
An Introduction to Dynamo: Diagrams for
Evolutionary Game Dynamics∗

Francisco Franchetti and William H. Sandholm†

March 15, 2012

Abstract

Dynamo: Diagrams for Evolutionary Game Dynamics is free, open-source software
used to create phase diagrams and other images related to dynamical systems from
evolutionary game theory. We describe how to use the software’s default settings to
generate phase diagrams quickly and easily. We then explain how to take advantage
of the software’s intermediate and advanced features to create diagrams that highlight
the key properties of the dynamical system under study. Sample code and output are
provided to help demonstrate the software’s capabilities.

1. Introduction

Evolutionary game theory studies interactions among large populations of strategically
interacting agents. Since the introduction of the replicator dynamic by Taylor and Jonker
(1978), models based on ordinary differential equations have played a central role in this
field. Taylor and Jonker’s (1978) model, designed to provide a dynamic foundation for
Maynard Smith and Price’s (1973) notion of an evolutionarily stable strategy, specifies
that the percentage growth rate in the use of each strategy be given by the strategy’s
excess payoff—that is, by the difference between its payoff and the average payoff in
the population. This elegant model of natural selection in animal populations was the
starting point of a substantial literature that developed in mathematical biology over the
next decade, and reviewed in Hofbauer and Sigmund (1988).

By the late 1980s, economists too became interested in population dynamics for games.
While their early work adhered to the biological interpretation of these dynamics as a

∗Financial support from NSF Grant SES-0851580 is gratefully acknowledged.
†Department of Economics, University of Wisconsin, 1180 Observatory Drive, Madison, WI 53706,

USA. e-mail: franchetti@wisc.edu, whs@ssc.wisc.edu; websites: mywebspace.wisc.edu/franchetti/
web, www.ssc.wisc.edu/˜whs.

model of natural selection in populations of preprogrammed agents, new models soon
emerged in which agents were viewed as conscious decision-makers. For instance, under
the best response dynamic of Gilboa and Matsui (1991) (see also Matsui (1992) and Hof-
bauer (1995b)), changes in the use of each strategy were driven not by births and deaths,
but by conscious decisions to switch to the best-performing strategy.

Work in the 1990s showed that the replicator dynamic, the basic game-theoretic model
of biological natural selection, could also be provided with economic foundations. By ex-
plicitly modeling the process though which individual agents decide whether and when
to switch strategies, researchers showed how the replicator dynamic could be interpreted
as a model of imitation among active decision makers.1 Starting from microfoundations
allowed the definition of evolutionary game dynamics based on other choice principles,
from comparison to population average payoffs (Skyrms (1990), Swinkels (1993), Weibull
(1996), Hofbauer (2000)), to pairwise comparisons (Sandholm (2010b)), to noisy best re-
sponses (Fudenberg and Levine (1998), Hofbauer and Sandholm (2002)), to tempered best
responses (Zusai (2011)), to best responses to samples (Oyama et al. (2012)).

In retrospect, dynamical models from the early days of game theory, particularly the
work of George W. Brown, can be seen as anticipating the evolutionary game literature
(Brown and von Neumann (1950)), or, in the case of fictitious play, as leading to processes
intimately connected with deterministic evolutionary game dynamics (Brown (1949, 1951),
Robinson (1951)). Moreover, dynamical models of behavior in traffic networks from the
transportation science literature also anticipated key aspects of the evolutionary game
approach (Smith (1984), Nagurney and Zhang (1996)). In a complementary fashion,
work by economists in evolutionary game theory turned to questions about behavior
transportation networks, and drew connections with related problems in computer science
(Sandholm (2001, 2002, 2005)). Taken altogether, these research streams form the basis
for a broad interest in evolutionary game dynamics, with a wide variety of models being
subject to intensive study.

In 2002, one of us decided to write a book to provide a unified presentation of this
burgeoning field. It soon became clear that to present evolutionary game dynamics in
an informative and attractive way, it would be necessary to produce a large number of
phase diagrams and related figures, and that this could be accomplished most efficiently
by creating purpose-built software. Moreover, if the software were both publicly available
and reasonably user-friendly, it could serve as a useful research tool for the wider game
theory community. These thoughts were the origin of the Dynamo project.

Dynamo: Phase Diagrams for Evolutionary Dynamics is a collection of programs that run

1See Helbing (1992), Björnerstedt and Weibull (1996), Weibull (1995), Hofbauer (1995a), and Schlag (1998).

–2–

within Mathematica. Although Mathematica itself is closed-source, the Dynamo code is
open-source. The current version and some legacy versions of the software are publicly
available on the project website, www.ssc.wisc.edu/˜whs/dynamo.

The aim of this article is to provide an introduction to Dynamo. Following a general
overview, the article proceeds in two parts. Section 3 describes how to use Dynamo
to quickly generate phase diagrams for common evolutionary dynamics and arbitrary
games, compute rest points and Nash equilibria, and perform analyses of stability. Run-
ning Dynamo under its default settings is simple, and the diagrams it creates provide
detailed information about the qualitative behavior of a dynamical system that might oth-
erwise be difficult to obtain. In many cases, Dynamo’s default output is satisfactory for
use in publications, and many diagrams that have appeared in publication were created
in just this fashion.2

The remaining sections provide a detailed presentation of Dynamo’s features. These
features allow users to fine-tune the appearance of Dynamo output by specifying the initial
conditions, durations, and appearance of solution trajectories, by selecting the function
to be presented in the background contour plot, and through the specification of various
other options. We use these features when creating our own output for publication, as the
careful selection of solution trajectories makes the qualitative properties of the dynamics
easier to perceive.

This article assumes that the reader has some background knowledge of evolutionary
game dynamics. Sandholm (2010c) is the most current treatment of this topic, as well as
the reason for Dynamo’s existence; it is also a place where many examples illustrating
Dynamo’s capabilities can be found.3 Although knowledge of Mathematica syntax is
helpful, most of Dynamo’s features should be accessible even to those with little or no
prior experience with Mathematica.

