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A RATIONAL ROUTE TO RANDOMNESS

By WiLLIAM A. BROCK AND CARs H. HoMMES!

The concept of adaptively rational equilibrium (A.R.E) is introduced. Agents adapt
their beliefs over time by choosing from a finite set of different predictor or expectations
functions. Each predictor is a function of past observations and has a performance or
fitness measure which is publicly available. Agents make a rational choice concerning the
predictors based upon their past performance. This results in a dynamics across predictor
choice which is coupled to the equilibrium dynamics of the endogenous variablcs.

As a simplc, but typical. example we consider a cobweb type demand-supply model
where agents can choose between rational and naive expectations. In an unstable market
with (small) positive information costs for rational expectations. a high intensity of choice
to switch predictors leads to highly irregular equilibrium prices converging to a strange
attractor. The irregularity of the equilibrium time paths is explained by the existence of a
so-called homaoclinic orbit and its associated complicated dynamical phenomena. Thus
local instability and global complicated dynamics may be a feature of a fully rational
notion of cquilibrium.

Keyworns: Heterogencous beliefs, adaptive learning. business cycles, cobweb maodel,
homoclinic bifurcations, and strange attractors.

1. INTRODUCTION

THIS PAPER PUTS FORTH a concept of adaptively rational equilibrium (A.R.E.)
where agents base decisions upon predictions of futurc values of endogenous
variables whose actual values are determined by equilibrium cquations. Predic-
tions arc made by choosing from a finite set P of predictor or expectations
functions. These predictors are functions of past information. Each predictor
has a performance mcasure attached to it which is publicly available to all
agents. Agents usc a discrete choice model along the lincs of Manski and
McFadden (1981) and Anderson, de Palma, and Thisse (1993) to pick a predic-
tor from P where the deterministic part of the utility of the predictor is the
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performance measure. This results in the adaptive rational equilibrium dynamics
(A.R.E.D.), a dynamics across predictor choice which is coupled to the equilib-
rium dynamics of the endogenous variables.

The A.R.E.D. incorporates a general mechanism, which can generate local
instability of the steady state and complicated global equilibrium dynamics. Let
us explain this general mechanism by discussing the simple case with two
predictors. Agents can either buy at small but positive information costs C a
sophisticated predictor H, (e.g., rational expectations or long memory predictors
such as “Ljung-type” predictors used by Marcet and Sargent (1989) or Evans
and Honkapohja (1994)) or freely obtain another simple predictor H, (e.g,
adaptive, short memory, or naive expectations). Agents make a rational decision
between predictors and tend to choose the predictor which yields the smallest
prediction error or the highest net profit. Suppose that if all agents would use
the sophisticated predictor H,, all time paths of the endogenous variables, say
prices, would converge to a unique stable steady state. whereas when all agents
would use the simple predictor H,, the same unique steady state would occur,
but this time it would be unstable. Consider an initial state with prices close to
the steady state value and almost all agents using the simple predictor. Then
prices will diverge from their steady state value and the prediction error from
predictor H, will increase. As a result, the number of agents who are willing to
pay some information costs to get the predictor H, increases. When the
intensity of choice to switch between the two beliefs is high, as soon as the net
profit associated to predictor H, is higher than the net profit associated to 5,
almost all agents will switch to H,. Prices are then pushed back towards their
steady state value and remain there for a while. With prices close to their steady
state value, the prediction error of predictor H. becomes small again whereas
net profit corresponding to predictor H, becomes negative because of the
information costs. When the intensity of choice is high, most agents will switch
their beliefs to predictor H, again, and the story repeats. There is thus one
“centripetal force” of “far-from-equilibrium” negative feedback when most
agents use the sophisticated predictor and another “centrifugal force” of “near-
equilibrium” positive feedback when all agents use the simple predictor. The
interaction between these two opposing forces can lead to very complicated
Adaptive Rational Equilibrium Dynamics when the intensity of choice to switch
beliefs is high. In an unstable market with information costs for sophisticated
predictors, local instability and irregular dynamics mav thus be a feature of a
fully rational notion of equilibrium.

The paper aims at making this intuitive description rigorous. In fact the
primary contribution of the paper is to show that in binary predictor choice
settings whose dynamics are reducible to two dimensional discrete systems, a
rational choice between a cheap destabilizing predictor and a costly stabilizing
one, leads to the existence of a near homoclinic orbit when the intensity of
choice to switch predictors is high. As already pointed out by Poincaré (1890) a
century ago, existence of homoclinic orbits implies very complicated dynamics.
Applying recent mathematical results from homoclinic bifurcation theory (sce
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Palis and Takens (1993) for an excellent treatment) we prove existence of
strange attractors in a simple two-dimensional binary predictor system.

