).

Now consider the same dynamic for the game Fε, where ε > 0. By continuity (C), the
attractor γ of VF0 continues to an attractor γε of VFε whose basin of attraction approximates
that of γ under ẋ = VF0(x) (Figure 4(ii)). But since the unique Nash equilibrium of Fε is
the barycenter x∗, this proves that solutions from most initial conditions converge to an
attractor far from any Nash equilibrium. §

Other examples of games in which many dynamics fail to converge include monocyclic
games [22, 83, 97, 106], Mismatching Pennies [91, 116], and the hypnodisk game [103].
These examples demonstrate that there is no evolutionary dynamic that converges to
Nash equilibrium regardless of the game at hand, and so that in general, analyses of long
run behavior should not restrict attention to equilibria alone.

VII.6.3 Chaotic Dynamics

We have seen that deterministic evolutionary game dynamics can follow closed orbits
and approach limit cycles. We now show that they also can behave chaotically.
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Figure 4: Solutions of the Smith dynamic in (i) the potential game F0; (ii) the perturbed potential game Fε,
ε = 1

10 .

–32–



1

3

4

Figure 5: Chaotic behavior under the replicator dynamic.

Example VII.15. Consider evolution under the replicator dynamic when agents are ran-
domly matched to play the symmetric normal form game below [13, 195], whose lone
interior Nash equilibrium is the barycenter x∗ = ( 1

4 ,
1
4 ,

1
4 ,

1
4 ):

1 2 3 4
1 0 −12 0 22
2 20 0 0 −10
3 −21 −4 0 35
4 10 −2 2 0 .

Figure 5 presents a solution to the replicator dynamic for this game from initial condition
x0 = (.24, .26, .25, .25). This solution spirals clockwise about x∗. Near the rightmost point
of each circuit, where the value of x3 gets close to zero, solutions sometimes proceed along
an “outside” path on which the value of x3 surpasses .6. But they sometimes follow an
“inside” path on which x3 remains below .4, and at other times do something in between.
Which of these alternatives occurs is difficult to predict from approximate information
about the previous behavior of the system. §
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While the game in Example VII.15 has a complicated payoff structure, in multipopu-
lation contexts one can find chaotic evolutionary dynamics in very simple games [187].

VII.6.4 Survival of Dominated Strategies

In Section VII.5.4, we saw that dynamics based on imitation eliminate strictly domi-
nated strategies along solutions from interior initial conditions. While this result seems
unsurprising, it is actually extremely fragile: [25, 103] prove that dynamics that satisfy
continuity (C), Nash stationarity (NS), and positive correlation (PC) and that are not
based exclusively on imitation must fail to eliminate strictly dominated strategies in some
games. Thus, evolutionary support for a basic rationality criterion is more tenuous than
the results for imitative dynamics suggest.

Example VII.16. Figure 6(i) presents the Smith dynamic for “bad RPS with a twin”:

R P S T
R 0 −2 1 1
P 1 0 −2 −2
S −2 1 0 0
T −2 1 0 0 .

The Nash equilibria of this game are the states on line segment NE = {x∗ ∈ X : x∗ =

( 1
3 ,

1
3 , c,

1
3−c)}, which is a repellor under the Smith dynamic. Under this dynamic, strategies

gain players at rates that depend on their payoffs, but lose players at rates proportional
to their current usage levels. It follows that when the dynamics are not at rest, the
proportions of players choosing strategies 3 and 4 become equal, so that the dynamic
approaches the plane P = {x ∈ X : x3 = x4} on which the twins receive equal weight. Since
A is based on bad RPS, solutions on the plane P approach a closed orbit away from any
Nash equilibrium.