2. Overview of Dynamo

Dynamo: Diagrams for Evolutionary Game Dynamics consists of four Mathematica note-
books, corresponding to four population game environments whose phase diagrams
require two or three dimensions. Two of the notebooks are for single-population games:
Dynamo 3S.nb, for games with three strategies (and hence planar phase diagrams), and
Dynamo 4S.nb for games with four strategies (and hence three-dimensional phase dia-
grams). The other two notebooks are for multipopulation games with two strategies for

2For a list of articles containing Dynamo output, see www.ssc.wisc.edu/˜whs/dynamo/papers.html.
3A shorter and less technical introduction to evolutionary game theory is Sandholm (2009).

–3–

each population: Dynamo 2x2.nb for games with two populations (and planar phase dia-
grams), and Dynamo 2x2x2.nb for games with three populations (and three-dimensional
phase diagrams).4 All of the notebooks share core code for basic numerical calculations
and make use of the same Mathematica functions; the names of common options in the
different notebooks are as similar as possible. But each notebook has options that are
specific to its domain.

A major goal of Dynamo is to allow researchers who use it to be able to understand and
control the process of creating the diagrams they need. Thus, Dynamo does not have the
look or feel of black-box software, but rather is more of a template of Mathematica code.
The notebooks are presented using Mathematica’s “front end” interface, which allows for
buttons to select option values, special formatting for headers and comments, hierarchical
hiding of code, allowance of partial execution, among other convenient features. The
current version of Dynamo is designed to run in Mathematica versions 6, 7, and 8, with
a legacy version available for versions 4 and 5.5 Upon opening the notebooks, users of
versions 6 and 7 will receive a warning about possible incompatibilities, but these should
be ignored.

The Dynamo project began in 2003 with some barebones code by Bill Sandholm, the
project designer. Emin Dokumacı served as lead programmer from late 2003 through 2007,
and is responsible for the legacy version of the software. The project then entered a period
of fretting over the incompatibility between Mathematica versions 5 and 6. Francisco
Franchetti became lead programmer in 2010, and updated the code for use in Mathematica
versions 6–8. Franchetti and Sandholm posted a polished version of Dynamo 3S in 2011,
and testing and expansion of all four notebooks is ongoing.

3. Dynamo by default

In this section, we explain how to run the Dynamo notebooks using their default
settings, which can be done with a minimum of fuss. With the notebooks that create
two-dimensional phase diagrams, 3S and 2x2, one can generate quite presentable output
with just a few mouse clicks.

4In principle, we could create a fifth notebook for two-population games with three strategies for one
population and two for the other, for which the state space is a triangular prism.

5Many commands from Mathematica version 5 were eliminated entirely from version 6, so notebooks
written on either side of this divide are typically incompatible with the application on the other side.

–4–

1

2 3

Figure 1: Default Dynamo 3S output: the replicator dynamic in 123 Coordination.

3.1 Dynamo 3S

3.1.1 Running Dynamo 3S

One can generate output immediately in Dynamo 3S.nb by selecting the outermost
group bracket (i.e., the rightmost vertical bracket) and pressing Enter or Shift-Return.
After a few seconds’ delay, Dynamo creates an output notebook containing a phase
diagram and supporting analysis for the default game (123 Coordination) and dynamic
(the replicator dynamic). The phase diagram is presented in Figure 1.

The solution trajectories begin at a grid of initial conditions, and each solution runs
for one unit of time. The colors in the contour plot represent speeds of motion under
the dynamic: red is fast and blue is slow. (Other functions can be selected for contour
plotting—see Section 4.1.2.) The black and white dots correspond to stable and unstable
rest points of the dynamic.

It is easy to change which game and dynamic are analyzed. To switch to a different
normal form game, go to the subsection called Specification of Normal Form Game,
which is visible when the notebook is opened.6 There one finds a matrix A that represents

6The full location is Choice of Game → Specification of payoff parameters → Specification of
Normal Form Game.

–5–

Dynamic Source
Replicator Taylor and Jonker (1978)
MSReplicator Maynard Smith (1982)
ILogit[eta] Weibull (1995)

BR Gilboa and Matsui (1991)
TemperedBR Zusai (2011)
SampleBR[k] Oyama et al. (2012)
Logit[eta] Fudenberg and Levine (1998)
BNN Brown and von Neumann (1950)
Smith Smith (1984)

Table 1: Built-in evolutionary dynamics in Dynamo 3S

the game to be analyzed, and whose entries can be edited directly. Alternatively, there
are buttons labeled with a number of commonly studied games; clicking one of these
buttons will change the entries of A in the appropriate way. In the subsection Names of
Strategies, the default names of the three strategies are 1, 2, and 3; these too can be
changed directly. (One can also analyze games with nonlinear payoffs; see Section 4.2.)

To change the dynamic, scroll down to Choice of dynamic, where there are buttons
corresponding to each of the evolutionary dynamics presented in Table 1. Pressing a
button selects the dynamic by changing the value of the parameter dyn a bit further below.
Three of the dynamics require parameters. To change those from their default values, go
to the relevant group heading (e.g., Noise level for logit dynamics), double-click the
group bracket to open the group, and change the parameter value therein. It is not too
difficult to define dynamics that are not built into the notebook; see footnote 17.

Once the desired settings are chosen, selecting the outermost group bracket and press-
ing Enterwill generate the output notebook.

3.1.2 Dynamo 3S output

AfterEnter is pressed, Dynamo 3S.nbgenerates a new notebook labeleddynamo output 1.nb
that contains textual and graphical output. We discuss this output for the case of the repli-
cator dynamic in Zeeman’s (1980) game, which can be chosen using one of the buttons
mentioned above.