In the literature on chaos in economic models, most examples are in fact
given by a one-dimensional difference equation x,,, =f(x,), where f is a
non-monotonic map. One of the most prominent examples is the overlapping
generations (OLG) model (Benhabib and Day (1982) and Grandmont (1985)).
Our models with heterogeneous beliefs yield discrete dynamic models of at least
two state variables, say prices and fractions of the different groups. The
homoclinic bifurcation theory which we use can be applied to other two-dimen-
sional nonlinear economic models as well. In two related and stimulating papers,
de Vilder (1995, 1996) recently introduced homoclinic bifurcation theory into
economics, presenting “computer assisted proofs” of the existence of homoclinic
orbits and the associated complicated dynamic phenomena in a two-dimensional
OLG model with a Leontief production technology. Occurrence of homoclinic
bifurcations was shown by developing the DUNRO computer program (Sands
and de Vilder (1994)) for accurate numerical computation of stable and unstable
manifolds of periodic saddles in gencral two-dimensional systems. Recently, |
Pintus, Sands, and de Vilder (1996) used the DUNRO program to show
complicated equilibrium dynamics in an OLG economy with a CES production
technology.

In the present paper, we focus on a simple two-dimensional example of an
A.R.E.D.. namely the cobweb model with rational versus naive expectations and
linear demand and supply. This simple example displays many of the essential
features that have bcen obscrved for a fairly general class of binary choice
predictive systems. Other examples can be found in the longer working paper
version of this paper (Brock and Hommes (1995)). Numerical simulations
indicate that the conflict between the stabilizing and destabilizing forces leads to
complicated dynamics in higher-dimensional predictor choice systems as well.

A secondary contribution of the paper is the formulation of two general local
instability thecorems which show that, in higher-dimensional cobweb type predic-
tive systems, the tension between stabilizing and destabilizing forces causes the
dynamics almost surely nor to settle down to the equilibrium steady state.
However, in higher-dimensional cases the exact nature of the global dynamics
around the unstable stcady state remains unknown.

At this point we would like to refer to some other related work. Arthur (1992)
and Arthur, Holland, LeBaron, Palmer, and Taylor (1994) have written interest-
ing papers on “artificial economic life” where agents use a mix of predictors to
adapt to an economic environment. De Grauwe, DeWachter, and Embrechts
(1993) consider models of cxchange rates with two classes of agents, chartists
and fundamentalists, and Chiarella (1992), Lux (1995), and Sethi (1996) consider
simple continuous-time stock market models with chartists and fundamentalists.
One can view the present paper as providing some analytic results for thesc
more numerically oriented papers.

The paper is organized as follows. Section 2 describes the general A.R.E.D.
with K predictors and presents two general local-instability-of-the-steady-state
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theorems. The main section is Section 3, analyzing the global A.RE.D. in the
cobweb model with rational versus naive expectations. Section 4 concludes, and
an Appendix contains the proofs of the results.

7. ADAPTIVE RATIONAL EQUILIBRIUM DYNAMICS (A.R.E.D.)

Adaptive rational equilibrium dynamics is a coupling between market equilib-
rium dynamics and predictor selection. In each period, agents make a rational
choice among a finite set of predictors, based upon their past performance. We
concentrate on the familiar cobweb demand-supply model, but note that the
A.R.E.D. concept can be incorporated into a more general temporary equilib-
rium model (e.g., Grandmont and Laroque (1991), Grandmont (1994)). Brock
and Hommes (1996a, 1996b, 1996¢) investigate the A.R.E.D. in the present
discounted value asset pricing model, and de Fontnouvelle (1995) in a financial
market model with informed and uniformed traders. Brock and LeBaron (1996)
consider a structural stochastic financial model with adaptive beliefs.

The cobweb model describes fluctuations of equilibrium prices in a market of
a nonstorable good that takes one time unit to produce. Let D(p,) be the
demand and S(p¢) be the supply of the good, where p, is actual price and p;
producers expected price, made at the beginning of period ¢. Supply is derived
from firms maximizing profits with a cost function c(q), so

Q.1 S(pf, ) =argmax{pq — (@)} = (¢') 7 (pi,).

In the case of homogeneous beliefs all producers use the same expectations oOr
predictor function pf,, = H(FP,), where P, =(p,, Pio1r---»Pi—1) 1s & vector of
past prices. Equilibrium price dynamics is then described by

e pi=s{u(F)) o p=0"s{H(E)

with D! the inverse demand function. We assume that demand D is decreas-
ing and supply S is increasing, so (2.2) is well defined.’