Figure 6(ii) presents the Smith dynamic in “bad RPS with a feeble twin”,

R P S T
R 0 −2 1 1
P 1 0 −2 −2
S −2 1 0 0
T −2 − ε 1 − ε −ε −ε ,

with ε = 1
10 . Evidently, the attractor from Figure 6(i) moves slightly to the left, reflecting

the fact that the payoff to Twin has gone down. But since the new attractor is in the interior
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(i) bad RPS with a twin
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(ii) bad RPS with a feeble twin

Figure 6: The Smith dynamic in two games.
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of X, the strictly dominated strategy Twin is always played with probabilities bounded
far away from zero. §

VIII. Stochastic Dynamics

In Section VI we defined the stochastic evolutionary process {XN
t } in terms of a sim-

ple model of myopic individual choice. We then turned in Section VII to the study of
deterministic dynamics, which we claimed could be used to approximate the stochastic
process {XN

t } over finite time spans and for large population sizes. In this section, we
turn our attention to the stochastic process {XN

t } itself. After offering a formal version
of the deterministic approximation result, we investigate the long run behavior of {XN

t },
focusing on the questions of convergence to equilibrium and selection among multiple
stable equilibria.

VIII.1 Deterministic Approximation

In Section VI, we defined the Markovian evolutionary process {XN
t } from a revision

protocol ρ, a population game F, and a finite population size N. In Section VII.1, we
argued that the expected motion of this process is captured by the mean dynamic

(M) ẋi = VF(x) =
∑
j∈S

x jρ ji(F(x), x) − xi

∑
j∈S

ρi j(F(x), x).

The basic link between the Markov process {XN
t } and its mean dynamic (M) is provided by

Kurtz’s Theorem [127], variations and extensions of which have been offered in a number of
game-theoretic contexts [24,29,43,44,175,204]. Consider the sequence of Markov processes
{{XN

t }t≥0}
∞

N=N0
, supposing that the initial conditions XN

0 converge to x0 ∈ X. Let {xt}t≥0 be
the solution to the mean dynamic (M) starting from x0. Kurtz’s Theorem tells us that for
each finite time horizon T < ∞ and error bound ε > 0, we have that

(25) lim
N→∞

P

 sup
t∈[0,T]

∣∣∣XN
t − xt

∣∣∣ < ε = 1.

Thus, when the population size N is large, nearly all sample paths of the Markov process
{XN

t } stay within ε of a solution of the mean dynamic (M) through time T. By choosing
N large enough, we can ensure that with probability close to one, XN

t and xt differ by no
more than ε for all t between 0 and T (Figure 7).
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Figure 7: Deterministic approximation of the Markov process {XN
t }.

The intuition for this result comes from the law of large numbers. At each revision
opportunity, the increment in the process {XN

t } is stochastic. Still, at most population states
the expected number of revision opportunities that arrive during the brief time interval
I = [t, t + dt] is large—in particular, of order N dt. Since each opportunity leads to an
increment of the state of size 1

N , the size of the overall change in the state during time
interval I is of order dt. Thus, during this interval there are a large number of revision
opportunities, each following nearly the same transition probabilities, and hence having
nearly the same expected increments. The law of large numbers therefore suggests that
the change in {XN

t } during this interval should be almost completely determined by the
expected motion of {XN

t }, as described by the mean dynamic (M).

VIII.2 Convergence to Equilibria and to Better-Reply Closed Sets

Stochastic models of evolution can also be used to address directly the question of
convergence to equilibrium [61, 78, 117, 118, 125, 143, 172, 219]. Suppose that a society of
agents is randomly matched to play an (asymmetric) normal form game that is weakly
acyclic in better replies: from each strategy profile, there exists a sequence of profitable
unilateral deviations leading to a Nash equilibrium. If agents switch to strategies that do
at least as well as their current one against the choices of random samples of opponents,
then the society will eventually escape any better-response cycle, ultimately settling upon
a Nash equilibrium.
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Importantly, many classes of normal form games are weakly acyclic in better replies:
these include potential games, dominance solvable games, certain supermodular games,
and certain aggregative games, in which each agent’s payoffs only depend on opponents’
behavior through a scalar aggregate statistic. Thus, in all of these cases, simple stochastic
better-reply procedures are certain to lead to Nash equilibrium play.

Outside these classes of games, one can narrow down the possibilities for long run be-
havior by looking at better-reply closed sets: that is, subsets of the set of strategy profiles that
cannot be escaped without a player switching to an inferior strategy (cf [16,162]). Stochas-
tic better-reply procedures must lead to a cluster of population states corresponding to a
better-reply closed set; once the society enters such a cluster, it never departs.

