Investments in Human Capital: Education and Training

CHAPTERS 6, 7, AND 8—on the decision to work and job choice—emphasized the effects of current wages, employee benefits, and psychic income on worker decisions. Many labor supply choices, however, require a substantial initial investment on the part of the worker. Recall that investments, by definition, entail an initial cost that one hopes to recoup over some period of time. Thus, for many labor supply decisions, current wages and working conditions are not the only deciding factors. Modeling these decisions requires developing a framework that incorporates investment behavior and a life-time perspective.

Workers undertake three major kinds of labor market investments: education and training, migration, and search for new jobs. All three investments involve an initial cost, and all three are made in the hope and expectation that the investment will pay off well into the future. To emphasize the essential similarity of these investments to other kinds of investments, economists refer to them as investments in human capital, a term that conceptualizes workers as embodying a set of skills that can be "rented out" to employers. The knowledge and skills a worker has—which come from education and training, including the learning that experience yields—generate a certain stock of productive capital. However, the value of this amount of productive capital is derived from how much these skills can earn in the labor market. Job search and migration are activities that increase the value of one's human capital by increasing the price (wage) received for a given stock of skills.

Society's total wealth should therefore be thought of as a combination of both human and nonhuman capital. Human capital includes accumulated investments in such activities as education, job training, and migration, whereas nonhuman capital includes society's stock of natural resources, buildings, and machinery. Total wealth in the United States was around $518,000 per person in 1990, 59 percent of which
($305,000 per person) was in the form of human capital. Estimates of human capital per person in Canada, Germany, and Japan were $191,000, $287,000, and $562,000, respectively. Thus, investments in human capital are an enormously important component of the overall wealth in any society, averaging 64 percent of per capita wealth worldwide (see Example 9.1 for a further indication of the relative importance of human capital).

Investment in the knowledge and skills of a particular worker can be thought of as having taken place in three stages. First, in early childhood, the acquisition of human capital was largely determined by the decisions of others. Parental resources and guidance, plus one's cultural environment and early schooling experiences, help to influence basic language and mathematical skills, attitudes toward learning, and one's general health and life expectancy (which themselves affect the ability to work).

Second, teenagers and young adults go through a stage in which their acquisition of knowledge and skills is as full-time students in a high school college, or vocational training program. Finally, after entering the labor market, workers' additions to their human capital generally take place on a part-time basis, through on-the-job training, night school, or participation in relatively short formal training programs.

In this chapter we analyze the choices made by teenagers and adults about investing in their own education and training over a lifetime; in chapter 10 we analyze their investments in job search and migration. In both chapters we focus on the latter two stages above, when people are old enough to make considered choices about occupations and the related human capital investments. This focus arises from our central concern with labor market behavior, but the influence of early childhood (or "premarket") experiences on later human capital decisions and economic outcomes is worthy of at least brief comment.

One of the challenges of any behavioral theory is to explain why people faced with what appears to be the same environment make different choices. In chapter 6, for example, we saw that an important factor in decisions about the hours of work an individual supplies to the market is his or her preferences regarding income and leisure. Similarly, the compensating wage differentials for job injury risk in chapter 8 were generated by workers' varying degrees of aversion to the risk of injury. We will see in this chapter that individuals' decisions about investing in human capital are affected by the ease and speed with which they learn, their aspirations and expectations about the future, and their access to financial resources.

Parental wealth and educational attainment are thought to play an important role in developing children's basic cognitive skills and their attitudes toward learning and work. Neighborhoods, and even preschool experiences, can also be hypothesized to

EXAMPLE 9.1

War and Human Capital

An insight into the relative magnitudes and importance of physical and human capital is obtained by noting some interesting facts concerning severely war-damaged cities. The atomic attack on Hiroshima destroyed 70 percent of its buildings and killed about 30 percent of the population. Survivors fled the city in the aftermath of the bombing, but people began returning within 24 hours; within three months two-thirds of the city’s surviving population had returned. Because the air-burst bomb left the city’s underground utility networks intact, power was restored to surviving areas one day after the bombing. Through railway service began again in two days, and telephone service was restarted in a week. The U.S. Strategic Bombing Survey estimated that plants responsible for three-quarters of the city’s industrial production (many of these were located on the outskirts of the city and were undamaged) could have begun normal operations within 30 days.

In Hamburg, Germany, a city of around 1.5 million in the summer of 1943, Allied bombing raids over a ten-day period in July and August destroyed about half of the buildings in the city and killed about 3 percent of the city’s population. Although there was considerable damage to the water supply system, electricity and gas service were adequate within a few days after the last attack, and within four days the telegraph system was again operating. The central bank was reopened and business had begun to function normally after one week, and postal service was resumed within 12 days of the attack. The Strategic Bombing Survey reported that within five months Hamburg had recovered up to 80 percent of its former productivity.

The speed and success of recovery from these disasters has prompted one economist to offer the following two observations:

1. The fraction of the community’s real wealth represented by visible material capital is small relative to the fraction represented by the accumulated knowledge and talents of the population, and
2. There are enormous reserves of energy and effort in the population not drawn upon in ordinary times but which can be utilized under special circumstances such as those prevailing in the aftermath of disaster.

Similar to the destruction of World War II are pictures of the havoc wrought by the American Civil War—the destruction of houses, barns, bridges, railroads, and levees; the burning of Atlanta, Charleston, Columbia and Richmond; Sherman’s devastating march to the sea. But this loss of physical capital pales in comparison to the loss of human capital investments. Approximately 360,000 Union soldiers died due to war-related causes and about 275,000 were wounded. In addition, there were roughly 251,000 Confederate deaths, and well over 100,000 wounded. It has been estimated that the value of the human capital investments lost during the Civil War was more than one and a half times as great as the value of the physical capital destroyed.

Human Capital Investments: The Basic Model

293

affect one's aspirations and learning skills. Thus, as we begin our analysis of the human capital choices made by workers, it is important to keep in mind that these "market" decisions about human capital are being made by workers who differ in their attitudes toward, and abilities for, learning. These "premarket" differences are, at least in part, influenced by the decisions, values, and resources of others during each worker's childhood.

HUMAN CAPITAL INVESTMENTS: THE BASIC MODEL

As with any other investment, an investment in human capital entails costs that are borne in the near term with the expectation that benefits will accrue in the future. Generally speaking, the costs of adding to one's human capital can be divided into three categories:

1. Out-of-pocket or direct expenses include tuition costs and expenditures on books and other supplies.
2. Foregone earnings are another source of cost, because during the investment period it is usually impossible to work, at least part-time.
3. Psychic losses are a third kind of cost incurred, because learning is often difficult and tedious.

In the case of educational and training investments by workers, the expected returns are in the form of higher future earnings, increased job satisfaction over one's lifetime, and a greater appreciation of nonmarket activities and interests. Calculating the benefits of an investment over time requires the progressive discounting of benefits lying further into the future (see chapter 5). Benefits that are received in the future are worth less to us now than an equal amount of benefits received today for the same reason.

First, if people plan to consume their benefits, they prefer to consume earlier. (One is relatively sure of being able to enjoy such consumption now, for example, but the uncertainties of life make future employment problematic.) Second, if people plan to invest the monetary benefits rather than use them for consumption, they can earn interest on the investment and enlarge their funds in the future. Thus, no matter how people intend to use their benefits, they will discount future receipts to some extent.

As chapter 5 explained, the present value of a stream of yearly benefits (B_1, B_2, \ldots) over time (t) can be calculated as follows:

\[
\text{Present Value} = \frac{B_1}{1 + r} + \frac{B_2}{(1 + r)^2} + \frac{B_3}{(1 + r)^3} + \cdots + \frac{B_t}{(1 + r)^t} \quad (9.1)
\]

where the interest rate (or discount rate) is r. As long as r is positive, benefits into the future will be progressively discounted. For example, if $r = 0.06$, benefits payable in 30 years would receive a weight that is only 17 percent of the weight placed on benefits payable immediately (1.06^{30} = 574.1574 = 0.17). The smaller r is, the greater the weight placed on future benefits. For example, if $r = 0.02$, a benefit payable in 30 years would receive a weight that is 55 percent of the weight given to an immediate benefit.

Our model of human capital investment assumes that people are utility maximizers and take a lifetime perspective when making choices about education and training. They are therefore assumed to compare the near-term investment costs (C) with the present value of expected future benefits when making a decision, say about additional schooling. Investment in additional schooling is attractive if the present value of future benefits exceeds costs:

\[
\frac{B_1}{1 + r} + \frac{B_2}{(1 + r)^2} + \cdots + \frac{B_t}{(1 + r)^t} > C \quad (9.2)
\]

Utility maximization, of course, requires that people continue to make additional human capital investments as long as condition (9.2) is met, and that they stop only when the benefits of additional investment are equal to or less than the additional costs.