In this paper we consider the equilibrium price dynamics in the cobweb model
with heterogeneous beliefs, where agents can choose between K different predic-
tors H,, H,,..., Hg. The fractions n; ,, 1 <j < K, of agents using predictor H;
in period ¢, will change over time. In the cobweb model with heterogeneous
beliefs market equilibrium is determined by

23) D(p,+1)=fln,-.,(l)nf’”(ﬁ:—1))5(”1(’37))
-

where as before P, =(p,, p,_ 1»-: > Pry ) Is @ vector of past prices and H(P,_})is
the vector of predictions (H(P,_,),..., H(P,_ ).

2 The price dynamics in the cobweb model with homogencous beliefs (2.2) and nonlincar, but
monotonic, demand and supply curves, has recently been analyzed for various expectations schemes
in Hommes (1991, 1994, 1997). In the case of homogencous belicfs several bifurcation routes to
chaos can arisc.
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We now describe how the fractions n;, evolve over time. Predictor choice is
based upon their past performance. Here we choose past realized net profits =;
as the publicly available performance or fitness measure U, but other choices
(e.g., past squared prediction errors) yield similar results. Reahzed net profits
7 P,srs H (P), 1 <j <K, from using predictor H(P ) when the actual equilib-
rium price becomes D, ., equals

@4 w(pior H(B)) =piS(H(B)) — c(s(AP))) - ¢,

where () is the producer’s cost function and C; > 0 are information costs for
obtaining predictor H,. For a simple “habitual rule of thumb” predictor (e.g,
naive or adaptive expectations) information costs Cj =(, but for a more
“sophisticated” predictor (e.g., rational expectations, fundamentalist beliefs, or
OLS-learning) information costs C; may be positive. The performance measure
U, for predictor H; is a weighted average of past realized net profits:

M

M
(2.5) U, .= > “}.k”](P:+l—kaj(i):—A-))» )y Wi =1

k=0 k=0

The updated fraction n; ., of firms using predictor H, in the next period is

(26) ”j.l*] = ”j‘t‘ I(pr+|"'z/([;;)) = exp[ BUj.r+1]/Zr+ 1
K

Zl+l = Z Cxp[ Bljj_1+1]»

j=1

where Z, | is just a normalization so that the fractions n;,,, add up to 1. The
cobweb model with heterogeneous beliefs is thus defined by (2.3) and (2.6). The
timing of predictor selection is important. After the equilibrium price p, ., has
been revealed by (2.3), all predictors H; arc evaluated according to their publicly
available performance measure U, ,,, and the new fractions are determined by
(2.6). These updated fractions thcn determine the next equilibrium price p,, , by
(2.3), etc. It will be clear from (2.6) that most agents will choose predictors that
yielded higher net profits over the past. The parameter B is the intensity of
choice measuring how fast agents switch predictors. The special limiting case
B = +x= corresponds to the neoclassical deterministic choice model, where in
each period all agents choose the optimal predictor. We will particularly be
interested in the equilibrium dynamics for high but finite values of the intensity
of choice B.

The fractions (2.6) are exactly the limiting fractions or probabilities of
choosing H; in a stochastic discrete choice model for predictor selection.
Discrete choice models give analytically tractible choice probabilities for which
highly developed theory exists in both econometrics and statistical physics. See
Manski and McFadden (1981) or Anderson, de Palma, and Thisse (1993) for an
extensive treatment and background information on discrete choice modelling.
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Discrete choice setups also easily generalize to models with social interactions
as shown by Brock (1993). See also Kiefer, Ye, and An (1993).?

We shall call the dynamical system given by (2.3) and (2.6) the adaptive
rational equilibrium dynamics (A.RE.D.). This name is intended to capture two
key features: (i) Predictor choice is itself a purposive economic act based upon a
cational decision which itself should be modelled and should be part of the
equilibrium concept studied; and (ji) predictor choice feeds into the market
equilibrium dynamics, which in turn feeds into predictor choice.

These ideas could be viewed as a variation and extension on the work of
Evans and Ramey (1992) on “Calculation Equilibrium” as well as Arthur (1992),
Arthur et al. (1994), Blume and Easley (1992), Cabrales and Hoshi (1996), Kurz
(1994), Marimon (1993), Sargent (1993), and Townsend (1983). Our interest here
is on the extra dynamical system structure that is added by the interaction of
purposive dynamical choice across predictors with the conventional market
equilibrium dynamics.

We next formulate two general local instability theorems for the cobweb type
ARE.D. (2.3)~(2.6). Let p* be the price corresponding to the intersection point
of demand and supply, i.e. D(p*) = S(p*), and let P* denote the L-dimensional
vector ( p*,..., p*). We make the following assumption:

ASSUMPTION Al: D(:) is strictly decreasing and positive, S(+) is strictly increasing
and positive except at zero, and $(0) = 0. The functions D, S, {H}} are all Cli.e.,
continuously_’dij]"erentiable. For each predictor H., the dynamical system p,.,=
D '[SCH{P))] has p* as its unique steady state.