The end of the notebook contains the phase diagram presented in Figure 2. In this
example, the default phase diagram is not entirely satisfactory. We explain how to create
a more appealing one by selecting individual solution trajectories in Section 4.1.1.

The first portion of the textual output concerns the game itself. In the present case

–6–

1

2 3

Figure 2: Default Dynamo 3S output: the replicator dynamic in Zeeman’s game.

it reports the normal form game under consideration, and the corresponding population
game created by matching:

A =

0 6 -4

-3 0 5

-1 3 0

 ; F

x

y

x

 =

6y - 4z

-3x + 5x

-x + 3y

 .
It then lists the Nash equilibria, and points out the equilibrium that is a regular evolution-
arily stable strategy (ESS):

Nash equilibria: (1,0,0), (4
5
, 0, 1

5
), (1
3
, 1
3
, 1
3
).

Regular ESS: (1,0,0).

The remainder of the textual output concerns the dynamic. First the name of the
dynamic and the payoff vector field are presented:

Name of dynamic: Replicator

–7–

Law of motion: V F

x

y

z

 =

x(y(6-3x-8z)+(-4+5x)z)

-y(x(3+3y-5z)+(-5+8y)z)
-z(x-3y+3xy-5xz+8yz)

 .
Next, the rest points are analyzed for stability. In the case of a differentiable dynamic, the
stability analysis is performed by linearization. Dynamo evaluates the derivative matrix
of the dynamic at each rest point. If all relevant eigenvalues have negative real part
(or even nonpositive real part), the rest point is categorized as stable; if at least one has
positive real part, it is categorized as unstable.7

state relevant eigenvalues relevant eigenvectors

stable: (1
3 ,

1
3 ,

1
3) −

1
3 +

√
2

3 i, − 1
3 −

√
2

3 i
(
−2+3i

√
2

1−3i
√

2
1

)
,
(
−2−3i

√
2

1+3i
√

2
1

)
(1, 0, 0) −3, −1

(
−1
1
0

)
,
(
−1
0
1

)
unstable: (0, 0, 1) 5, −4

(0
−1
1

)
,
(
−1
0
1

)
(0, 5

8 ,
3
8) −

15
8 , 3

8

(0
−1
1

)
,
(
−6
5
1

)
(0, 1, 0) 6, 3

(
−1
1
0

)
,
(0
−1
1

)
(4

5 , 0,
1
5) 4

5 , −3
5

(
−1
0
1

)
,
(
−8
7
1

)
This analysis reveals Zeeman’s (1980) well-known conclusion about his game: al-

though the Nash equilibrium (1
3 ,

1
3 ,

1
3) is not a regular ESS (or even an ESS), it is nevertheless

asymptotically stable under the replicator dynamic.

3.2 Dynamo 4S

Dynamo 4S.nb creates three-dimensional phase diagrams for four-strategy, single pop-
ulation games. In Figure 3, we present a phase diagram that contains a single solution
trajectory of the replicator dynamic in the game

A =

0 −12 0 22

20 0 0 −10
−21 −4 0 35
10 −2 2 0

 .
7The relevant eigenvalues are those corresponding to eigenvectors in the tangent space of the simplex—

see Sandholm (2010c, Section 8.5).

–8–

Figure 3: Dynamo 4S output: a chaotic attractor under the replicator dynamic.

Evidently, this solution trajectory converges to a chaotic attractor.8

The three-dimensional output leads a few important differences from Dynamo 3S.nb.
Obviously, background contour plots are no longer feasible. Also, specifying a grid of
initial conditions for solution trajectories is less satisfactory, so obtaining useful figures
typically means specifying solution trajectories one by one. We explain how this is done
in Section 4.1.1.
Dynamo 4S.nb takes advantage of Mathematica’s capacity to perform live rotation

of three-dimensional objects using a mouse. This makes it very useful for exploratory
analysis of dynamics for four-strategy games, particularly in cases of chaotic dynamics,
for which live rotation makes the nature of the chaotic behavior much easier to see. Live
rotation also simplifies the process of finding the best viewing angles to use in figures
for publication. On the Dynamo website, we have posted a Dynamo output notebooks
containing rotatable version of the three-dimensional figures from this article.9

8This example is due to Arneodo et al. (1980), who introduce it in the context of the Lotka-Volterra
equations; also see Skyrms (1992). The attractor here is known as a Shilnikov attractor; see Hirsch et al.
(2004, Chapter 16).

9See www.ssc.wisc.edu/˜whs/dynamo/3D.html. These notebooks can be opened in Mathematica 6–8,
or using Wolfram’s free CDF Player; see www.wolfram.com/products/player.

–9–

D

U

L R

Figure 4: Default Dynamo 2x2 output: the Smith dynamic in 12 Coordination.

3.3 Dynamo 2x2 and 2x2x2

The remaining notebooks create phase diagrams for multipopulation games with two
strategies for each population. At present, these notebooks are less developed than the
notebooks for single-population games, but the core code for creating phase diagrams is
complete.
Dynamo 2x2.nb, for the two-population case, creates phase diagrams on a square.

Figure 4 presents the default output of this notebook for the Smith dynamic in 12 Coordi-
nation. The default function of this notebook is similar to that of Dynamo 3S.nb.
Dynamo 2x2x2.nb creates phase diagrams on the cube for the three-population case. As

an example, Figure 5 presents a phase diagram of the replicator dynamic in Mismatching
Pennies (Jordan (1993)). As in Dynamo 4S.nb, one generally needs to specify trajectories
one by one to obtain satisfactory output.

4. Creating custom phase diagrams

We now explain the main Dynamo features used in making custom phase diagrams.
We do so by means of examples, presenting both code snippets and output. Given the
similarities among the notebooks, we focus our presentation on Dynamo 3S and 4S.