There are two ways one can measure whether the criterion in (9.2) is met. Using the present-value method, one can specify a value for the discount rate, r, and then determine how the present value of benefits compares to costs. Alternatively, one can adopt the internal rate of return method, which asks, "How large could the discount rate be and still render the investment profitable?" Clearly, if the benefits are so large that even a very high discount rate would render investment profitable, then the project is worthwhile. In practice, one calculates this internal rate of return by setting the present value of benefits equal to costs and solving for r. The internal rate of return is then compared to the rate of return on other investments. If the internal rate of return exceeds the alternative rates of return, the investment project is considered profitable.

Some basic implications of the model embedded in expression (9.2) are illustrated graphically in figure 9.1a, which depicts human capital decisions in terms of marginal costs and marginal benefits (focus now on the black lines in the figure). The marginal costs, MC, of each additional unit of human capital (the tuition, supplies, wage rate, earnings, and psychic costs of an additional year of schooling, any) are assumed to be constant. The present value of the marginal benefits, MB, is shown as declining, because each additional year of schooling means fewer years over which benefits can be collected. The utility-maximizing amount of human capital (H) for any individual is shown as the amount for which $MC = MB$.

Earlier, we noted that as people arrive at the point in their lives when human capital decisions must be made, they do so with different resources, learning abilities, and expectations about the future. Those who find learning to be especially arduous, for example, will implicitly attach a higher marginal psychic cost to acquiring human
capital. As shown by the blue line, \(MC^* \), in Figure 9.1a, individuals with higher marginal costs will acquire lower levels of human capital (compare \(HC \) with \(HC^* \)). Similarly, those who expect smaller future benefits from additional human capital investments (the blue line, \(MB^* \), in Figure 9.1b) will acquire less human capital.

This straightforward theory yields some interesting insights about the behavior and earnings of workers. Many of these insights can be discovered by analyzing the decision confronting young adults about whether to invest full-time in educational or training programs after leaving high school. We illustrate how our theory can be used by looking in some detail at the decision to attend college full-time; however, analyzing the demand for full-time vocational training programs would utilize the same principles and generate the same insights.

THE DEMAND FOR A COLLEGE EDUCATION

The demand for a college education, as measured by the percentage of graduating high school seniors who enroll in college, is surprisingly variable. For males, enrollment rates went from 55.2 percent in 1970, down to 46.7 percent in 1980, and back.

*Strictly speaking, enrollments equal demand only if all students who want to invest in a college education are able to do so. The barriers of failing to meet admissions criteria or failing to have the necessary financial resources may prevent some from investing, so the level of enrollments may underestimate the level of demand. Unless the importance of these barriers changes significantly over time, however, the direction of enrollment changes—which is our major interest—should reflect the direction of changes in demand.
up to 60.1 percent by 1996. The comparable enrollment rates for women started lower, at 48.5 percent in 1970, and rose continuously throughout this period to a high of 67.7 percent by 1996; however, while the yearly increase in enrollment rates averaged 0.3 percentage points in the 1970s, it averaged 1.0 points in the 1980s and 1990s. Why have enrollment rates followed these patterns?7

Weighing the Costs and Benefits of College

Clearly, people attend college when they believe they will be better off by so doing. For some, at least part of the benefits may be short-term—they like the courses or the lifestyle of a student—and to this extent college is at least partially a consumption good. The consumption benefits of college, however, are subject to change much over the course of a decade, so changes in college attendance rates over relatively short periods of time probably reflect changes in marginal costs or benefits associated with the investment aspects of college attendance. Recent history may provide an exception to this rule. See Example 9.2 about the impact of the Vietnam War draft on college attendance levels.

Earlier we noted that the costs of college attendance are both monetary and psychic. The monetary costs alone (that is, the direct costs of tuition and books plus forgone earnings) are, in the range of $10,000 to $14,000 per year. The investment-related benefits of a college education are associated with increased future earnings and any nonmonetary rewards from having access to occupations requiring a college education. Because only the monetary benefits are measurable, our analysis of the marginal benefits of college focuses on them.

A person considering college has, in some broad sense, a choice between two streams of earnings over his or her lifetime. Stream A begins immediately but does not rise very high; it is the earnings stream of a high school graduate. Stream B (the college graduate) has a negative income for the first four years (owing to college tuition costs), followed by a period when the salary may be less than the high school graduate makes, but then it takes off and rises above Stream A. Both streams are illustrated in Figure 9.2. (Why these streams are differentially curved will be discussed later in this chapter.) The streams shown in the figure are stylized so that we can emphasize some basic points. Actual earnings streams will be shown in Figures 9.3 and 9.4.

Obviously, the earnings of the college graduate would have to rise above those of the high school graduate to induce someone to invest in a college education (unless, of course, the consumption-related returns were large). The gross benefits, the difference in earnings between the two streams, must total much more than the cost because such returns are in the future and are therefore discounted. For example, suppose it costs $25,000 per year to obtain a four-year college education and the real interest rate (the nominal rate less the rate of inflation) is 2 percent. The after-tax returns—if they were the same each year—must be $3,652 in constant-dollar terms (that is, after taking away the effects of

inflation) each year for 40 years in order to justify the investment on purely monetary grounds. These returns must be $3,652 because $100,000 invested at a 2 percent interest rate can provide a payment (of interest and principal) totaling $3,652 a year for 40 years.7

Predictions of the Theory

In deciding whether to attend college, no doubt few students make the very precise calculations suggested in expression (9.2). Nevertheless, if they make less formal estimates that take into account the same factors, four predictions concerning the demand for college education can be made:

1. Present-oriented people are less likely to go to college than forward-looking people (other things equal).
2. Most college students will be young.
3. College attendance will decrease if the costs of college rise (other things equal).
4. College attendance will increase if the gap between the earnings of college graduates and high school graduates widens (again, other things equal).

7This calculation is made using the annuity formula:

\[Y = X \left(1 - \frac{1}{(1 + r)^n} \right) \]

where \(Y \) equals the total investment ($100,000 in our example), \(X \) = the yearly payment ($3,652), \(r \) = the rate of interest (0.02), and \(n \) = the number of years (40). In this example, we treat the costs of a college education as being incurred all in one year rather than being spread out over four, a simplification that does not alter the magnitude of required returns much at all.
The Consumption Value of Schooling During the Vietnam War

Higher education obviously includes an important consumption component—from the joy of learning to the joy of partying—but during the Vietnam War era, it provided an additional consumption aspect since it allowed some young men to avoid or delay being drafted into the military, with its assurred potential unpleasantness, from loss of freedom to the loss of life. At any given time between 1967 and 1970, there were about 1.7 to 1.9 million male college students who were on deferment—putting off their obligatory military service while they were enrolled in school. At the end of December 1971, no new undergraduate deferments were granted, but those previously deferred were allowed to continue in school. In 1973, however, the last U.S. troops left Vietnam and the military draft ended.

As the war heated up, college enrollment rates soared. Enrollments for 16- to 19-year-old males climbed by about 9 percentage points from 1965 to 1970. As the war wound down, these enrollment rates fell below their initial level—a drop of about 14 percentage points from 1968 to 1974. Not all of this rise and fall can be explained by the attempt to avoid the draft. The enrollment rate of young women followed a similar path, but the rise was smaller and the postwar decline was much milder. One source estimates that college enrollment rates were 5 to 7 percent higher than normal because of the draft.

Not all young men had an incentive to attend school. In an effort to avoid the military from 1970 to 1973 a draft “lottery” was used. It determined the draft order randomly based on day of birth. Those with very high draft lottery numbers knew they wouldn’t be drafted, and they had only the normal investment and consumption reasons to attend college. Those with low draft numbers, however, had the additional motivation of enrolling in college to avoid potential military service. Interestingly, one study found that this draft number effect was fairly important. Men with low lottery numbers were five percentage points more likely to have attended college than those with high lottery numbers.

Present-Orientedness Psychologists use the term present-oriented to describe people who do not weigh future events or outcomes very heavily. While all people discount the future with respect to the present, those who discount it more than average—or, at the extreme, ignore the future altogether—could be considered present-oriented. In terms of expressions (9.1) and (9.2), a present-oriented person is one who uses a very high discount rate (γ).