VIII.3 Stochastic Stability and Equilibirum Selection

To this point, we used stochastic evolutionary dynamics to provide foundations for
deterministic dynamics and to address the question of convergence to equilibrium. But
stochastic evolutionary dynamics introduce an entirely new possibility: that of obtaining
unique long-run predictions of play, even in games with multiple locally stable equilibria.
This form of analysis, which we consider next, was pioneered by Foster and Young [74],
Kandori, Mailath, and Rob [119], and Young [219], building on mathematical techniques
due to Freidlin and Wentzell [75].

VIII.3.1 Stochastic Stability

To minimize notation, let us describe the evolution of behavior using a discrete-time
Markov chain {XN,ε

k }
∞

k=0 on X N, where the parameter ε > 0 represents the level of “noise” in
agents’ decision procedures. The noise ensures that the Markov chain is irreducible and
aperiodic: any state in X N can be reached from any other, and there is positive probability
that a period passes without a change in the state.

Under these conditions, the Markov chain {XN,ε
k } admits a unique stationary distribution,

µN,ε, a measure on the state space X N that is invariant under the Markov chain:∑
x∈X N

µN,ε(x) P
(
XN,ε

k+1 = y
∣∣∣ XN,ε

k = x
)

= µN,ε(y) for all y ∈ X N.

The stationary distribution describes the long run behavior of the process {XN,ε
t } in two

distinct ways. First, µN,ε is the limiting distribution of {XN,ε
t }:

lim
k→∞

P
(
XN,ε

k = y
∣∣∣ XN,ε

0 = x
)

= µN,ε(y) for all x, y ∈ X N.
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Second, µN,ε almost surely describes the limiting empirical distribution of {XN,ε
t }:

P

 lim
K→∞

1
K

K−1∑
k=0

1
{XN,ε

k ∈A}
= µN,ε(A)

 = 1 for any A ⊆ X N.

Thus, if most of the mass in the stationary distribution µN,ε were placed on a single state,
then this state would provide a unique prediction of long run behavior.

With this motivation, consider a sequence of Markov chains {{XN,ε
k }

∞

k=0}ε∈(0,ε̄) parameter-
ized by noise levels ε that approach zero. Population state x ∈ X N is said to be stochastically
stable if it retains positive weight in the stationary distributions of these Markov chains as
ε becomes arbitrarily small:

lim
ε→0

µN,ε(x) > 0.

When the stochastically stable state is unique, it offers a unique prediction of play over
sufficiently long time spans.

VIII.3.2 Bernoulli Arrivals and Mutations

Following the work of Kandori, Mailath, and Rob [119–121] and other early contrib-
utors to the literature, let us consider a model of stochastic evolution based on Bernoulli
arrivals of revision opportunities and best responses with mutations. The former assumption
means that during each discrete time period, each agent has probability θ ∈ (0, 1] of re-
ceiving an opportunity to update his strategy. This assumption differs than the one we
proposed in Section VI (and revisit below). The key new implication is that all agents may
receive revision opportunities simultaneously. (Models that assume this directly gener-
ate similar results.) The latter assumption posits that when an agent receives a revision
opportunity, he plays a best response to the current strategy distribution with probability
1 − ε, and chooses a strategy at random with probability ε.

Example VIII.1. Suppose that a population of N agents is randomly matched to play the
Stag Hunt game (Example III.2):

H S
H h h
S 0 s .

Since s > h > 0, hunting hare and hunting stag are both symmetric pure equilibria; the
game also admits the symmetric mixed equilibrium x∗ = (x∗H, x

∗
S) = ( s−h

s ,
h
s ).
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e eH SSx*=
2
5

εNx*S εN(1–x*S)

(i) h = 2, s = 5

e eH SSx*=
2
3

εNx*S εN(1–x*S)

(ii) h = 2, s = 3

Figure 8: Equilibrium selection via mutation counting in Stag Hunt games.