According to Assumption Al, the cobweb model with homogeneous beliefs H;
has p* as the unique steady state equilibrium. It is then easy to show that p* is
also an equilibrium steady state of the A.R.E.D. (2.3)-(2.6). Consider

| K B
@.7) D(p,)=Ej§IS(Hj(P,_1)),

the cobweb model with heterogeneous beliefs, with agents uniformly distributed
over the predictor space and all fractions of agents fixed at 1/K. We assume the
following:

ASSUMPTION A2: The steady state equilibrium p* or P* =(p*,...,p*) of .7),
is hyperbolic (i.e. the linearization of (2.7) at p* has no eigenvalues on the unit
circle), and (2.7) is locally unstable at p*.

3 These systems can also generate thresholding behavior and endogenous regime changes. These
features relate naturally to work in macroeconomics such as Azariadis and Smith (1994). A nice
survey on complex dynamics and endogenous fluctuations in macroeconomics is Guesnerie and
Woodford (1992).

4 Assumption Al excludes, e.g. constant, biased predictors H, I-(P; _,) =p. Different biased predic-
tors imply that agents “believe” in different steady states. This introduces an additional source of
instability in the A.R.E.D., not considered in this paper; but see Brock and Hommes (1996b) on the
role of biased predictors in asset pricing models.
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This assumption means that when all fractions of agents using predictor H;
are fixed at 1/K, the corresponding equilibrium dynamics (2.7) has an unstable
steady state p*. According to the following theorem, the steady state of the
A.R.E.D. with switching of beliefs is then also locally unstable.

THEOREM 2.1: Assume Al, A2 and information costs C; =0 for all H;. Then
the A.R.E.D. (2.3)-(2.6) has a locally unstable steady state.

Proofs of all results are given in the Appendix. The theorem says that an
unstable equilibrium steady state with heterogeneous agents equally distributed
over the space of predictors, cannot be stabilized by switching of beliefs. A
second local instability result arises when there are information costs. Let C; > 0
denote the costs for agents to obtain predictor H,, and assume C; > C,> --- >
Cy = 0. We continue to assume Al but replace A2 by the following assumption.

_ ASSUMPTION A2": When all agents use the cheapest predictor Hy, the steady state
P* =(p*,..., p*) is hyperbolic and locally unstable (i.c. the simple cobweb model
(2.2) with homogeneous beliefs Hy, is locally unstable at p*).

The second local instability theorem is as follows.

THEOREM 2.2: Assume A,, A, and C; > Cy_, > Cy = 0. When the intensity of
choice B is sufficiently large, then the steady state P* =(p*,...,p*) of the
A.R.E.D. (2.3)-(2.6) is locally unstable.

For large B, at the equilibrium steady state p*, most agents will use the
cheapest predictor Hy. In economic models, it is natural to take the cheapest
predictor to be some myopic, naive, or habitual “rule of thumb.” It is not
difficult to imagine markets that are unstable under such prediction rules. Our
theorem says that local instability is inherent in such situations when more
complicated or sophisticated prediction methods are more expensive.

3. THE COBWEB MODEL WITH RATIONAL VERSUS NAIVE EXPECTATIONS

In this section we investigate the global equilibrium dynamics in a simple,
example of an A.R.E.D.: the cobweb model with rational versus naive expecta-
tions and linear demand and supply. Although this example is simple, it captures
many of the essential features occurring in other cases, such as fundamentalists’
beliefs versus naive expectations or long memory, “Ljung”-type predictors versus
naive, analyzed in Brock and Hommes (1995). The section is subdivided into five
subsections. The first presents the model. The second investigates the stability of
the steady state and existence of a period 2 cycle. Subsection 3.3 briefly discusses
Poincaré’s notion of homoclinic orbits and some related recent mathematical
results on homoclinic bifurcations. In Subsection 3.4 we investigate the global
dynamics of the model and in particular we show the existence of strange
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attractors when the intensity of choice to switch predictors is high. Finally, in
Subsection 3.5 we focus on coexistence of stable cycles as a source of compli-
cated equilibrium dynamics and use the DUNRO program (Sands and de Vilder
(1994)) to detect the primary heteroclinic and homoclinic bifurcations as the
intensity of choice increases.

3.1. The Model

Market equilibrium in the cobweb model with two predictors is determined by
G D(p)) =ny S(H(B))+n,S(HfP))
where n, , and n, , are the fractions of agents using predictors H,, respectively
H,. To keep the model as simple as possible, we choose a linear demand curve
and a linear supply curve (derived from a quadratic cost function c(q) =q*/2b):

(3.2a) D(p)=A-Bp,
@2v)  S(H(P)) =bH(F).