Suppose one were to calculate investment returns using the present-value method. If γ is large, the present value of benefits associated with college will be lower than if the discount rate being used is smaller. Thus, a present-oriented person would view college benefits as less than those who are less present-oriented, and those who are present-oriented would be less likely to attend college. Using the internal rate of return method for evaluating the soundness of a college education, one would arrive at the same result. If a college education earns an 8 percent rate of return
but the individuals in question are so present-oriented that they would insist on a 25 percent rate of return before investing, they would likewise decide not to attend.

The prediction that present-oriented people are less likely to attend college than forward-looking ones is difficult either to substantiate or to disprove. The rates of discount that people use in making investment decisions are rarely available, because such decisions are not made as formally as expression (9.2) implies. However, the model does suggest that people who have a high propensity to invest in education will also engage in other forward-looking behavior. Certain medical statistics tend to support this prediction.

In the United States there is a strong statistical correlation between education and health status. People with more years of schooling have lower mortality rates, fewer symptoms of disease (such as high blood pressure, high cholesterol levels, abnormal X-rays), and a greater tendency to report themselves to be in good health. This effect of education on health is independent of income, which appears to have no effect of its own on health status except at the lowest poverty levels. Is this correlation between education and health a result of better use of medical resources by the well-educated? It appears not. Better-educated people undergoing surgery choose the same doctors, enter the hospital at the same stage of disease, and have the same length of stay as less-educated people of equal income.

What may cause this correlation is a more forward-looking attitude among those who have obtained more education. People with lower discount rates will be more likely to attend college, and they will also be more likely to adopt forward-looking habits of health. They may choose healthier diets, be more aware of health risks, and make more use of preventive medicine. This explanation for the correlation between education and health is not the only plausible one, but it receives some direct support from American data on cigarette smoking. From 1966 to 1987, the proportion of male college graduates who smoked fell by 30 percent. During the same time period, the proportion of smokers among male high school dropouts was essentially unchanged. It is unlikely that the less-educated group was uninformed of the smoking dangers revealed during that period. It is more likely that they were less willing to give up a present source of pleasure for a distant benefit. Thus, we have at least some evidence that people who invest in education also engage in other forward-looking behavior.

Age

Given similar yearly benefits of going to college, young people have a larger present value of total benefits than older workers simply because they have a longer remaining work life ahead of them. In terms of expression (9.2), the younger people is greater than for older ones. We would therefore expect younger people to have a greater propensity than older people to obtain a college education.

8The analysis of the correlation between education and health status is taken from Victor Fuchs, "The Economics of Health in a Post-Industrial Society," The Public Interest (Summer 1979), 3-20.

9It could be, for example, that healthy people, with longer life spans, are more likely to invest in human capital because they expect to experience a longer payback period. Alternatively, one could argue that the highest-income college graduates live in life areas they have more to lose from illness than do non-college graduates. Data on smoking are from U.S. Department of Health and Human Services, Public Health Service, Smoking, Tobacco and Health, DHHS publication no. (CDC)87-8097, October 1989, 5.
or engage in other forms of training activity. This prediction is parallel to the predictions in chapter 5 about which workers will decide to invest in training when they make decisions about hiring or specific training.

Costs

A third prediction of our model is that human capital investments are more likely when costs are lower. The major monetary costs of college attendance are forgone earnings and the direct costs of tuition, books, and fees. (Food and lodging are also always opportunity costs of going to college because some of these costs would have to be incurred in any event.) Thus, if forgone earnings or tuition costs rise, other things equal, we would expect a decrease in college enrollments. Similarly, if offers of financial aid to college applicants fall, other things equal, we would expect fewer enrollments. Are college enrollments responsive to cost?

Financial aid packages, including loans, rarely cover all the out-of-pocket expenses of college, and so the financial resources of students' families must be tapped for at least some of their costs. Given this fact, it is not surprising that other things equal, students from relatively wealthy families are more likely to attend college. For example, 44 percent of high-ability students from low-income families enroll in four-year colleges, while the comparable figure for high-ability students from relatively wealthy backgrounds is 74 percent. Moreover, from 1974 to 1984, when financial aid to students from lower-income families rose more slowly than tuition and more slowly than financial aid to upper-income students, the proportion of college students from lower-income backgrounds fell.

The costs of college attendance offer an additional reason why we observe older people attending less often than younger people. As workers age, they acquire levels of experience and maturity that employers are willing to reward with higher wages. Because older workers thus command higher wages (on average), their opportunity costs of college attendance are higher than those for younger students. Older people are thus less likely to attend college; their forgone earnings are relatively high and the period over which they can capture benefits is comparatively short. Interestingly, however, college attendance by military veterans (who are older than the typical college student) has been quite responsive to the educational subsidies for which they are eligible.

The subject of cost raises an interesting question: just who is most responsive to cost considerations? Economic theory posits that, in any set of market transactions, some people are at the margin—meaning that they are close to the point of no transaction. Those closer to the margin, then, are the ones most likely to change their decisions in response to relatively small changes in the monetary costs of college. Who are those for whom the decision to attend is a "close call"? Our theoretical considerations have suggested several possibilities: those with lower cognitive achievement levels, lower levels of parental wealth, or higher personal discount

rates (a greater degree of present-orientation). Interestingly, studies that have ana-
alyzed how the cost advantages of having a college in one's hometown affect an indi-
vidual's enrollment decision find that these effects are largest for students who would otherwise be least likely to attend (that is, students with lower cognitive
achievement and parents with lower levels of educational attainment themselves). 10

Earnings Differentials The fourth prediction of human capital theory is that
the demand for education is positively related to the increases in lifetime earnings
that a college education allows. Strictly speaking, it is the benefits one expects to
receive that are critical to this decision, and the expected benefits for any
individual are rather uncertain. Future earnings can never be perfectly foretold,
and in addition, many students are uncertain about their later occupational
choice. 11 As a first approximation, however, it is reasonable to conjecture that the
average returns received by recent college graduates have an important influence
on students' decisions. Thus, if the average earnings differential between recent
college graduates and recent high school graduates of similar age were to narrow,
we should expect to find that college enrollment rates subsequently decline. In
contrast, if this differential were to widen, enrollment rates should increase. 12

Dramatic changes in the average monetary returns to a college education over
the past two decades are at least partially, if not largely, responsible for the changes
in college enrollment rates noted earlier. It can be seen from the first and third
columns of Table 9.1, for example, that the decline in male enrollment rates during
the 1970s was correlated with declines in the college/high school earnings differen-
tial, while the higher enrollment rates in the 1980s and 1990s were associated
with larger earnings differentials.

The second and fourth columns of Table 9.1 document changes in enrollment rates
and earnings differentials for women. Unlike enrollment rates for men, those for
women rose throughout the two decades; however, it is notable that they rose much
more slowly in the 1970s, when the college/high school earnings differential fell. Why
did enrollment rates among women increase even when the earnings differential fell?
Because women's labor force participation rates and their hours of work outside the

Hill, 1972); and David Cniff, "Vesting Geographic Vocation in College Proximity to Estimate the Return

"For studies that incorporate uncertainly into the formal model of choice, see Joseph G. Altonji, "The
Demand for and Return to Education When Education Outcomes Are Uncertain," Journal of Labor Econo-
mics 10 (January 1992): 48-83; and Peter F. Drucker and J. Peter Mattill, "Human Capital, Uncertain
Wage Distributions, and Occupational and Behavioral Choices," International Economic Review 32 (Fe-
bruary 1991): 103-122. For studies on the accuracy of students' knowledge about the salaries in various
fields, or at various ages, see Julian R. Betts, "What Do Students Know About Wages? Evidence from a
Survey of Undergraduates," Journal of Human Resources 25, no. 1 (Winter 1990): 27-56, and Jeff Deal and
Charles F. Manski, "Eliciting Student Expectations of the Returns to Schooling," Journal of Human
Resources 28, no. 3 (Summer 1993): 660-680; provide a careful documentation of the college/high school
earnings differential since 1960.

Resources 28, no. 3 (Summer 1993): 660-680; provides a careful documentation of the college/high school
earnings differential since 1960.
TABLE 9.1

<table>
<thead>
<tr>
<th>Year</th>
<th>College Enrollment Rates of New High School Graduates</th>
<th>Age 25–34, Prior Year*</th>
<th>Ratios of Mean Earnings of College to High School Graduates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
<td>Male</td>
</tr>
<tr>
<td>1970</td>
<td>55.7%</td>
<td>48.7%</td>
<td>1.18</td>
</tr>
<tr>
<td>1975</td>
<td>52.6%</td>
<td>60.0%</td>
<td>1.16</td>
</tr>
<tr>
<td>1980</td>
<td>46.7</td>
<td>51.8</td>
<td>1.19</td>
</tr>
<tr>
<td>1985</td>
<td>58.6%</td>
<td>56.9</td>
<td>1.27</td>
</tr>
<tr>
<td>1990</td>
<td>57.8%</td>
<td>62.0%</td>
<td>1.48</td>
</tr>
<tr>
<td>1996</td>
<td>60.1%</td>
<td>69.7%</td>
<td>1.56</td>
</tr>
</tbody>
</table>

*For year-round, full-time workers. Data for the first two years are for personal income, not earnings; however, in the years for which both income and earnings are available, the ratios are essentially equal.