–10–

H

T

T

H

H
T

Figure 5: Dynamo 2x2x2 output: the replicator dynamic in Mismatching Pennies.

4.1 Dynamo 3S

4.1.1 Trajectories

We begin with a custom phase diagram of the replicator dynamic in Zeeman’s game,
presented in Figure 6. By choosing the solution trajectories carefully, the qualitative
properties of the system are made immediately clear: we see that the connecting orbit
from e2 = (0, 1, 0) to (4

5 , 0,
1
5) is the separatrix between the basins of attraction of stable rest

points e1 = (1, 0, 0) and (1
3 ,

1
3 ,

1
3), and that the latter rest point is a stable spiral.

The data specifying the trajectories for the phase diagram is entered as the value of a
parameter called trajectoryspecs.10 The value of this parameter is a list with entries of
the form

{{initial condition}, time, {options}, {arrow positions}, {head lengths}}

Each such entry generates a solution starting from initial condition and running for
time units of time. Thickness, dashing, and coloring can be customized using options.
If arrows are desired, the time points at which they should appear are listed in arrow
positions, and the sizes of each arrow are listed in head lengths.

10Its location is Specification of graphical output → Specifications for phase diagram →
Solution trajectories.

–11–

1

2 3

Figure 6: Dynamo 3S output: the replicator dynamic in Zeeman’s game.

The trajectory data for Figure 6 is as follows:

trajectoryspecs={

{{.005,.99,.005},10,{},{1},{.03}},

{{.000454385, .994773, .00477281},10,{},{1.5},{}},

{{.00018144, .994909, .00490928},10,{},{1.75},{}},

{{.0000740367, .994963, .00496298},10,{},{2,3.5},{}},

{{.0000503846, .994975, .00497481},15,{},{2,8.2},{}},

{{.0000251918, .994987, .0049874},10,{},{2},{}},

{{.0000143953, .994993, .0049928},10,{},{2},{}},

{{.005,7/8-.0025,1/8-.0025},15,{},{1},{}},

{{.005,.75-.0025,.25-.0025},15,{},{1,10},{}},

{{.8-.02,0+.01,.2+.01},20,{},{4.6},{}},

{{113/150,1/30,16/75},20,{},{4.65},{}},

{{41/60,1/12,7/30},20,{},{3.8},{}},

{{.5-.0025,.005,.5-.0025},15,{},{1,10},{}},

{{.25-.0025,.005,.75-.0025},15,{},{.7},{}}

};

The first seven trajectories start near state e2 = (0, 1, 0), the next two start a bit to the right,

–12–

R

P S

Figure 7: Dynamo 3S output: the logit(0.08) dynamic in bad Rock-Paper-Scissors.

the following three start near (4
5 , 0,

1
5), and the final two are further toward e3. Needless

to say, some experimentation is necessary to find connecting orbits, and to achieve even
spacing. While doing so, it is best to turn off the contour plot by setting pdcontourplot
to 0, since creating the contour plot generally takes up the largest share of the processing
time.11

As a second example, we present a phase diagram of the logit(.08) dynamic in the bad
Rock-Paper-Scissors game,

A =

0 −2 1
1 0 −2
−2 1 0

 .
To create this diagram, which is shown in Figure 7, we turned off the contour plot by
setting pdcontourplot to 0.

The figure reveals that this dynamic exhibits a limit cycle. While one could find a point
on the limit cycle to use as the starting point of a trajectory through experimentation, we
can use Mathematica to identify such a point automatically. We do so by means of the

11The pdcontourplot option is located in Specification of graphical output → Specifications
for phase diagram.

–13–

following lines of code:

pointincycle={Xt1[30],Xt2[30],1-Xt1[30]-Xt2[30]}/.DEsol[{.4,.3,.3},0,30][[1]];

trajectoryspecs={

{pointincycle,10,{Thickness[.005]},{.65,1.15,1.65},{.03,.03,.03}},

{{1/3+.01,1/3-.005,1/3-.005},4.9,{Gray},{1.1,2.15,2.5},{.02,.021,.022}},

{{1,0,0},5.15,{Gray},{.5,1.5},{.03,.03}},

{{0,1,0},3.5,{Gray},{.5,1.5},{.03,.03}},

{{0,0,1},4.55,{Gray},{.5,1.5},{.03,.03}},

{{1/7,6/7,0},2,{Gray},{.5,1.8},{.03,.03}},

{{0,1/7,6/7},2,{Gray},{.5,1.8},{.03,.03}},

{{6/7,0,1/7},2,{Gray},{.5,1.8},{.03,.03}}

};

The definition of pointincycle identifies a point that is very close to the closed orbit.
It calls the Dynamo function DEsol, which itself is a wrapper for Mathematica’s numerical
differential equation solver, NDSolve. DEsol takes for granted that the relevant differential
equation is the one determined by the user’s choices of game and evolutionary dynamic.
The first argument, {.4,.3,.3}, is the initial or terminal point of the solution. The next
two arguments, 0 and 30 are the initial and terminal times.12 The duration of 30 time units
is enough to ensure that the solution gets very close to the limit cycle. The remaining code
extracts the desired point from the the solution trajectory.13

We use pointincycle as an initial condition in the specification of trajectories that
follows. To emphasize the cycle, we made this trajectory thick, and made the other trajec-
tories gray (instead of the default black). The second trajectory listed spirals away from
the unstable rest point in the center of the simplex; its initial condition is a perturbation of

12Reversing the order of these times causes Dynamo to interpret {.4,.3,.3} as the terminal condition at
time 30, and to compute the solution backward until time 0. Working from the terminal condition is useful
when trying to locate unstable cycles, or to find or trajectories that approach unstable rest points along their
stable manifolds.