If more than fraction x∗H of the agents hunt hare, then hare is the unique best response,
while if more than fraction x∗S of the agents hunt stag, then stag is the unique best response.
Thus, under any deterministic dynamic that respects payoffs, the mixed equilibrium x∗

divides the state space into two basins of attraction, one for each of the two pure equilibria.
Now consider our stochastic evolutionary process. If the noise level ε is small, this

process typically behaves like a deterministic process, moving quickly toward one of the
two pure states, eH = (1, 0) or eS = (0, 1), and remaining there for some time. But since the
process is ergodic, it will eventually leave the pure state it reaches first, and in fact will
switch from one pure state to the other infinitely often.

To determine the stochastically stable state, we must compute and compare the “im-
probabilities” of these transitions. If the current state is eH, a transition to eS requires
mutations to cause roughly Nx∗S agents to switch to the suboptimal strategy S, sending the
population into the basin of attraction of eS; the probability of this event is of order εNx∗S .
Similarly, to transit from eS to eH, mutations must cause roughly Nx∗H = N(1−x∗S) to switch
from S to H; this probability of this event is of order εN(1−x∗S).

Which of these rare events is more likely ones depends on whether x∗S is greater than
or less than 1

2 . If s > 2h, so that x∗S <
1
2 , then εNx∗S is much smaller than εN(1−x∗S) when ε is

small; thus, state eS is stochastically stable (Figure 8(i)). If instead s < 2h, so that x∗S >
1
2 ,

then εN(1−x∗S) < εNx∗S , so eH is stochastically stable (Figure 8(ii)).
These calculations show that risk dominance—being the optimal response against a

uniformly randomizing opponent—drives stochastic stability. In particular, when s < 2h,
so that risk dominance and payoff dominance disagree, stochastic stability favors the
former over the latter. §
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This example illustrates how under Bernoulli arrivals and mutations, stochastic stabil-
ity analysis is based on mutation counting: that is, on determining how many simultaneous
mutations are required to move from each equilibrium into the basin of attraction of each
other equilibrium. In games with more than two strategies, completing the argument
becomes more complicated than in the example above: the analysis, typically based on
the tree-analysis techniques of Freidlin and Wentzell [75], requires one to account for the
relative difficulties of transitions between all pairs of equilibria. Ellison [68] develops a
streamlined method of computing the stochastically stable state based on radius-coradius
calculations; while this approach is not always sufficiently fine to yield a complete analy-
sis, in the cases where it works it can be considerably simpler to apply than the Freidlin-
Wentzell method.

These techniques have been employed successfully to variety of classes of games,
including pure coordination games, supermodular games, games satisfying “bandwagon”
properties, and games with equilibria that satisfy generalizations of risk dominance [68,
120,121,134]. A closely related literature uses stochastic stability as a basis for evaluating
traditional solution concepts for extensive form games [90, 115, 122, 128, 152, 168, 169].

A number of authors have shown that variations on the Bernoulli arrivals and mu-
tations model can lead to different equilibrium selection results. For instance, [165, 211]
show that if choices are determined from the payoffs from a single round of matching
(rather than from expected payoffs), the payoff dominant equilibrium rather than the risk
dominant equilibrium is selected. If choices depend on strategies’ relative performances
rather than their absolute performances, then long run behavior need not resemble a Nash
equilibrium at all [26, 161, 171, 198]. Finally, if the probability of mutation depends on the
current population state, then any recurrent set of the unperturbed process (e.g., any pure
equilibrium of a coordination game) can be selected in the long run if the mutation rates
are specified in an appropriate way [27]. This last result suggests that mistake probabilities
should be provided with an explicit foundation, a topic we take up in Section VIII.3.3.

Another important criticism of the stochastic stability literature concerns the length
of time needed for its predictions to become relevant [31, 67]. If the population size N is
large and the mutation rate ε is small, then the probability εcN that a transition between
equilibria occurs during given period is miniscule; the waiting time between transitions is
thus enormous. Indeed, if the mutation rate falls over time, or if the population size grows
over time, then ergodicity may fail, abrogating equilibrium selection entirely [163, 186].
These analyses suggest that except in applications with very long time horizons, the
unique predictions generated by analyses of stochastic stability may be inappropriate,
and that modelers would do better to focus on history-dependent predictions of the sort
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provided by deterministic models. At the same time, there are frameworks in which
stochastic stability becomes relevant much more quickly. The most important of these are
local interaction models, which we discuss in Section IX.