Source: U.S. Department of Education, Digest of Education Statistics 1997 (December 1997), Table 184; U.S. Bureau of the Census, Money Income of Families and Persons in the United States, Current Population Reports P-60, no. 66 (Table 61), no. 101 (Table 56), no. 129 (Table 53), no. 181 (Table 36), no. 174 (Table 29), no. 195 (Table 9).

home have increased over time, the period over which their human capital investment returns can be received has lengthened. It is quite plausible that, for women during the 1970s, increases in the expected number of years over which returns will be received more than offset declines in the returns expected for any given year— with the result that expected rates of return to a college education still grew.

While changes in average earnings differentials are a useful indicator of relative labor market conditions, individuals must assess their own probabilities of success in specific fields or occupations. Recent studies have pointed to the importance of friends, ethnic affiliation, and neighborhoods in the human capital decisions of individuals, even after controlling for the effects of parental income or education. The educational and occupational choices of friends and acquaintances appear to have a significant effect on an individual’s human capital decisions, perhaps because the presence of role models helps to reduce the uncertainty that inevitably surrounds estimates of future success in specific areas.

Market Responses to Charges in College Attendance

It is clear from Table 9.1 that the returns to college attendance have varied considerably over the past two decades, but the root causes of these changes are not immediately obvious. While we will inquire more deeply into these causes in chapter 14, the student should be reminded at this point that, like other market prices, the returns to college attendance are determined by the forces of both employer demand and employee supply. Thus, if more high school students decide to attend college when presented with higher returns to such an investment, market forces are put into play that will tend to lower these returns in the future. Increased numbers of college graduates put downward pressure on the wages observed in labor markets for these graduates, other things equal, while a smaller number of high school graduates will tend to raise wages in markets for less-educated workers.

The fact that the future salaries commanded by college graduates are affected by the number of people who currently decide to attend may seem obvious, but it adds another element of uncertainty to an individual’s estimation of the expected returns to a college investment. An individual may observe that the returns to college attendance have recently increased, but others will observe this increase as well. If the improved returns cause a large rise in the percentage of high school graduates who attend college, the influx of workers four years from now into the labor markets for college graduates will put downward pressure on their wages at that time. Thus, current returns may be an unreliable estimate of future returns. (For an analysis of how the labor market might respond when workers behave as if the returns observed currently will persist into the future, see Appendix 9A.)

EDUCATION, EARNINGS, AND POSTSCHOOLING INVESTMENTS IN HUMAN CAPITAL

The preceding section used human capital theory to analyze the decision to undertake a formal educational program (college) on a full-time basis. We now turn to an analysis of workers’ decisions to acquire training after they leave school and start working. Frequently, the human capital investments made after one has started to work arise from training received at the workplace. The presence of this type of training is difficult for the economist to directly observe; much of it is informal and not publicly recorded. We can, however, use human capital theory and certain patterns in workers’ lifetime earnings to draw inferences about these demand for this type of training.

Figures 9.3 and 9.4 graph the 1997 earnings of men and women of various ages with different levels of education. An examination of these figures reveals four notable characteristics:

1. Average earnings of full-time workers rise with the level of education;
2. The most rapid increase in earnings occurs early in one’s working life, thus giving a concave shape to the age/earnings profiles of both men and women;
FIGURE 9.3
Money Earned (Mean), for Full-Time, Year-Round Male Workers, 1997

<table>
<thead>
<tr>
<th>Year</th>
<th>Some High School</th>
<th>Some College</th>
<th>High School Graduate</th>
<th>College Graduate</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>14</td>
<td>22</td>
<td>28</td>
<td>34</td>
</tr>
<tr>
<td>25</td>
<td>16</td>
<td>24</td>
<td>30</td>
<td>36</td>
</tr>
<tr>
<td>30</td>
<td>18</td>
<td>26</td>
<td>31</td>
<td>38</td>
</tr>
<tr>
<td>35</td>
<td>20</td>
<td>28</td>
<td>32</td>
<td>40</td>
</tr>
<tr>
<td>40</td>
<td>22</td>
<td>30</td>
<td>33</td>
<td>42</td>
</tr>
<tr>
<td>45</td>
<td>24</td>
<td>32</td>
<td>34</td>
<td>44</td>
</tr>
<tr>
<td>50</td>
<td>26</td>
<td>34</td>
<td>35</td>
<td>46</td>
</tr>
<tr>
<td>55</td>
<td>28</td>
<td>36</td>
<td>36</td>
<td>48</td>
</tr>
<tr>
<td>60</td>
<td>30</td>
<td>38</td>
<td>37</td>
<td>50</td>
</tr>
</tbody>
</table>

Source: See footnote 37.

3. Age/earnings profiles tend to fan out, so that education-related earnings differences later in workers' lives are greater than those early on;
4. The age/earnings profiles of men tend to be more concave and to fan out more than those for women.

In the sections that follow, we use human capital theory to help explain the above empirical regularities, with special attention given to the last three.
Average Earnings and Educational Level

It is an implication of our investment model of educational choice that earnings rise with the level of education, for if they did not, the incentives for students to invest in more education would disappear. It is thus not too surprising to see in Figures 9.3 and 9.4 that the average earnings of more-educated workers exceed those of less-educated workers.

It is worthwhile to remember, however, that earnings are influenced by both wage rates and hours of work. Data on wage rates are probably most relevant when looking at the returns to an educational investment, because they indicate one's pay per unit of time at work. Wage data, however, are less widely available than earnings data. A crude, but readily available, way to control for working hours when using earnings data is to focus on full-time, year-round workers—which we do in Figures 9.3 and 9.4. More careful statistical analyses, however, which control for hours of work and factors other than education that can increase wage rates, come to the same conclusion suggested by Figures 9.3 and 9.4: namely, that more education is associated with higher pay. (A more rigorous theoretical analysis of the association between education and pay can be found in Appendix 9B, which presents the analysis in the context of the hedonic wage theory.)
On-the-Job Training and the Concavity of Age/Earnings Profiles

The age/earnings profiles in Figures 9.3 and 9.4 typically rise steeply early on, then level to flatter, and may eventually fall.12 In fact, the early increases are so steep relative to those later on that a study of men’s wage rates found that two-thirds of their career wage growth occurred in their first ten years or so of work.13 While in the next two chapters we will encounter other potential explanations for why earnings rise in this way with age, human capital theory explains the concavity of these profiles in terms of on-the-job training.14

Some on-the-job training in learning by doing (as one hammers nails month after month, one’s skill naturally improves), but much of it takes place either in formal training programs run by employers or informally, in which case a trainee works under the close supervision of a more experienced worker. All forms of training are costly, in the sense that the productivity of learners is low and all represent a conscious choice on the part of the employer to accept lower current productivity in exchange for higher output later. Both formal and informal training also involve the commitment of time by trainees or supervisors to the training process.15

Who bears the cost of on-the-job training? You will recall from chapter 5 that the cost of specific training, training of use only to one’s employer, is shared by the worker and the firm. The employee might be paid a wage greater than marginal product during the training period (MP), but after training the employee’s wage is below his or her post-training marginal product (MP’). In the case of general training, in which employees acquire skills transferable elsewhere, they alone pay the training costs.

How do employers pay the costs of general training provided by their employees? They work for a wage lower than they would get if they were not receiving training. Their wage is always equal to their MP, which is, of course, decreased during

12The data reflected in Figures 9.3 and 9.4 do not “follow” specific individuals through time; rather, they track earnings with age and education in a given year. Thus, the generally declining profiles for men in their fifties could reflect reduced job opportunities for older men, changes in the composition of men still working full-time at age 57, or some factor that depressed the earnings of men born in the mid-1930s. Longeritudinal data suggest that for men, wage decline sets in only after age 60 and mostly in the partially retired and the part-time jobs; see Richard B. Freeman and David Neumark, “Wage Declines and Older Men,” Review of Economics and Statistics 78, no. 4 (November 1996): 740–748. Data in these figures are from U.S. Bureau of the Census, Money Income in the United States, Current Population Reports P-60, no. 200, Table 2.