13Here is a detailed explanation of what this line of code does. Dynamo’s DEsol calls upon Mathematica’s
NDSolve to a the numerical solution to the differential equation. The output of NDSolve is presented as
a list of so-called transformation rules. In the present case, the list contains a single transformation rule,
corresponding to the lone solution of the differential equation from the initial condition provided. The
transformation rule refers to the first two components of the solution using the functions {Xt1, Xt2}, with
the third component of the solution being defined implicitly by the fact that solutions live on the simplex.

The code /., which is the short form of Mathematica’s ReplaceAll command, has Mathematica specify
the values of the expression that precedes it by applying the transformation rule that follows it. Here
{Xt1[30],Xt2[30],1-Xt1[30]-Xt2[30]}/.DEsol[{.4,.3,.3},0,30] uses /. to obtain for the time 30 posi-
tion of the each solution found by DEsol. The result is a list containing a single position vector; the final
[[1]] extracts the lone element from this list. It is worth noting that if this code is run in a separate cell
after initial run of Dynamo (but without the final ; that suppresses the output), Mathematica immediately
reports the point that lies very close to the closed orbit.

–14–

the rest point itself, and did not need to be chosen very carefully. The next three trajectories
start at the vertices of the simplex, and the last three on repelling parts of the boundary.

4.1.2 Contour plots

The function to be presented in the contour plot is specified in Choice of contour
function. The default setting is the Speed of motion under the dynamic, but other options,
including potential functions and Lyapunov functions are provided.

Contour function output is controlled by parameters defined in Specification of
graphical output → Specifications for phase diagram. The most important pa-
rameters here are plotprecision, numberofcontours, and compressgraphic. If the val-
ues of the function being plotted do not vary too quickly, then the default setting of 50, even
settings as low as 20, are adequate. On the other hand, if the function’s values changes
very quickly—as does speed under the best response dynamic in a coordination game, to
take one example—then a higher setting of plotprecision, and the higher running time
that comes with it, is needed for accurate output.

Varying the choice of numberofcontours, whose default setting is 100, has obvious
effects on the figure. Settings around 50 will produce graphs that resemble topographic
maps. Settings of 150 or higher can be chosen to create the appearance of continuous
changes in color, but at the cost of higher running times and file sizes.

Finally, setting compressgraphic to 1 calls an algorithm that reduces the size of ex-
ported pdf files, by using fewer and larger polygons in the construction of the contour
plot. We discuss this and other points about exporting graphics in Section 5.

4.1.3 Other figures

Although phase diagrams are the most commonly used Dynamo output, the software
can also create three other types of diagrams.14 For instance, Dynamo can produce vector
field diagrams, which present either one or two vector fields, drawn as arrows starting
from a grid of initial conditions in the simplex. The default vector fields used are projected
payoffs and the dynamic itself (Figure 8).15 Dynamo can also produce three-dimensional
plots of scalar valued functions, typically the functions that appear in phase diagrams
as contour plots, like speeds, potential functions, and Lyapunov functions (Figure 9).

14The options that control these diagrams are located in Specification of graphical output →
Specifications for other diagrams.

15By projected payoff, we mean the orthogonal projection of the payoff vector onto the tangent space
of the simplex. It is obtained by subtracting the unweighted average of all strategies’ payoffs from each
strategy’s payoff—see Sandholm (2010c, Section 2.3).

–15–

1

2 3

Figure 8: Vector field diagram from Dynamo 3S: projected payoffs (blue) and the replicator dynamic (pink)
in Zeeman’s game.

Finally, Dynamo can create phase diagrams that make use of a change of variable—the
Akin transformation—which transports the dynamics from the simplex to a portion of the
surface of a sphere (Figure 10).16

4.2 Dynamo 4S

Drawing phase diagrams for three-dimensional dynamics introduces some new con-
siderations, as one has to account for some elements of the diagram being positioned
“behind” others. The next example shows how to address this issue by taking advantage
of Mathematica’s capacity for rendering transparent three-dimensional objects.

Figure 11 presents a phase diagram of the replicator dynamic in a four-strategy game
with nonlinear payoff function

Fi(x) = φ(e′iAx), where φ(π) = π3.2 and A =

1 0 1.61 .86

1.61 1 0 .86
0 1.61 1 .86
.88 .88 .88 .87

 .
16This transformation is useful for studying the replicator dynamic in potential games, since under this

transformation, the replicator dynamic is the gradient system defined by the game’s potential function. See
Akin (1979) and Sandholm et al. (2008).

–16–

Figure 9: Contour function output of Dynamo 3S for the replicator dynamic in Zeeman’s game.

1

2

3

Figure 10: Phase diagram on a portion of the sphere in Dynamo 3S: the replicator dynamic in 123
Coordination. The contour plot is of a transported version of the potential function. Solutions of the

dynamic cross level sets of this function orthogonally.

–17–

The resulting differential equation can also be interpreted as a payoff functional imitative
dynamic applied to the linear population game F(x) = Ax.17

To specify the nonlinear payoff function above in Dynamo, first enter the matrix A as
if it were a normal form game. Then go to Choice of game → Functional form, and
replace the linear payoff definition F[x]:=A.x;with18

f[u]:=uˆ(3.2);

F[x]:=f[A.x];

Figure 11 is constructed using Dynamo 4S’s default settings for coloring the faces of
the simplex, which cause them to be rendered in a moderately transparent light green.
Both the color and the opacity of the individual faces are easy to adjust.19 The solution
trajectories in the phase diagram were specified using the following code:

pointincycle={Xt1[30],Xt2[30],Xt3[30],1-Xt1[30]-Xt2[30]-Xt3[30]}/.