VIII.3.3 Poisson Arrivals and Payoff Noise

Combining the assumption of Bernoulli arrivals of revision opportunities with that of
best responses with mutations creates a model in which the probabilities of transitions
between equilibria are easy to compute: one can focus on events in which large numbers
of agents switch to a suboptimal strategy at once, each doing so with the same probability.
But the simplicity of this argument also highlights the potency of the assumptions behind
it.

An appealing alternative approach is to model stochastic evolution using Poisson ar-
rivals of revision opportunities and payoff noise [29, 31, 38, 39, 63, 135, 145, 209, 210, 222]. (One
can achieve similar effects by looking at models defined in terms of stochastic differential
equations; see [18, 48, 74, 79, 113].) By allowing revision opportunities to arrive in contin-
uous time, as we did in Section VI, we ensure that agents do not receive opportunities
simultaneously, ruling out the simultaneous mass revisions that drive the Bernoulli arrival
model. (One can accomplish this using a discrete time model by assuming that one agent
updates during each period; the resulting process is a random time change away from the
Poisson arrivals model.)

Under Poisson arrivals, transitions between equilibria occur gradually, as the pop-
ulation works its way out of basins of attraction one agent at a time. In this context,
the mutation assumption becomes particularly potent, ensuring that the probabilities of
suboptimal choices do not vary with their payoff consequences. Under the alternative
assumption of payoff noise, one supposes that agents play best responses to payoffs that
are subject to random perturbations drawn from a fixed multivariate distribution. In this
case, suboptimal choices are much more likely near basin boundaries, where the payoffs
of second-best strategies are not much less than those of optimal ones, than they are at
stable equilibria, where payoff differences are larger.

Evidently, assuming Poisson arrivals and payoff noise means that stochastic stability
cannot be assessed by way of mutation counting. To determine the unlikelihood of
escaping from an equilibrium’s basin of attraction, one must not only account for the
“width” of the basin of attraction (i.e., the number of subpotimal choices needed to escape
it), but also for its “depth” (the unlikelihood of each of these choices). In two-strategy
games this is not difficult to accomplish: since in this case the evolutionary process is
a birth-and-death chain, its stationary distribution can be expressed using an explicit
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formula. Beyond this case, one can employ the Freidlin and Wentzell [75] machinery,
although doing so tends to be computationally demanding.

This computational burden is less in models that retain Poisson arrivals, but replace
perturbed optimization with decision rules based on imitation and mutation [80]. Because
agents imitate successful opponents, the population spends the vast majority of periods
on the edges of the simplex, implying that the probabilities of transitions between vertices
can be determined using birth-and-death chain methods [158]. As a consequence, one can
reduce the problem of finding the stochastically stable state in an n strategy coordination
game to that of computing the limiting stationary distribution of an n state Markov chain.

VIII.3.4 Stochastic Stability via Large Population Limits

The approach to stochastic stability followed thus far relies on small noise limits: that
is, on evaluating the limit of the stationary distributionsµN,ε as the noise level ε approaches
zero. Binmore and Samuelson [29] argue that in the contexts where evolutionary models
are appropriate, the amount of noise in agents decisions is not negligible, so that taking
the low noise limit may not be desirable. At the same time, evolutionary models are
intended to describe behavior in large populations, suggesting an alternative approach:
that of evaluating the limit of the stationary distributions µN,ε as the population size N
grows large.

In one respect, this approach complicates the analysis. When N is fixed and ε varies,
each stationary distribution µN,ε is a measure on the fixed state space X N = {x ∈ X :
Nx ∈ Zn

}. But when ε is fixed and N varies, the state space X N varies as well, and one
must introduce notions of weak convergence of probability measures in order to define
stochastic stability.

But in other respects taking large population limits can make analysis simpler. We
saw in Section VIII.1 that by taking the large population limit, we can approximate the
finite-horizon sample paths of the stochastic evolutionary process {XN,ε

t } by solutions to
the mean dynamic (M). Now we are concerned with infinite horizon behavior, but it
is still reasonable to hope that the large population limit will again reduce some of our
computations to a calculus problems.