15In 1995, it is estimated that employers with over 50 employees spent $97 billion on formal training and another $34 billion in wages to employees whose day was receiving informal training; see H. Fruin, N. Gersmehl, M. Morrill, and M. Joyce, “Results from the 1995 Survey of Employer Provided Training,” Monthly Labor Review 118, no. 6 (June 1998): 3–15.
the training period when trainees require close supervision or time off the job to engage in classroom learning. Why do employees accept this lower wage? They accept it for the same reason that some decide to obtain formal schooling: in the expectation of improving the present value of their lifetime earnings. In other words, employees incur current investment costs (lower wages) to obtain increased earnings later.

Earlier, we argued that if people are going to invest in themselves they will tend to undertake most of the investment at younger ages. Human capital investments made at younger ages have a longer period over which to capture returns, and earnings that must be forgone during the period of training are lower when one is younger. Thus, other things equal, investments made earlier have higher rates of return.

Figure 9.5 graphically depicts the life-cycle implications of human-capital theory as it applies to on-the-job training. The individual depicted has completed full-time schooling, and with this schooling is able to earn \(E_s \) at age \(A_s \). Without further training, if the knowledge and skills the worker possesses from his or her schooling do not depreciate over time, earnings would remain at \(E_s \) over the life cycle. If the worker chooses to invest in on-the-job training, his or her future earnings potential can be enhanced, as shown by the (dashed) curve \(E_t \) in the figure. Investment in on-the-job training, however, has the near-term consequence that actual earnings are below potential; thus, in terms of Figure 9.5, actual earnings \(E_t \) lie below \(E_s \) as long as the worker is investing. In fact, the gap between \(E_s \) and \(E_t \) equals the worker's investment costs.

Figure 9.5 is drawn to reflect the theoretical implication, noted above, that human capital investments decline with age. With each succeeding year, actual earnings become closer to potential earnings; further, because workers become less willing to invest in human capital as they age, the yearly increases in potential earnings become smaller and smaller. Thus, curve \(E_t \) takes on a concave shape, quickly rising above \(E_s \) but flattening later in the life cycle.

FIGURE 9.5
Investment in On-the-Job Training over the Life Cycle

![Earnings graph](image)

- \(E_s \): Initial earnings
- \(E_t \): Earnings after training
- \(A_s \): Age at initial earnings
- \(A_t \): Age at peak earnings

Age (A)
Curve E_0 also takes on a concave shape over the life cycle. Actual earnings start below E_0 and do not rise above it until after age A_t. As human capital investments decline with age, however, E_0 rises more quickly than E_T until at some point later in the life cycle actual and potential earnings are virtually identical. At this point, the worker is no longer making on-the-job investments in human capital.\footnote{21A is sometimes called the “overlapping” age, and it is a great theoretical interest to economists. Because we cannot observe T_0, and can only observe T_N, it is not possible to directly measure workers’ investments in on-the-job training. Thus, we cannot directly test the theoretical implication that investments in on-the-job training decline with age. One indirect test of the theory is to see if age/earnings profiles are concave, but another line with A_t. A human capital theory provides a useful explanation for the shape of age/earnings profiles, then there should be some age beyond A_t at which differences in formal schooling do a better job of explaining differences in actual earnings than at either earlier or later ages. The age at which differences in formal schooling and differences in earnings are most closely related is A_t. The age at which actual earnings equal E_0, the potential earnings absent on-the-job training. Before A_t, actual earnings are below E_0, and reflect an unknown amount of on-the-job training; after A_t, earnings are also “consummated” by both the costs and returns to an unknown amount of on-the-job training. Landmark research on this topic estimated that, indeed, schooling has maximum correlation with earnings at about ten years after labor market entry; see Jacob Mincer, Schooling, Experience, and Earnings (New York: Columbia University Press for National Bureau of Economic Research, 1974).}

The Fanning out of Age/Earnings Profiles

Earnings differences across workers with different educational backgrounds tend to become more pronounced as they age. This phenomenon is also consistent with what human capital theory would predict.

Investments in human capital tend to become more likely when the expected earnings differences are greater, when the initial investment costs are lower, and when the investor has a longer time to recoup the returns or a lower discount rate. Earlier, we argued that both younger people and those most willing to defer current consumption for future gains are more likely to invest in human capital. It should also be obvious that the same can be said of people who have the ability to learn more quickly. The ability to learn rapidly shortens the training period, and fast learners probably also experience lower psychic costs (lower levels of frustration) during training.

Thus, people who have the ability to learn quickly are those most likely to seek out, and be presented by employers with, training opportunities.\footnote{22For studies showing that on-the-job training is positively correlated with both educational level and ability, see Joseph G. Altonji and James R. Sp�kman, “Worker Characteristics, Job Characteristics, and the Receipt of On-the-Job Training,” Industrial and Labor Relations Review 45 (October 1991): 58-76; Jonathan R. Womack, “Training among Young Adults: Who, What Kind, and For How Long?” Monthly Labor Review 116, no. 8 (August 1993): 27-32; HI Constantine and David Neumark, “Training and the Growth of Wage Inequality,” Industrial Relations 35, no. 4 (October 1996): 491-530; and Joseph Hight, “Younger Workers’ Participation in Post-School Education and Training,” Monthly Labor Review 121, no. 6 (June 1998): 14-21. There is some evidence that more rapid technological change raises the formal training of less-educated workers more than it does for other groups; see Ann P. Barzel and Isachak Scherman, “Technological Change and the Skill Acquisition of Young Workers,” Journal of Labor Economics 16, no. 4 (October 1998): 738-755.} But who are
these fast learners? They are most likely the people who, because of their abilities, were best able to reap benefits from formal schooling! Thus, human capital theory leads us to expect that workers who invested more in schooling will also invest more in postschooling job training.

The tendency of the better-educated workers to invest more in job training explains why their age/earnings profiles start low, rise quickly, and keep rising after the profiles of their less-educated counterparts have leveled off. Their earnings rise more quickly because they are investing more heavily in job training, and they rise for a longer time for the same reason. In other words, people with the ability to learn quickly select the ultimately high-paying jobs where much learning is required and thus put their abilities to greatest advantage.

Women and the Acquisition of Human Capital

A comparison of Figures 9.3 and 9.4 discloses immediately that the earnings of women who work full-time year-round are lower than for men of equivalent age and education, and that women’s earnings within each educational group rise less steeply with age. The purpose of this section is to analyze these differences in the context of human capital theory (a more complete analysis of male/female wage differentials is presented in chapter 12).

As we have seen, human capital theory begins with an analysis of people’s incentives to invest in education and training, and the expected monetary returns to such an investment are critical to their decisions. Anything that reduces these expected returns is hypothesized to reduce the incentives for workers (or their employers) to invest in human capital.

A major difference in the incentives of men and women to make human capital investments has historically been in the length of work life over which the costs of a human capital investment can be recouped. Chapters 6 and 7 clearly showed how rapidly working for pay has increased among women in recent decades and this fact obviously should have made human capital investments more lucrative for women. Nevertheless, Table 9.2 shows that it is still the case that, on average, women can be expected to work (for pay) fewer years than men.

In addition, Table 9.2 indicates that within the occupations shown—all of which require the acquisition of skills—women average fewer hours of work per week than do men.

To the extent that there is a shorter expected work life for women than for men, it is caused primarily by the role women have historically played in childbearing and household production. This traditional role, while undergoing significant change, has caused many women to drop out of the labor market for a period of time in their childbearing years. Thus, female workers often have not had the continuity of experience that their male counterparts accumulate. If this historical experience causes younger women who are making important human capital decisions to expect a discontinuity in their own labor force participation, they might understandably avoid occupations or fields of study in which one’s
TABLE 9.2
Average Work Life and Hours of Work, by Gender

<table>
<thead>
<tr>
<th>Remaining Expected Years of Paid Work at Age 25</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>High school graduates</td>
<td>33.4 (years)</td>
<td>27.3 (years)</td>
</tr>
<tr>
<td>Some college</td>
<td>34.5</td>
<td>29.5</td>
</tr>
<tr>
<td>College graduates</td>
<td>35.8</td>
<td>31.7</td>
</tr>
</tbody>
</table>

Average Weekly Hours of Paid Work for Those Working Full-Time in 1997:

<table>
<thead>
<tr>
<th>Job Title</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive, administrative, managerial workers</td>
<td>47.7 (hours)</td>
<td>43.3 (hours)</td>
</tr>
<tr>
<td>Professional specialty workers</td>
<td>45.7</td>
<td>41.9</td>
</tr>
<tr>
<td>Technical and related support workers</td>
<td>43.6</td>
<td>40.8</td>
</tr>
<tr>
<td>Sales workers</td>
<td>47.0</td>
<td>41.7</td>
</tr>
<tr>
<td>Precision production, craft, and repair workers</td>
<td>43.3</td>
<td>41.3</td>
</tr>
</tbody>
</table>

Data refer to noninstitutional households in 1994.