Throughout this section H, will be rational expectations (perfect foresight),’
whereas H, will be naive expectations, so

(3.3a) HI(P;) =Pisr>
33b)  Hy(P)=p,.

Naive expectations are freely available, whereas rational expectations can be
obtained at information costs C >0, or equivalently, the price difference be-
tween the two predictors is C > 0. Information costs represent an extra effort
that agents must face in obtaining a more sophisticated price forecast such as
rational expectations. To keep the global dynamics of the model analytically
tractable, we choose net realized profits in the last period as the performance
measure for predictor selection.® Using linear demand and supply (3.2), rational
versus naive expectations, (3.3), and realized net profits in the last period, the
general performance measure (2.4) reduces to

b
7Tl(p1+hpr+1) = 5p12+1 -C,
3.4)

b
(P, P) = 5P,(2p,+1 =P,

3 Strictly speaking our notation of H, in (3.3a) is not correct, since the right-hand side is not a
function of the vector 15; of past prices.

% A weighted average of past net realized profits would perhaps be more realistic. Choosing only
one lag in the performance measure leads to a two-dimensional nonlinear difference equation,
which is analytically tractable. Introducing more lags leads to higher-dimensional nonlincar systems,
for which few global mathematical results are available. Numerical simulations indicate, however,
that more lags yield similar results.
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where C is information costs for rational expectations. After observing the
equilibrium price p,, ,, the updated fractions of agents using rational, respec-
tively naive, expectations in the next period are (cf. (2.6))

[ (b
(3.52) Ny 41 = EXP B(5p12+l _C)]/Zt+1,

[ (b
(35b) n,y 41 = €Xp B(Ept(2p1+l _pl))]/zl+l’

where Z, ., is the sum of the numerators. As before, the parameter B is the
intensity of choice, measuring how fast agents switch predictors. It will be
convenient to introduce the difference between the two fractions, 1.e. m,, | =
Ny ,e1— Ny, ipp80m=1(m, = —1) corresponds to all agents using predic-
tor H, (H,). Using (3.5) we obtain

Blb 2
(3.6) m,‘,=Tanh(—2—[5(p,+,—p,) —C]).

Using n, ,=(m,+1)/2, n, ,=(1 —m,)/2, linear demand and supply in (3.2)
and rational and naive expectations in (3.3), market equilibrium in (3.1) becomes

1+m, 1—m

G pa= (A — 5 bp - —2—"?17,)/3-

Note that agents employing rational expectations take into account that there
are two classes of agents with different beliefs, and thus they are assumed to
have perfect knowledge about market equilibrium equations, prices, and also
about the fractions of all belief types. Without loss of generality we change
coordinates and choose the steady state price p*, the intersection of demand
and supply, as the new origin, so that p, represents (positive or ncgative)
deviations from the steady state.” For our linear supply and demand curves this
simply means fixing A =0 in (3.7). Solving for p,, , then yields

—b(1 —ml)pl
2B+b(1+m,)

(38) p.,= =f(p,,m,)

and substituting (3.8) into (3.6) yields

(3.9) — Tann| 2|2 (20 —m) 12 2_¢
' M= RN SN\ 2B v b +my P T

=g(p,m,).

7 From (3.6) it is immediately clear that changing the origin also docs not affcct predictor choice;
measuring in deviations from steady state gives exactly the same expression for m,, ;.
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The adaptive rational equilibrium dynamics (A.R.E.D) of the cobweb model
with rational versus naive expectations and linear demand and supply is thus
described by the two-dimensional system of nonlinear difference equations
(3.8)—(3.9). Write F, for the corresponding two-dimensional map. We will
investigate the dynamics of Fg as the intensity of choice B increases.

3.2. Stability of the Steady State and Existence of Period 2 Cycle

A simple computation shows that the model (3.8)—(3.9) has a unique steady
state E = (0,7( B)) = (0, Tanh(—BC/2)). The stability results of the steady

state are as follows.

THEOREM 3.1: Assume that the slopes of supply and demand satisfy b/B > 1.

(i) When the information costs C =0, the steady state E =(0,0) and it is always
globally stable.

(i) When the information costs C > 0, then there exists a critical value B, such
that for 0 < B < B, the equilibrium is globally stable, while for B> B, the equi- "
librium is an unstable saddle point with eigenvalues 0 and MB) =
—b(1 —m(B))/2B+b(1+m(BN< —1. At the critical value B, the steady
state value m( B,) = —B/b.