As one might expect, this approach is easiest to follow in the two-strategy case, where
for each fixed population size N, the evolutionary process {XN,ε

t } is a birth-and-death
chain. When one takes the large population limit, the formulas for waiting times and for
the stationary distribution can be evaluated using integral approximations [24,29,39,222].
Indeed, the approximations so obtained take an appealing simple form [182].

The analysis becomes more complicated beyond the two-strategy case, but certain
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models have proved amenable to analysis. Building on their work for fixed population size
models [80], Fudenberg and Imhof [81] characterize large population stochastic stability
in models based on imitation and mutation. The population again spends nearly all
periods on the edges of the simplex X, and the large population limit makes evaluating
the probabilities of transitions along these edges relatively simple.

If one supposes that agents play best responses to noisy payoffs, then one must ac-
count directly for the behavior of the process {XN,ε

t } in the interior of the simplex. One
possibility is to combine the deterministic approximation results from Section VIII.1 with
techniques from the theory of stochastic approximation [20, 21] to show that the large N
limiting stationary distribution is concentrated on attractors of the mean dynamic. By
combining this idea with convergence results for deterministic dynamics from Section
VII.5, reference [104] shows that the limiting stationary distribution must be concentrated
around equilibrium states in potential games, stable games, and supermodular games.

The results in [104] do not address the question of equilibrium selection. However,
for the specific case of logit evolution in potential games, a complete characterization of
the large population limit of the process {XN,ε

t } has been obtained [23]. By combining
deterministic approximation results, which describe the usual behavior of the process
within basins of attraction, with a large deviations analysis, which characterizes the rare
escapes from basins of attraction, one can obtain a precise asymptotic formula for the large
N limiting stationary distribution. This formula accounts both for the typical procession of
the process along solutions of the mean dynamic, and for the rare sojourns of the process
against this deterministic flow.

IX. Local Interaction

All of the game dynamics considered so far have been based implicitly on the assump-
tion of global interaction: each agent’s payoffs depend directly on all agents’ actions. In
many contexts, one expects to the contrary that interactions will be local in nature: for
instance, agents may live in fixed locations and interact only with neighbors. In addition
to providing a natural fit for these applications, local interaction models respond to some
of the criticisms of the stochastic stability literature. At the same time, once one moves be-
yond relatively simple cases, local interaction models become exceptionally complicated,
and so lend themselves to methods of analysis very different from those considered thus
far.
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IX.1 Stochastic Stability and Equilibrium Selection Revisited

In Section VIII.3, we saw the prediction of risk dominant equilibrium play provided by
stochastic stability models subverted by the waiting-time critique: namely, that the length
of time required before this equilibrium is reached may be extremely long. Ellison [67,68]
shows that if interactions are local, then selection of the risk dominant equilibrium persists,
and waiting times are no longer an issue.

Example IX.1. In the simplest version of Ellison’s model, a population of N agents are
located at N distinct positions around a circle. During each period of play, each agent
plays the Stag Hunt game (Examples III.2 and VIII.1) with his two nearest neighbors,
following the same action against both of his opponents. If we suppose that s ∈ (h, 2h),
so that hunting hare is the risk dominant strategy, then by definition, an agent whose
neighbors play different strategies finds it optimal to choose H himself.

Now suppose that there are Bernoulli arrivals of revision opportunities, and that
decisions are based on best responses with occasional rare mutations. To move from the
all S state to the all H state, it is enough that a single agent mutates from S to H. This
one mutation begins a chain reaction: the mutating agent’s neighbors respond optimally
by swtiching to H themselves; they are followed in this by their own neighbors; and the
contagion continues until all agents choose H. Since a single mutation is always enough
to spur the transition from all S to all H, the expected wait before this transition is small,
even when the population is large.