...skills deprecate during the period out of the labor market. Moreover, historical experience could cause employers to avoid hiring women for jobs requiring much on-the-job training—practices that itself will affect the returns women can expect from a human capital investment. Human capital theory, however, also predicts that recent changes in the labor force participation of women, especially married women of childbearing age, are causing dramatic changes in the acquisition of schooling and training by women. We turn now to a discussion of recent changes in these two areas.

Women and Training. There is little doubt that women receive less on-the-job training than men, although the gap is probably narrowing. The most recent survey of employer-provided training found that, during a six-month period in 1995, women reported receiving 41.5 hours of both formal and informal training, while men received 47.6 hours; differences were mainly in the area of informal training. To the extent that this pattern is due to the lower level of job training emanate from the employer or the employee's side of the market, both possibilities are theoretically plausible. If employers prefer women workers to have shorter work lives, they are less likely to provide training to them. Alternatively, if women themselves expect shorter work lives, they will be less inclined to seek out jobs requiring high levels of training to reach full productivity. Finally, if women expect employers to bar them from occupations requiring substantial amounts of training or experience, their expected returns to investments in these occupations will be diminished, thus reducing their incentives for such investments.

While human capital theory predicts that the "traditional" role of women in child-rearing will lead to reduced incentives for training investments, it also quite strongly suggests that as this role changes, the incentives for women to acquire training will change. We should thus expect to observe a growing concavity in women's age/earnings profiles over the past decades, and Figure 9.6 indicates that this expectation is generally supported.

The darker lines in Figure 9.6 are the 1997 profiles for college and high school graduates that appeared in Figure 9.4. The lighter lines indicate the comparable profiles for 1977 (with earnings adjusted to 1997 dollars using the Consumer Price Index). A visual comparison reveals that the age/earnings profile for college-educated women has become much steeper for those in their twenties and early thirties. For example, in 1977 the earnings of a 22-year-old female college graduate were 26 percent greater than those of a 21-year-old college graduate, while in 1997 they were 51 percent greater. For women with high school educations, the profile for those in their twenties is only slightly steeper, 32-year-olds with high school educations earned 25 percent more than 21-year-olds in 1977 and 39 percent more in 1997. The faster earnings growth among younger women in 1997, as compared to 1977, suggests that their receipt of on-the-job training may have increased as their expected work lives have lengthened.

(H. Frazis, M. Cottlerman, H. Horningan and M. Joyce. "Results from the 1995 Survey of Employer-Provided Training.")

(Franzoni C. Ross and Marianne A. Forber, "Career Plans and Expectations of Young Women and Men," Journal of Human Resources 26 (Fall 1991) 561-607, found that female college seniors, who expected staying salaries equal to those expected by men, expected much lower salaries later in their careers.

(See Elizabeth T. Hill, "Labor Market Effects of Women's Post-School Age Training," Industrial and Labor Relations Review 46, no. 1 (October 1993) 136-149.)
FIGURE 9.6
The Increased Concavity of Women’s Age-Earnings Profile

It is interesting to note that in a survey of workers who entered the labor force between 1979 and 1981, women did indeed experience lower average wage growth than did their male counterparts over their first four years of work (22.5 percent growth in four years for women, 27.6 percent for men). Different growth rates, however, were found only among those who changed employers; men and women who stayed with the same employer had essentially the same rate of wage growth. While some of the relatively slower wage growth for women who changed jobs was explained by their greater propensity to seek part-time work, most of this differential wage growth remained unexplained. An intriguing possibility raised by this study, however, is that recently hired women who stay with their employers may now be receiving the same level of on-the-job training as their male colleagues.

Women and Formal Schooling

As Table 9.1 suggested, there have been dramatic changes in the level of formal education received by women in recent years. Their fields of study have also changed markedly. These changes undoubtedly reflect the increased returns to human capital investments arising from women’s increased attachment to the labor force and longer expected work lives. Table 9.1 outlines some of the magnitudes of these changes.

TABLE 9.3

Percentages of Women among College and University Graduates, by Degree and Field of Study, 1971 and 1975

<table>
<thead>
<tr>
<th>Percentage of Women among</th>
<th>Bachelor’s Degree</th>
<th>Master’s Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1971</td>
<td>1975</td>
</tr>
<tr>
<td>Total</td>
<td>43.4%</td>
<td>54.7%</td>
</tr>
<tr>
<td>Business majors</td>
<td>9.1%</td>
<td>47.6%</td>
</tr>
<tr>
<td>Computer science majors</td>
<td>13.6%</td>
<td>28.4%</td>
</tr>
<tr>
<td>Education majors</td>
<td>74.5%</td>
<td>79.3%</td>
</tr>
<tr>
<td>Engineering majors</td>
<td>0.8%</td>
<td>16.4%</td>
</tr>
<tr>
<td>English majors</td>
<td>66.7%</td>
<td>65.8%</td>
</tr>
<tr>
<td>Health professionals</td>
<td>77.1%</td>
<td>82.4%</td>
</tr>
</tbody>
</table>

First professional degree
6.3% 40.8%

Women, who traditionally were less likely than men to graduate from college, now represent well over half of both bachelor’s and master’s graduates. Increases have been especially great at the master’s level, indicating that for many women, expected labor force attachment is now so great that an investment in postgraduate education is considered worthwhile. The most striking change, however, has occurred in the fields of study. Bachelor’s business graduates, for example, are now almost 50 percent women; in 1971, women were only 9 percent of the total. A sixfold increase can be seen among those receiving law and doctor of medicine degrees, and even greater percentage gains were recorded in the field of engineering and in business programs at the master’s level. (The traditionally “female” fields of English, education, and health care have become slightly more heavily female, largely because college campuses themselves are more heavily female.)

Although the data in Table 9.3 indicate a very rapid change in the human capital decisions among women, it is still true that women are “underrepresented” in certain fields: engineering, computer science, business at the master’s degree level, and the professions of law and medicine. While interests that develop in the process of socialization may account for some of this underrepresentation, some women’s expectations of a discontinuity in labor market experience may also be part of the explanation. The fields in which women are still underrepresented tend to be highly technical and concern about the depreciation of human capital during any expected period out of the labor force could reduce the incentives of women to invest heavily in these fields.

IS EDUCATION A GOOD INVESTMENT?

It is well established that workers with more education tend to earn higher wages. However, an individual deciding whether to go to college would naturally ask, "Will I increase my monetary and psychic income enough to justify the costs of going to college?" Further, government policymakers trying to decide whether to improve educational programs or subsidize increased enrollments must ask, "Will the benefits of improved productivity outweigh the costs?"

It will be recalled from our discussion earlier in this chapter that there are two methods of assessing the returns to an investment. The present-value method involves choosing a discount rate and then summing the present value of expected future benefits so that the total returns can be compared to investment costs. If the present value of returns exceeds such costs, the investment can be considered worthwhile. Example 5.3 presents a situation in which calculating the present value of future investment returns is necessary.

The internal rate of return method calculates the discount rate that equates the present value of benefits with the investment cost. If the future returns from a particular investment decision are large enough that the discount rate required to equate benefits and costs exceeds the rate of return an individual insists upon before investing, then the decision will be considered worthwhile. The next two subsections deal, respectively, with individual and social returns from educational investments, primarily using the rate-of-return method of analysis.

Is Education a Good Investment for Individuals?

Individuals about to make an investment in a college education are typically committed to costs of at least $18,000 per year. Is there evidence that this investment pays off for the typical student? Several studies have tried to answer this question by calculating the internal rates of return to educational investments. While the methods and data used vary, these studies normally estimate benefits by calculating earnings differentials at each age from age/earnings profiles such as those in Figures 9.3 and 9.4. (Earnings are usually used to measure benefits because higher wages and more stable jobs are both payoffs to more education.) It should be stressed that all such studies have analyzed only the monetary, not the psychic, costs and returns on educational investments.