(iii) When the steady state is unstable, there exists a locally unique period 2 orbit
{(p,m),(—p,m)}, with m=—B/b and p the unique positive solution of
Tanh[( 8/2)2bp*> — C)}= —B/b. There exists a f3,> B, such that the period 2
cycle is stable for B, < B < B;-

The assumption (b/B) > 1 means that if all agents employ naive expectations,
the market will be unstable. In the A.R.E.D., when there are no information
costs for rational expectations the steady state is globally stable. However, when
information costs are positive, no matter how small, a large intensity of choice to
switch beliefs yields an unstable saddle point equilibrium steady state and the
creation of a two-cycle. As the intensity of choice increases, the primary
bifurcation is thus a period doubling bifurcation, in which the steady state loses
stability and a stable two-cycle is created. What happens to this stable two-cycle
when the intensity of choice increases? Figure 1 shows some typical attractors in
the phase space for increasing values of B. The two-cycle loses stability through
a secondary bifurcation in which two different coexisting stable four-cycles are
created (Figures la—b). Notice that the two stable four-cycles are symmetric
with respect to the m-axis p =0, due to the fact that the map f in (3.8) is odd,
ie. f(—p,m)= —f(p,m). In Subsection 3.5 we will investigate the secondary
bifurcation and the coexistence of attractors in more detail. As B further
increases, apparently both stable four-cycles turn into four-piece chaotic attrac-
tors (Figure 1c—d) after a cascade of infinitely many period doubling bifurca-
tions. The two coexisting four-piece chaotic attractors are also symmetric with
respect to the m-axis. As B is further increased, our numerical simulations
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(a) beta=4 (b) beta=4
1.1 1.1
m
m .
-1.1 © -1.1 -
-2 D 2 -2 o 2

(a)-(b) Two coexisting stable 4-cycles.

(c) beta=4.3 (d) beta=4.3

-1.1 : . -1.1
-2 D 2 -2 D 2

(c)«(d) Two coexisting 4-piece chaotic attractors.

{e) beta=5 (f) beta=10
1.1 1.1
m
m
-1.1 -1.1
2 p 2 -2 p 2

(e)-(f) Chaotic attractors.

FIGURE 1.— Attractors for different B-values with A =0, B=05,b=135,and C=1.
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2
p
|
-2 1 1 1
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1.1
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m
’1.1 i 1 1
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Figure 2.—Time series of prices p, and the difference in fractions m, for B =5, corresponding
to the chaotic attractor in Figure le.

indicate the occurrence of a chaotic attractor (Figure le—f).# Time series of
equilibrium prices and differences of fractions are shown in Figure 2.

3.3. Homoclinic Orbits and Complicated Dynamic Phenomena

The occurrence of erratic equilibrium time paths, for large values of the
intensity of choice B, turns out to be closely related to the existence of so-called
homoclinic points. This notion was introduced already by Poincaré (1890) at the
turn of the century. A homoclinic point g #p is an intersection point between
the stable and unstable manifolds of a steady state (or periodic) saddle point p.
Obviously, a linear system cannot have homoclinic points; however, nonlinear
systems often have homoclinic points. Poincaré observed that the existence of a
homoclinic point implies very complicated dynamical behavior. Only in the last
decades, however, has a much better mathematical understanding of the dy-
namic consequences associated to homoclinic orbits emerged. In particular,
recently it has been shown that existence of strange, chaotic attractors is closely
related to homoclinic behavior. Since most economists are not familiar with
these notions we recall Poincaré’s homoclinic orbits and briefly discuss some
recent mathematical results concerning complicated dynamical behavior in

8 A strange or chaotic attractor is an attractor that is the closure of an unstable manifold of some
periodic saddle point and contains a dense orbit with positive Lyapunov exponcent (e.g. Palis and
Takens (1993, pp. 138-143)). The strange attractors in Figures le and 1f almost look like one-dimen-
sional curves. Apparently the fractal dimension is close to 1 because of the strong contraction (the
steady statc has an eigenvalue 0) in the stable direction.
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two-dimensional discrete systems. For an extensive mathematical treatment we
strongly recommend the excellent book by Palis and Takens (1993), which also
contains references to the original papers. A nice nontechnical introduction has
recently been given by de Vilder (1995, 1996), who also presents computer
assisted proofs of the existence of homoclinic orbits and related dynamic
phenomena in a two-dimensional OLG model with production.

Let F: R?2 > R? be a smooth (i.e. differentiable) map and x,,, = F(x,) the
corresponding dynamical system. Let p be a saddle fixed point of F. The
Jacobian JF(p) has two real eigenvalues A and p such that |A]| <1 and |u|> 1.
The local stable and unstable manifolds of p are defined as

(3.102) W (p)={x€ Ul lim F"(x) =p},

n—x

(3.10b) W,‘;C(p)={er| lim F"(x)=p},

n— —x

where U is some (small) neighborhood of p. According to the local stable and
unstable manifold theorems W _(p) and W% (p) are smooth curves tangent to
the stable and unstable eigenspaces of JF(p). The global stable and unstable
manifolds are then defined as

(3.11a) Wi(p)= | F"(W;.(p)),

n=0

(3.11b) W(p) = U F"(W:(p)).

n=0

If F is a diffeomorphism (a smooth map with a smooth inverse) the stable and
unstable manifolds are curves without self-intersections. If F is noninvertible,
W*“(p) can have self-intersections and W*(p) can have several components.