In contrast, the transition back from all H to all S is extremely unlikely. Even if all
but one of the agents simultaneously mutate to S, the contagion process described above
will return the population to the all-H state. Thus, while the transition from all-S to all-
H occurs quickly, the reverse transition takes even longer than in the global interaction
setting. §

The local interaction approach to equilibrium selection has been advanced in a variety
of directions: by allowing agents to choose their locations [69], or to pay a cost to choose
different strategies against different opponents [86], and by basing agents’ decisions on
the attainment of aspiration levels [11] or on imitation of successful opponents [9, 10]. A
portion of this literature initiated by Blume develops connections between local interaction
models in evolutionary game theory with models from statistical mechanics [36–38, 124,
141]. These models provide a point of departure for research on complex spatial dynamics
in games, which we consider next.
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IX.2 Complex Spatial Dynamics

The local interaction models described above address the questions of convergence to
equilibrium and selection among multiple equilibria. In the cases where convergence and
selection results obtain, behavior in these models is relatively simple, as most periods are
spent with most agents coordinating on a single strategy. A distinct branch of the literature
on evolution and local interaction focuses on cases with complex dynamics, where instead
of settling quickly into a homogeneous, static configuration, behavior remains in flux, with
multiple strategies coexisting for long periods of time.

Example IX.2. Cooperating is a dominated strategy in the Prisoner’s Dilemma, and is
not played in equilibrium in finitely repeated versions of this game. Nevertheless, a
pair of Prisoner’s Dilemma tournaments conducted by Axelrod [14] were won by the
strategy Tit-for-Tat, which cooperates against cooperative opponents and defects against
defectors. Axelrod’s work spawned a vast literature aiming to understand the persistence
of individually irrational but socially beneficial behavior.

To address this question, Nowak and May [153–157] consider a population of agents
who are repeatedly matched to play the Prisoner’s Dilemma

C D
C 1 −ε

D g 0 ,

where the greedy payoff g exceeds 1 and ε > 0 is small. The agents are positioned on
a two-dimensional grid. During each period, each agent plays the Prisoner’s Dilemma
with the eight agents in his (Moore) neighborhood. In the simplest version of the model,
all agents simultaneously update their strategies at the end of each period. If an agent’s
total payoff that period is as high as that of any of neighbor, he continues to play the same
strategy; otherwise, he switches to the strategy of the neighbor who obtained the highest
payoff.

Since defecting is a dominant strategy in the Prisoner’s Dilemma, one might expect
the local interaction process to converge to a state at which all agents defect, as would be
the case in nearly any model of global interaction. But while an agent is always better
off defecting himself, he also is better off the more of his neighbors cooperate; and since
evolution is based on imitation, cooperators tend to have more cooperators as neighbors
than do defectors.

In Figures 9–11, we present snapshots of the local interaction process for choices of
the greedy payoff g from each of three distinct parameter regions. If g > 5

3 (Figure 9),
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(i) t = 0 (ii) t = 3 (iii) t = 5 (iv) t = 10

Figure 9: Local interaction in a Prisoner’s Dilemma; greedy payoff g = 1.7. In Figures 9-11, agents are
arrayed on a 100 × 100 grid with periodic boundaries (i.e., a torus). Initial conditions are random with
75% cooperators and 25% defectors. Agents update simultaneously, imitating the neighbor who earned
the highest payoff Blue cells represent cooperators who also cooperated last period, green cells represent
new cooperators; red cells represent defectors who also defected last period, yellow cells represent new
defectors. (Figures 9-11 created using VirtualLabs [92].)

(i) t = 0 (ii) t = 5 (iii) t = 25 (iv) t = 50

Figure 10: Local interaction in a Prisoner’s Dilemma; greedy payoff g = 1.55.
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(i) t = 0 (ii) t = 5 (iii) t = 30

(iv) t = 60 (v) t = 90 (vi) t = 120

Figure 11: Local interaction in a Prisoner’s Dilemma; greedy payoff g = 1.65.
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the process quickly converges to a configuration containing a few rectangular islands
of cooperators in a sea of defectors; the exact configuration depending on the initial
conditions. If instead g < 8

5 (Figure 10), the process moves towards a configuration in
which agents other than those in a “web” of defectors cooperate. But for g ∈ ( 8

5 ,
5
3 ) (Figure

11), the system evolves in a complicated fashion, with clusters of cooperators and of
defectors forming, expanding, disappearing, and reforming. But while the configuration
of behavior never stabilizes, the proportion of cooperators appears to settle down to about
.30.