The rates of return to education typically estimated for the average American worker fall into the range of 5–12 percent (after adjusting for inflation), although they may vary across individuals with such factors as parental background, school quality, and even the level of education (as will be seen in Example 9.4, page 250). These findings are interesting because most other investments generate returns in

EXAMPLE 9.3

Valuing a Human Asset: The Case of the Divorcing Doctor

State divorce laws typically provide for the division of assets acquired during marriage to be divided in some equitable fashion. Such laws in the state of New York recognize, among the assets to be divided, the asset value of human capital investments made by either spouse during the period of marriage. How these acquired human capital values are estimated can be illustrated by the following example.

Dr. Doe married his wife right after he had acquired a license to practice medicine as a general practitioner. Instead of opening a general (family) practice, however, Dr. Doe undertook specialized training to become a surgeon. During his training (residency) period, the income of Dr. Doe and his wife was much lower than it would have been had he been working as a general practitioner (thus both spouses were investing, albeit to different degrees, in Dr. Doe's human capital). Shortly after his residency was completed and he had acquired board certification as a general surgeon, Dr. Doe and his wife decided to divorce. She sued him for an equitable division of the asset value of his certification as a general surgeon. How can this asset value be estimated?

The asset value of Dr. Doe's certificate as a general surgeon is the present value of his estimated increase in lifetime earnings made possible by the investment undertaken during marriage. In the absence of a specific work history as a surgeon, the most reasonable estimate of his increase in yearly earnings is calculated by subtracting from what the typical general surgeon earns in a year the average earnings of general practitioners (which is an estimate of what Dr. Doe could have earned in the absence of his training as a surgeon) in 1988. The median earnings of general surgeons were $135,000, while the median earnings of general practitioners were $75,000, implying a yearly earnings differential of $56,000. Assuming a remaining worklife of 25 years and a real interest rate (which takes account of what inflation will do to the earnings differential) of 2 percent, the present value of the asset Dr. Doe "acquired" as the result of his surgical training comes to $1,092,560. (It would then be up to the court to divide this asset equitably between the two divorcing spouses.)

The earnings data used are nationwide for doctors with office practices in 1988. They were obtained with permission from Medical Economics magazine from "Earnings: Are You Off of Those Losing Ground?" by Arthur Owens, Medical Economics (September 4, 1989): 130. The formula used to calculate present value is the one given in Footnote 1 of this chapter, with \(\alpha = \frac{56,000}{(1.02)^{25}}, r = 0.02, \) and \(n = 25 \).

The same range, thus, it appears, at least at first glance, that an investment in education is about as good as an investment in stocks, bonds, or real estate. This conclusion must be qualified, however, by recognizing that there are potential biases in the estimated rates of return to education. These biases, which are of unknown size, work in opposite directions.

The Upward Bias. The typical estimates of the rate of return on further schooling may overstate the gain an individual student could obtain by investing in education because they are unable to separate the contribution that ability
makes to higher earnings from the contribution made by schooling. The problem is that (a) people who are smarter, harder-working, and more dynamic are likely to obtain more schooling, and (b) such people might be more productive, and hence earn higher-than-average wages, even if they did not complete more years of schooling than others. When measures of true ability are not observed or accounted for, the studies attribute all the earnings differentials associated with college to college itself and none to ability, even though some of the added earnings college graduates typically receive may have been received by an equally able high school graduate who did not attend college.

Recent studies that attempt to control for "ability bias" in estimating rates of return to schooling have utilized several strategies. Some have estimated the separate effects of schooling and aptitude-test scores on earnings. Others have estimated how much the earnings of people are affected when a random event, not ability, affects their level of schooling. Still others analyze differences among family members, who have the same family background, and even among identical twins, who share the same inherited characteristics. These studies generally conclude that the problem of ability bias in conventional estimates is small.10

The Downward Bias There are three reasons to believe that conventionally estimated rates of return to educational investments may be downward-biased. First, some benefits of college attendance are not necessarily reflected in higher productivity, but rather in an increased ability to understand and appreciate the behavioral, historical, and philosophical foundations of human existence. Second, most rate-of-return studies fail to include employee benefits; they measure money earnings, not total compensation. Because employee benefits as a percentage of total compensation tend to rise as money earnings rise, ignoring benefits tends to create a downward bias in the estimation of rates of return to education. Third, some of the job-related rewards of college are captured in the form of psychic or nonmonetary benefits. Jobs in the executive or professional occupations are probably more interesting and pleasant than the more routine jobs typically available to people with less education. While executive and professional jobs pay more

10Another source of upward bias has been pointed out by C. M. Linsey, "Measuring Human Capital Returns," Journal of Political Economy 79 (November/December 1971): 1195-1215. Linsey reasons that if human capital investments earn a normal rate of return, they do not change the wealth of those who invest; postinvestment returns, in other words, just make up for the costs of investment. Human capital investments, however, for more wages, and hence the price of leisure. As the principles of labor supply in chapters 6 and 7 suggested, an increased wage with unchanged wealth would cause hours of leisure consumed to fall. Thus, human capital investments raise an increased price, and reduced consumption, of the important consumer good we call "leisure." Some of the differential in earnings we observe between those with more human capital and those with less is offset by utility lost by the former group when leisure is reduced. To count the return earnings-differential as a return on the investment without correcting for lost leisure overstates the real gain that is, those expressed in terms of utility, to human capital investments. For a recent article on this issue, see David H. Greenberg, "The Leisure Bias in Cost-Benefit Analysis of Employment and Training Programs." Journal of Human Resources, 32, no. 2 (Spring 1997): 435-439.

11See Card, "The Casual Effect of Education on Earnings," for a comprehensive review of studies that attempt to account for ability bias.
than others, the total benefits of these jobs may be understated when only earnings differences are analyzed.¹⁰

Selection Bias A third source of bias in the standard estimates of rates of return on education arises from what has become known in recent years as the selectivity problem. Briefly put, one who decides to go to college and become a manager rather than terminal schooling with high school and become a mechanic, may do so in part because he or she has very little mechanical aptitude; thus, becoming a mechanic might yield this person less income than would be earned by others who chose to become mechanics rather than go to college. Likewise, those who go to college may have aptitudes that generate more income in managerial jobs than could have been earned in those jobs by terminal high school graduates if they had acquired the college education needed to qualify for the managerial jobs. The significance of the selectivity phenomenon described above is that conventionally calculated rates of return may underestimate the returns to a college education for those who decide to attend college and overstate the returns foregoing by someone who decides not to go.

To understand the potential selectivity biases in the conventionally calculated returns to a college education, keep in mind that the returns to a college education are usually based on differences between the actual earnings of college and high school graduates. For people who graduated from college, the rate-of-return calculation thus assumes that, in the absence of a college education, their earnings would have been equal to those of the average high school graduate. If, instead, their earnings would have been less than those of the high school graduate, the conventional calculation understates their gains from a college investment. Analogously, the conventionally calculated rate of return to a college education may overstate the returns that could have been received by those who decided against attending college, because they might have been unable to earn as much with a college education as do those who actually attended college.

Fortunately, the selectivity bias in estimated rates of return to schooling appears to be small.¹¹ Nevertheless, raising the selectivity issue does serve to remind us that

¹⁰While not strictly an issue of downward bias, there is reason to believe that the conventionally measured rates of return to educational attainment are below the rates of return that would be observed if some intervention (for example, the opening of a college in one's own hometown) were to create people with lower educational attainment to enter those schooling. Human capital theory suggests that when deciding whether to make an investment, people compare their expected rate of return to their personal discount rate (that is, their "required" rate of return). Only if the expected rate of return exceeds the required rate is the investment worth making. Suppose, now, that the yearly monetary costs and returns associated with the same educational investment are not very much across individuals, but that personal discount rates vary considerably. Suppose too that each person continues to invest in education until the monetary rate of return equals (or is about to exceed) his or her personal discount rate. Under these conditions, those with a previously avoided bias did so because they had higher rates of return and a higher reported rate of return (and a higher observed rate of return). For more on this topic, see Cord, "Earnings, Schooling, and Ability Revealed," in Factor in Labor Economics, vol. 14, ed. S. Polachek (Greenwich, Conn.: JA Press, 1985) 23-48.
the principle of comparative advantage is potentially important in making choices about schooling and occupations.

Is Education a Good Social Investment?

The issue of education as a social investment has been of heightened interest in the United States during the past decade especially because of three related developments. First, product markets have become more global, increasing the elasticity of both product and labor demand. As a result, American workers are now facing more competition from workers in other countries. Second, the growing availability of high-technology capital, especially the desktop computer, has created new products and production systems that require workers to have greater cognitive skills and to be adaptable, efficient learners. Indeed, a recent study has indicated that the returns to a worker's having greater quantitative skills—especially the skills taught in the United States prior to high school—have risen in recent years. A third, American elementary and secondary school students have scored poorly relative to students elsewhere in language proficiency, scientific knowledge, and especially mathematical skills. For example, Table 9.4 displays the average scores on a mathematical proficiency test given on a comparable basis (that is, to all eighth graders) in six different countries. The American score lies below that in every other country shown. The combination of these three developments has caused concern about the productivity of America's future workforce, relative to workers elsewhere, and to a series of questions about our educational systems. Are we devoting enough resources to educating our current and future workforce? Should the resources we devote to education be reallocated in some way? Should we demand more of students in elementary and secondary schools?