A homoclinic point q # p is an intersection point of the stable and unstable
manifolds W*(p) and W*“(p); if W*(p) and W*(p) are tangent at g we say that
g is a point of homoclinic tangency; if W*(p) and W*“(p) intersect transversally
at g we say that g is a point of transversal homoclinic intersection. Similarly,
homoclinic points associated to a periodic saddle point p, with period &, can be
defined by replacing the map F by G = F* in the definitions above. Notice that
transversal homoclinic orbits are structurally stable, that is they are persistent
against small perturbations of the map F.

Poincaré already observed that a homoclinic point implies a complicated
geometric structure of both the stable and unstable manifolds, as illustrated in
Figure 3a. When ¢ is a transversal homoclinic point, then each point F"(q),
n€Z, is also a transversal homoclinic point. Consequently, both the unstable
manifold and the stable manifold oscillate wildly, accumulating onto themselves
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(a) The unstable manifold accumulates onto itself.
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(b) FY has a full horseshoe in the rectangular region R, i.e. F¥ maps R (as indicated in (a)) onto a
horseshoe-like figure FY(R) folded over R.

FiGure 3.—Homoclinic tangles and horsehoes.

and so-called homoclinic tangles arise. These homoclinic tangles already indicate
the complexity of the dynamics and some form of sensitivity to initial states.
Furthermore, Smale (1965) showed that a homoclinic point implies existence of
(infinitely many) horseshoes. More precisely, for any integer N > 0 sufficiently
large, there is a rectangular region R, such that the image F N(R) has the form
of a horseshoe folded over the region R as indicated in Figure 3b. We say that
the map G =F" has a (full) horseshoe. Smale proved that this geometric
configuration implies that the map G has an invariant Cantor set with infinitely
many periodic points, an uncountable set of chaotic orbits and G has sensitive
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(a) < & b) =

Fq) F g

FiGURE 4.—Homoclinic bifurcation in a one-parameter family F, of non-invertible maps for
a = ay. The map F, is symmetric with respect to the line x =0 and the eigenvalues A and g of
JF (p)satisfy u< —1<0<A<1.

dependence on initial states in the invariant Cantor set. Notice, however, that a
horseshoe is not an attractor of the dynamical system. This situation is usually
called topological chaos.®

Now consider a one-parameter family of maps F, with a saddle fixed point p,_
(depending upon the parameter «). We say that F, exhibits a homoclinic
bifurcation, associated to the saddle point p,, at a = a, if (see Figure 4):

(i) for @ < ay, W*(p,) and W*(p,) have no intersection point g # p_;

(i) for a =y, W*(p,) and W*(p,) have a point of homoclinic tangency;

(iii) for @ > ay, W*(p,) and W*“(p,) have a transversal homoclinic intersec-
tion point g # p,.

® For a discussion of the notion of topological chaos, see e.g. Grandmont (1985, pp. 1026-1027) or
Hommes (1991, pp. 11-12).
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Similarly, homoclinic bifurcations for periodic saddle points can be defined.
Recently it has been shown that for two-dimensional nonlinear discrete systems
there is a close relation between homoclinic bifurcations and existence of
strange attractors for a large set of parameter values. More precisely the
following theorem holds:"

THEOREM (“Strange Attractor Theorem”; Benedicks and Carleson (1991) and
Mora and Viana (1993); see also Palis and Takens (1993, pp. 138-148)): In
generic one-parameter families exhibiting a homoclinic bifurcation at a = a, under
the additional assumption that the period k saddle point p, of F, is dissipative (i.e.
for a= ay the product of the eigenvalues A and p of JF*(p,) satisfies |Apl < 1),
there exists a set of a-values in the interval (a,, aq+ &) of positive Lebesgue
measure, for which the map F, has a strange attractor.

This result implies chaotic long run dynamical behavior for a large set of
parameters, in generic systems exhibiting homoclinic bifurcations and explains
why “strange attractors” are observed in numerical experiments.

3.4. Global Dynamics

Now let us return to the cobweb model with rational versus naive expecta-
tions. It turns out that as the intensity of choice to switch predictors becomes
high, complicated global A.R.E. dynamics arises due to homoclinic bifurcations
associated to dissipative periodic saddle points. The geometric shape of the
unstable manifold of the steady state plays a key role in understanding the
economic mechanism responsible for these erratic price fluctuations.