The specification of the dynamics considered above, based on simultaneous updating
and certain imitation of the most successful neighbor, presents a relatively favorable
environment for cooperative behavior. Nevertheless, under Poisson arrivals of revision
opportunities, or probabilistic decision rules, or both, cooperation can persist for very
long periods of time for values of g signifcantly larger than 1 [154, 155] . §

The literature on complex spatial dynamics in evolutionary game models is large and
rapidly growing, with the evolution of behavior in the spatial Prisoners’ Dilemma being
the single most-studied environment. While analyses are typically based on simulations,
analytical results have been obtained in some relatively simple settings [71, 94].

Recent work on complex spatial dynamics has considered games with three or more
strategies, including Rock-Paper-Scissors games, as well as public good contribution
games and Prisoner’s Dilemmas with voluntary participation. Introducing more than
two strategies can lead to qualitatively novel dynamic phenomena, including large-scale
spatial cycles and traveling waves [93, 202, 203]. In addition to simulations, the analy-
sis of complex spatial dynamics is often based on approximation techniques from non-
equilibrium statistical physics, and much of the research on these dynamics has appeared
in the physics literature. Szabó and Fáth [201] offer a comprehensive survey of work on
this topic.

X. Applications

Evolutionary game theory was created with biological applications squarely in mind:
in the prehistory of the field, Fisher [73] and Hamilton [87] used game-theoretic ideas
to understand the evolution of sex ratios. Maynard Smith [137–140] introduced his def-
inition of ESS as a way of understanding ritualized animal conflicts. Since these early
contributions, evolutionary game theory has been used to study a diverse array of bio-
logical questions, including mate choice, parental investment, parent-offspring conflict,

–49–



social foraging, and predator-prey systems. For overviews of research on these and other
topics in biology, see [65, 88].

The early development of evolutionary game theory in economics was motivated
primarily by theoretical concerns: the justification of traditional game-theoretic solution
concepts, and the development of methods for equilibrium selection in games with multi-
ple stable equilibria. More recently, evolutionary game theory has been applied to concrete
economic environments, in some instances as a means of contending with equilibrium
selection problems, and in others to obtain an explicitly dynamic model of the phenom-
ena of interest. Of course, these applications are most successful when the behavioral
assumptions that underlie the evolutionary approach are appropriate, and when the time
horizon needed for the results to become relevant corresponds to the one germane to the
application at hand.

Topics in economics topics studied using the methods of evolutionary game theory
range from behavior in markets [1,6–8,12,19,64,112,129,212], to bargaining and hold-up
problems [32, 46, 57, 66, 164, 208, 220–222], to externality and implementation problems
[47, 49, 136, 174, 177, 180], to questions of public good provision and collective action
[146–148]. The techniques described here are being applied with increasing frequency
to problems of broader social science interest, including residential segregation [40, 62,
142, 222, 223, 225, 226] and cultural evolution [34, 126], and to the study of behavior in
transportation and computer networks [72, 143, 150, 173, 175, 177, 197]. A proliferating
branch of research extends the approaches described in this article to address the evolution
of structure and behavior in social networks; a number of recent books [85, 114, 213] offer
detailed treatments of work in this domain.

XI. Future Directions

Evolutionary game theory is a maturing field; many basic theoretical issues are well
understood, but many difficult questions remain. It is tempting to say that stochastic and
local interaction models offer the more open terrain for further explorations. But while
it is true that we know less about these models than about deterministic evolutionary
dynamics, even our knowledge of the latter is limited: while dynamics on one and two
dimensional state spaces, and for games satisfying a few interesting structural assump-
tions, are well-understood, the dynamics of behavior in the vast majority of many-strategy
games are not.

The prospects for further applications of the tools of evolutionary game theory are
brighter still. In economics, and in other social sciences, the analysis of mathematical
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models has too often been synonymous with the computation and evaluation of equi-
librium behavior. The questions of whether and how equilibrium will come to be are
often ignored, and the possibility of long-term disequilibrium behavior left unmentioned.
For settings in which its assumptions are tenable, evolutionary game theory offers a host
of techniques for modeling the dynamics of economic behavior. The exploitation of the
possibilities for a deeper understanding of human social interactions has hardly begun.
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