DEsol[{3/4,1/8,1/8,0},0,30][[1]];

trajectoryspecs={

{pointincycle,6.85,{Black,Thickness[.0075],Opacity[.8]},{.7,4,5.6},},

{.03,.03,.03}},

{{1/4,3/8+.05,3/8-.05,0},18.5,{Gray,Thickness[.005],Opacity[.3]},

{.55,4.5,9,15,18.5},{.025,.025,.025,.025,.025}},

{{.05,.05,.9,0},9,{Gray,Thickness[.005],Opacity[.3]},{.6,3.8,6.5,8.6},

{.025,.025,.025,.025}},

{{1/3-.05,1/3-.05,1/3-.05,.15},200,{Black,Thickness[.005],Opacity[.3]},{200},},

{.025}},

{{1/3-.02999,1/3-.030005,1/3-.030005,.09},102,{Blue,Thickness[.005],Opacity[.7]},

{20,87,90,94.4,102},{.025,.025,.025,.025,.025}},

{{.15,.025,.025,.8},55,{Red,Thickness[.005],Opacity[.3]},{20,30,39,43,46.5,55},

{.025,.025,.025,.025,.025,.025}}

};

17See Hofbauer and Weibull (1996), as well as Viossat (2011), from which this example is taken. It follows
that one could have obtained the same differential equation by defining the appropriate payoff functional
imitative dynamic in Dynamo, and then applying it to F(x) = Ax. Defining new dynamics is not difficult,
but takes a few steps to accomplish. The definitions of the built-in dynamics are presented in Choice of
dynamic → Definitions of dynamics; these can be used as a template for defining a new dynamic under
the heading Other.

18This definition works because of a quirk in Mathematica’s syntax: when a function that takes a scalar
argument is applied to a vector, the function is evaluated separately on each component of the vector.

19The relevant parameters can be found in Specification of graphical output → Specifications
for phase diagram → Face shading and viewpoint.

–18–

Figure 11: Dynamo 4S output: the replicator dynamic in Viossat’s (2011) game.

Apart from the obvious adjustments needed for the four-strategy setting, the main
novelties here are the use of Mathematica’s Opacity option to specify how transparent
each solution looks, and use of colors to distinguish the solutions. For the latter, one
can also call Dynamo 4S’s option "rainbow" to obtain solutions whose colors vary over
time, as we did in Figure 3. Finally, we disabled the drawing of dots by setting the
drawnashequilibria and drawrestpoints options to 0.20

5. Creating output files for publication

A main purpose of Dynamo is to create figures for publication. There are a variety
of methods for creating output files of plots created in Mathematica, and the results one
obtains can vary substantially with the method used. Our recommendations for how
to proceed depend on the nature of the graphic, on whether the graphic will undergo
post-processing, and on the platform in which Mathematica is being used.21

For two-dimensional graphics, let us first reiterate that for diagrams with contour

20These parameters are located in Specification of graphical output → Specifications for

phase diagram → Drawing dots at rest points and Nash equilibria.
21An excellent source of information on working with Mathematica graphics, including the creation

of files for publication, is a website maintained by Jens Nöckel: see pages.uoregon.edu/noeckel/
MathematicaGraphics.html.

–19–

plots, one should set compressgraphic to 1 before creating the final version of the figure
if file size is of any concern.22 However, as this option slows the program down quite
substantially, it should not be used until the final version of the figure is ready.

One can create pdf output by clicking on the graphic, go to File → Save Selection
As, and choosing the PDF file format. Mac users can also generate quality pdfs with
considerably smaller file sizes by going to File → Print Selection, and then selecting
Save as Adobe PDF.

In some cases one needs to perform post-processing of Dynamo output using a vector
graphics editor (like Adobe Illustrator). For instance, one might want to add a rounded
rectangle to represent a component of rest points.23 To accomplish this, one needs to
export the graphic in eps format: go to File → Save Selection As and select EPS.

When working with three-dimensional graphics, we recommend using Mathematica’s
pdf exporting engine to create a bitmapped pdf. Click on the graphic and go to File
→ Save Selection As. In the window that appears, make sure the file format is PDF;
then select Options..., and then Use Bitmap Representation. For the Rasterization
Resolution, choose Custom. We find that a setting of 1200 dpi gives very high quality
phase diagrams, while a setting of 600 dpi is enough for graphs like Figure 9.24 Be warned
that bitmapped images with high resolutions may take a few minutes to create.

As we noted earlier, one of Mathematica’s more impressive features is its ability to
let one rotate three dimensional images using a mouse. Therefore, one need only run a
notebook once to be able to look at and export a graphic from multiple points of view
after running the notebook. Still, looking at a graphic from a few vantage point is not
a full substitute for rotating the image oneself. We therefore encourage the posting of
Dynamo output notebooks as online appendices, so that readers can enjoy this experience
for themselves.

6. Numerical methods behind Dynamo

We now offer some brief remarks on the numerical methods used in Dynamo, and
mention some of the problems that these methods occasionally create.

22This option is found in Specification of graphical output → Specifications for phase

diagram.
23See Sandholm (2010c, Figure 5.7).
24Mac users who work in TeXShop will find that bitmap figures appearing in pdfs look ugly in TeXShop’s

pdf viewer. Fortunately, the figures will look just fine when the pdf is opened in any standard viewer.

–20–

6.1 Solving nonlinear ordinary differential equations

Generally speaking, nonlinear ordinary differential equations (ODEs) in two or more
dimensions do not admit closed-form solutions. Therefore, the diagrams created by
Dynamo are based on numerical solutions created using Mathematica’s sophisticated
numerical ODE solver. In the case of the replicator dynamic, these methods tend to work
quite well, and we have rarely experienced problems. The difficulties we do encounter
tend to arise when we work with dynamics that change speed rapidly, and the trouble
usually occurs near rest points. Fortunately these problems do not occur too often, and
are generally easy to spot—for instance, a solution trajectory may suddenly jump out of
the state space. Users are welcome to contact us for suggestions should such problems
arise.