The stable manifold of the steady state E contains the vertical segment
S={(p,m)Ip=0,—1<m <1}, since every point in S is mapped onto E.
Figure 5 shows pictures of the unstable manifold of the steady state, for
increasing values of the intensity of choice B.!' Recall from Theorem 3.1 that
the steady state has an eigenvalue A; =0 and another eigenvalue A, < —1 for B
large. The unstable manifold therefore has two branches. For B = 2 (Figure 5a)
the two branches spiral towards the two points of the stable two-cycle and for
B =73 (Figure 5b) the branches of the unstable manifold of the steady state

10 Eor a definition of strange attractor, see footnote 8. The generic conditions in the theorem are
informally denoted as C3-lincarizability, first order (parabolic) tangency, and positive speed (see
Palis and Takens (1993, pp. 35-36) and Takens (1992, pp. 192-193)). For real analytic maps these
generic conditions have been considerably weakened by Takens (1992), who showed that the
following conditions are sufficient: (i) the map is real analytic, (i) fla)= —In( w(a))/In(Xa)),
where u(a) and A(a) are the eigenvalues of JF *(p,), is not constant, and (iii) there is an.
“inevitable tangency” (Takens (1992, pp. 192-193)). In the cobweb model with rational versus naive
expectations and linear demand and supply, Takens’ conditions are satisfied.

' pictures in Figure 5 have been obtained by plotting 20 iterates for 1000 equally spaced points
on a small unstable eigenvector of the Jacobian matrix at the steady state. According to the
Ademma (Guckenheimer and Holmes (1983, pp. 247-248)) in this way finite segments of the
unstable manifold can be approximated.
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FIGURE 5.—Unstable manifolds of the steady state E for increasing values of the intensity of
choice B. For high values of B the system is close to having a homoclinic orbit. The numbers in the
figures indicate the dynamics.

spiral around the two points of the unstable two-cycle. As B increases the two
branches move closer to each other, approaching the segment § in the stable
manifold. In fact, for B> 5 (Figure 5d-f) part of the unstable manifold can
hardly be distinguished from the vertical stable segment S. The pictures there-
fore suggest that for large values of B the system is close to having a homoclinic
orbit.

Our strategy to prove that indeed strange attractors arise for high values of
the intensity of choice, will be as follows. First we investigate the unstable
manifold W“(E) of the steady state for the limiting case B = +o. Next we
derive an “almost homoclinic tangency lemma,” stating that the unstable mani-
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fold W;(E) and the stable manifold W7(E) become “almost tangent” as S
tends to infinity. Using the geometric shape of W (E) we then derive two
lemmas concerning the creation of horseshoes and homoclinic bifurcations
associated to dissipative period 2N saddles, as 8 becomes large.!? Finally, by
applying the “strange attractor theorem” discussed above, we conclude that the
A.R.E.D. is chaotic for a positive Lebesgue measure set of (high) B-values.

The Limiting Case B = +©

In order to understand the global geometric shape of the unstable manifold of
the steady state for high but finite values of B, it will be useful to consider the
case = +oo first, with (3.6) or (3.9) replaced by

. b 2
+1, lf'i(pml—pt) >C,
312) m,,, = b
-1, ifi(p,+1_P,)25Ca

so agents switch infinitely fast between rational and naive expectations. The
limiting case B = +o is important from an economic viewpoint as well, since for
B =+ in each period all agents choose the optimal predictor. We have the
following result.

THEOREM 3.2: For = +o, even when the market is locally unstable (i.e.
b/B > 1) and when information costs C >0, the system always converges to the
saddle point equilibrium steady state E = (0, — 1).

Hence, for 8= + o« the steady state equilibrium E = (0, — 1) attracts all initial
states in finite time. Notice however that the steady state E is a saddle point and
therefore it is locally unstable. Adding a small amount of noise to the system
would lead to very irregular price fluctuations, which in fact are very similar to
the fluctuations with B large but 8 < + =, considered below.

It will be useful to investigate the unstable manifold of the steady state in the
limiting case B= +. Define C’' =(B/(B +b))/(2C/b) and the point A,=
(C’, —1). The reader can check that A, is exactly the point where all agents are
naive (i.e., m, = —1), while net realized profits for rational and naive agents will
be equal, or equivalently (b/2X p,,, —p,)* = C. Hence, from (3.12) it follows
that A, is exactly the point where all agents switch from being naive to become
rational. The segment EA, lies in the unstable manifold of the steady state E.

12 At the end of Subsection 3.5 we will use the DUNRO computer program to detect what seems
to be the primary heteroclinic and homoclinic bifurcations as 8 increases.