A variety of algorithms exist for obtaining numerical solutions to ODEs.25 Mathe-
matica’s numerical ODE solver, called using the command NDSolve, uses a closed-source
adaptive algorithm to select and switch among the basic algorithms.26 However, the
solver also allows one to select a particular algorithm to employ. In Dynamo, one can
take advantage of this possibility by altering the definition of the DESol function, which
is called whenever a solution must be found.27

6.2 Finding rest points and Nash equilibria

For many of the evolutionary dynamics considered in the literature, there are results
that characterize the dynamics’ rest points directly in terms of the payoffs of the underlying
game. For instance, the rest points of the replicator dynamic and other imitative dynamics
are the restricted equilibria of the underlying game—that is, the states at which all strategies
in use receive the same payoff. If this common payoff at least as large as that of any unused
strategy, then the state is a Nash equilibrium. Furthermore, for many dynamics based on
direct evaluation of strategies, including the best response, BNN, and Smith dynamics,
rest points and Nash equilibria are identical.28 In all of these cases, one can find rest points
without having to work directly with nonlinear ODEs, but by instead directly analyzing
the game in question.

Dynamo finds restricted equilibria and Nash equilibria of linear games using a pro-
cedure that is exact in generic cases—namely, those in which the number of equilibria

25See, for example, Press et al. (2007).
26See reference.wolfram.com/mathematica/tutorial/NDSolveOverview.html.
27See the Dynamo notebooks for documentation. Dynamo takes advantage of this property when finding

solutions to the projection dynamic (Nagurney and Zhang (1996); Lahkar and Sandholm (2008)), which
seems to proceed most smoothly using the Runge-Kutta-Fehlberg method of orders 5 and 4.

28See Sandholm (2010c, Chapters 4–6).

–21–

is finite. The procedure divides the state space into regions corresponding to different
supports, and then uses Mathematica’s Solve function to locate the restricted equilibria in
each region. Once the set of restricted equilibria is determined, the set of Nash equilibria
is easily obtained by checking the additional condition on payoffs to unused strategies.

To find the rest points of other dynamics, and when working with games with non-
linear payoffs, Dynamo finds rest points, restricted equilibria, and Nash equilibria using
numerical methods. It starts by specifying a grid of points in the simplex. At each of these
points, it uses Mathematica’s FindRoot command to attempt to find a nearby rest point
or restricted equilibrium.29 This approach works well in cases where the number of rest
points is finite, but is slower than the exact routine described above.

We should emphasize that Dynamo makes no attempt to find connected components of
rest points or equilibria. When these exist, Dynamo will find a random selection of points
in the component. In such cases, creating a phase diagram that displays the component
correctly is accomplished most easily through post-processing (see Section 5).

6.3 Determining stability of rest points

Dynamo uses a number of different methods to determine stability of rest points.
For differentiable dynamics, in particular the replicator and logit dynamics, Dynamo
determines stability using linearization, which yields the correct categorization so long as
the rest point is hyperbolic.30 Moreover, because regular ESSs are locally stable under the
basic evolutionary dynamics, Dynamo uses this criterion to evaluate stability whenever
it applies.31

When these exact methods fail, Dynamo uses a rough test to evaluate stability. The
program randomly chooses several initial conditions in a neighborhood of the rest point,
computes solutions originating at these initial conditions, then evaluates whether these
solutions remain close to the rest point. If all of them do, the rest point is categorized
as stable; if not, it is categorized as unstable. Clearly, this procedure is sensitive to the
parameters used to define the test, and mistaken categorizations are not unusual.32 Thus,
apart from the cases described in the previous paragraph, Dynamo’s classifications are

29By default, FindRoot employs Newton’s method, but other methods are available and can be selected
manually. See reference.wolfram.com/mathematica/ref/FindRoot.html.

30For more on linearization of game dynamics, see Sandholm (2010c, Sections 8.5, 8.6, and 8.C).
31For more on local stabilty of ESSs, see Hofbauer and Sigmund (1988), Cressman (1997), Sandholm

(2010a), and Sandholm (2010c, Sections 8.3 and 8.4).
32If a certain class of examples systematically causes problems, one can tune the parameters of the test to

obtain better performance. The relevant parameters are located in Specification of graphical output
→ Specifications for phase diagram → Tuning stability tests.

–22–

only intended as educated guesses, and the coloring of dots in phase diagrams should not
be taken as definitive indications of stability or instability.

7. Conclusion

Dynamo: Diagrams for Evolutionary Game Dynamics is free, open-source software de-
signed for use by researchers and students working with evolutionary game dynamics.
We encourage its use both for exploratory analysis and for the creation of figures for
publication, both of which can be accomplished with surprisingly little effort. This paper
explains how to use Dynamo with its default settings, and how to take advantage of a
variety of its other features. But there are many further features that we did not explain;
these can be found by exploring the Dynamo notebooks, where further documentation
can also be found. Dynamo is a continuing project, and we encourage users to contact us
with questions and feedback about the software.

References

Akin, E. (1979). The Geometry of Population Genetics. Springer, Berlin.

Arneodo, A., Coullet, P., and Tresser, C. (1980). Occurrence of strange attractors in three-
dimensional Volterra equations. Physics Letters, 79A:259–263.

Björnerstedt, J. and Weibull, J. W. (1996). Nash equilibrium and evolution by imitation. In
Arrow, K. J. et al., editors, The Rational Foundations of Economic Behavior, pages 155–181.
St. Martin’s Press, New York.

Brown, G. W. (1949). Some notes on computation of games solutions. Report P-78, The
Rand Corporation.

Brown, G. W. (1951). Iterative solutions of games by fictitious play. In Koopmans, T. C.
et al., editors, Activity Analysis of Production and Allocation, pages 374–376. Wiley, New
York.

Brown, G. W. and von Neumann, J. (1950). Solutions of games by differential equations. In
Kuhn, H. W. and Tucker, A. W., editors, Contributions to the Theory of Games I, volume 24
of Annals of Mathematics Studies, pages 73–79. Princeton University Press, Princeton.

Cressman, R. (1997). Local stability of smooth selection dynamics for normal form games.
Mathematical Social Sciences, 34:1–19.

–23–

Fudenberg, D. and Levine, D. K. (1998). The Theory of Learning in Games. MIT Press,
Cambridge.

Gilboa, I. and Matsui, A. (1991). Social stability and equilibrium. Econometrica, 59:859–867.

Helbing, D. (1992). A mathematical model for behavioral changes by pair interactions. In
Haag, G., Mueller, U., and Troitzsch, K. G., editors, Economic Evolution and Demographic
Change: Formal Models in Social Sciences, pages 330–348. Springer, Berlin.

Hirsch, M. W., Smale, S., and Devaney, R. L. (2004). Differential Equations, Dynamical
Systems, and an Introduction to Chaos. Elsevier, Amsterdam.

Hofbauer, J. (1995a). Imitation dynamics for games. Unpublished manuscript, University
of Vienna.

Hofbauer, J. (1995b). Stability for the best response dynamics. Unpublished manuscript,
University of Vienna.

Hofbauer, J. (2000). From Nash and Brown to Maynard Smith: Equilibria, dynamics, and
ESS. Selection, 1:81–88.

Hofbauer, J. and Sandholm, W. H. (2002). On the global convergence of stochastic fictitious
play. Econometrica, 70:2265–2294.

Hofbauer, J. and Sigmund, K. (1988). Theory of Evolution and Dynamical Systems. Cambridge
University Press, Cambridge.

Hofbauer, J. and Weibull, J. W. (1996). Evolutionary selection against dominated strategies.
Journal of Economic Theory, 71:558–573.

Jordan, J. S. (1993). Three problems in learning mixed-strategy Nash equilibria. Games and
Economic Behavior, 5:368–386.

Lahkar, R. and Sandholm, W. H. (2008). The projection dynamic and the geometry of
population games. Games and Economic Behavior, 64:565–590.

Matsui, A. (1992). Best response dynamics and socially stable strategies. Journal of Economic
Theory, 57:343–362.

Maynard Smith, J. (1982). Evolution and the Theory of Games. Cambridge University Press,
Cambridge.

Maynard Smith, J. and Price, G. R. (1973). The logic of animal conflict. Nature, 246:15–18.

Nagurney, A. and Zhang, D. (1996). Projected Dynamical Systems and Variational Inequalities
with Applications. Kluwer, Dordrecht.

Oyama, D., Sandholm, W. H., and Tercieux, O. (2012). Sampling best response dynamics
and deterministic equilibrium selection. Unpublished manuscript, University of Tokyo,
University of Wisconsin, and Paris School of Economics.

–24–

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007). Numerical
Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge, third
edition.

Robinson, J. (1951). An iterative method of solving a game. Annals of Mathematics, 54:296–
301.

Sandholm, W. H. (2001). Potential games with continuous player sets. Journal of Economic
Theory, 97:81–108.

Sandholm, W. H. (2002). Evolutionary implementation and congestion pricing. Review of
Economic Studies, 69:667–689.

Sandholm, W. H. (2005). Negative externalities and evolutionary implementation. Review
of Economic Studies, 72:885–915.

Sandholm, W. H. (2009). Evolutionary game theory. In Meyers, R. A., editor, Encyclopedia
of Complexity and Systems Science, pages 3176–3205. Springer, Heidelberg.

Sandholm, W. H. (2010a). Local stability under evolutionary game dynamics. Theoretical
Economics, 5:27–50.

Sandholm, W. H. (2010b). Pairwise comparison dynamics and evolutionary foundations
for Nash equilibrium. Games, 1:3–17.

Sandholm, W. H. (2010c). Population Games and Evolutionary Dynamics. MIT Press, Cam-
bridge.

Sandholm, W. H., Dokumacı, E., and Franchetti, F. (2012). Dynamo: Diagrams for evolu-
tionary game dynamics. Software. http://www.ssc.wisc.edu/∼whs/dynamo.

Sandholm, W. H., Dokumacı, E., and Lahkar, R. (2008). The projection dynamic and the
replicator dynamic. Games and Economic Behavior, 64:666–683.

Schlag, K. H. (1998). Why imitate, and if so, how? A boundedly rational approach to
multi-armed bandits. Journal of Economic Theory, 78:130–156.

Skyrms, B. (1990). The Dynamics of Rational Deliberation. Harvard University Press, Cam-
bridge.

Skyrms, B. (1992). Chaos in game dynamics. Journal of Logic, Language, and Information,
1:111–130.

Smith, M. J. (1984). The stability of a dynamic model of traffic assignment—an application
of a method of Lyapunov. Transportation Science, 18:245–252.

Swinkels, J. M. (1993). Adjustment dynamics and rational play in games. Games and
Economic Behavior, 5:455–484.

–25–

Taylor, P. D. and Jonker, L. (1978). Evolutionarily stable strategies and game dynamics.
Mathematical Biosciences, 40:145–156.

Viossat, Y. (2011). Monotonic dynamics and dominated strategies. Unpublished
manuscript, Université Paris-Dauphine.

Weibull, J. W. (1995). Evolutionary Game Theory. MIT Press, Cambridge.

Weibull, J. W. (1996). The mass action interpretation. Excerpt from ’The work of John
Nash in game theory: Nobel Seminar, December 8, 1994’. Journal of Economic Theory,
69:165–171.

Zeeman, E. C. (1980). Population dynamics from game theory. In Nitecki, Z. and Robinson,
C., editors, Global Theory of Dynamical Systems (Evanston, 1979), number 819 in Lecture
Notes in Mathematics, pages 472–497, Berlin. Springer.

Zusai, D. (2011). The tempered best response dynamic. Unpublished manuscript, Uni-
versity of Wisconsin.

–26–