As Table 9.5 indicates, the United States devotes at least as many resources to elementary and secondary education as do other developed countries. In terms of dollars per student, the United States ranks first among the five countries shown, and in terms of the percentages of the population completing secondary school, it ranks in the middle. Moreover, the percentage of the population completing college is higher than in every comparison country, and more or less double that of the European countries shown. Thus, with almost seven percent of its gross domestic product devoted to the direct costs of formal education (elementary, secondary, and college), and with foregone earnings (especially of college students) adding another 3 or 4 percent, the United States devotes a substantial fraction of its available resources to formal schooling. Whether this huge social investment pays off, and whether its returns can be enhanced, are important questions. In beginning to answer them, we must try to understand how education and productivity are related.

"The forgone earnings of high school and college students have been estimated to equal 60 percent of the direct cost outlays at these schooling levels. See Theodore Schultz, The Economic Value of Education (New York: Columbia University Press, 1963).
The view that increased educational investments increase worker productivity is a natural outgrowth of the observation that such investments enhance the earnings of individuals who undertake them. However, this view that the educational investment is what causes productivity to rise is not the only possible interpretation for the positive relationship between earnings and schooling. Another interpretation is that the educational system provides society with a screening device that sorts people by their (predetermined) ability. As discussed below, this alternative view, in its extreme form, sees the educational system as a means of finding out who is productive, not of enhancing worker productivity.

The Signaling Model. An employer seeking to hire workers is never completely sure of the actual productivity of any applicant, and in many cases the employer may remain unsure long after an employee is hired. What an employer can observe are certain indicators that firms believe to be correlated with productivity: age, experience, education, and other personal characteristics. Some indicators, such as age, are immutable. Others, like formal education, can be acquired by workers.

Table 9.4
International Comparisons of Proficiency in Mathematics, 8th Grade, 1995

<table>
<thead>
<tr>
<th>Country</th>
<th>Raw Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>527</td>
</tr>
<tr>
<td>England</td>
<td>506</td>
</tr>
<tr>
<td>France</td>
<td>538</td>
</tr>
<tr>
<td>Germany</td>
<td>509</td>
</tr>
<tr>
<td>Japan</td>
<td>605</td>
</tr>
<tr>
<td>United States</td>
<td>500</td>
</tr>
</tbody>
</table>

Table 9.5
International Comparisons of Schooling, 1994

<table>
<thead>
<tr>
<th>Country</th>
<th>Expenditures per pupil, Grades 1-12 (in U.S. $)</th>
<th>% of Those, Age 25-44, Who Have Completed</th>
<th>% of Them, Age 25-44, Who Have Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Secondary School</td>
<td>University</td>
</tr>
<tr>
<td>France</td>
<td>4,783</td>
<td>85.5%</td>
<td>14.0%</td>
</tr>
<tr>
<td>Germany</td>
<td>5,262</td>
<td>88.9%</td>
<td>12.5%</td>
</tr>
<tr>
<td>Japan</td>
<td>4,362</td>
<td>90.6%</td>
<td>22.9%</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>3,984</td>
<td>86.1%</td>
<td>14.8%</td>
</tr>
<tr>
<td>United States</td>
<td>5,944</td>
<td>87.1%</td>
<td>25.0%</td>
</tr>
</tbody>
</table>

INDICATES THAT CAN BE ACQUIRED BY INDIVIDUALS CAN BE CALLED SIGNALS; OUR ANALYSIS HERE WILL FOCUS ON THE SIGNALING ASPECT OF FORMAL EDUCATION.

LET US SUPPOSE THAT FIRMS WANTING TO HIRE NEW EMPLOYEES FOR PARTICULAR JOBS KNOW THAT THERE ARE TWO GROUPS OF APPLICANTS THAT EXIST IN ROUGHLY EQUAL PROPORTIONS. ONE GROUP HAS A PRODUCTIVITY OF 1, LET US SAY, AND THE OTHER HAS A PRODUCTIVITY OF 1. FURTHER, SUPPOSE THAT THESE PRODUCTIVITY LEVELS ARE IMMUTABLE (THEY CANNOT BE CHANGED BY EDUCATION OR TRAINING) AND THAT EMPLOYERS CANNOT READILY DISTINGUISH WHICH APPLICANTS ARE FROM WHICH GROUP. IF THEY WERE UNABLE TO MAKE SUCH DISTINCTIONS, FIRMS WOULD BE FORCED TO ASSUME THAT ALL APPLICANTS ARE "AVERAGE"; THAT IS, THEY WOULD HAVE TO ASSUME THAT EACH HAD A PRODUCTIVITY OF 1.5 (AND WOULD OFFER THEM WAGES OF UP TO 1.5).

WHILE WORKERS IN THIS SIMPLE EXAMPLE WOULD BE RECEIVING WHAT THEY WERE WORTH ON AVERAGE, ANY FIRM THAT COULD DEVISE A WAY TO DISTINGUISH BETWEEN THE TWO GROUPS (AT LITTLE OR NO COST) COULD ENHANCE ITS PROFITS. WHEN WAGES EQUAL 1.5, WORKERS WITH PRODUCTIVITIES EQUAL TO 1 ARE RECEIVING MORE THAN THEY ARE WORTH. IF THESE APPLICANTS COULD BE DISCOVERED, AND EITHER REJECTED OR PLACED INTO LOWER-PAYING JOBS, THE FIRM COULD OBVIOUSLY INCREASE ITS PROFITS. IT TURNS OUT THAT USING EDUCATIONAL ATTAINMENT AS A HIRING STANDARD—even if education does not enhance productivity—is profitable for the employer if it so happens that the cost to workers of acquiring the required schooling is a signal of (that is, is related to) on-the-job productivity.

TO ILLUSTRATE THE USE OF EDUCATIONAL SIGNALING, SUPPOSE THAT EMPLOYERS COME TO BELIEVE THAT APPLICANTS WITH AT LEAST t YEARS OF EDUCATION BEYOND HIGH SCHOOL ARE THE ONES WITH PRODUCTIVITY 2, AND THAT THOSE WITH LESS THAN t ARE IN THE LOWER-PRODUCTIVITY GROUP. WITH THIS BELIEF, WORKERS WITH LESS THAN t YEARS WOULD BE REJECTED FOR ANY JOB PAYING A WAGE ABOVE 1, WHILE THOSE WITH AT LEAST t WOULD FIND THAT COMPETITION AMONG EMPLOYERS DRIVES THEIR WAGES UP TO 2. THIS SIMPLE HYPOTHETICAL WAGE STRUCTURE IS ILLUSTRATED IN FIGURE 9.7. IF ADDITIONAL SCHOOLING DOES NOT ENHANCE PRODUCTIVITY, CAN REQUIRING THE SIGNAL OF t REALLY DISTINGUISH BETWEEN THE TWO GROUPS OF APPLICANTS? THE ANSWER IS YES IF THE COST TO THE WORKER OF ACQUIRING THE ADDITIONAL SCHOOLING ARE NEGATIVELY RELATED TO HIS OR HER ON-THE-JOB PRODUCTIVITY.

IF WORKERS WITH AT LEAST t YEARS OF EDUCATION BEYOND HIGH SCHOOL CAN OBTAIN A WAGE OF 2, WHILE THOSE WITH LESS CAN EARN A WAGE OF ONLY 1, ALL WORKERS WOULD WANT TO ACQUIRE THE SIGNAL OF t IF IT WERE COSTLESS FOR THEM TO DO SO; IN THIS CASE, USING EDUCATIONAL ATTAINMENT AS A SIGNALING DEVICE WOULD FAIL, BECAUSE WORKERS IN BOTH GROUPS WOULD ACQUIRE THE SAME SIGNAL. AS WE ARGUED EARLIER HOWEVER, SCHOOLING COSTS ARE BOTH LARGE AND DIFFERENT FOR DIFFERENT INDIVIDUALS. IN PARTICULAR, THE PSYCHIC COSTS OF EDUCATION ARE PROBABLY INVERSELY RELATED TO ONE'S ABILITY; THOSE WHO LEARN EASILY CAN ACQUIRE THE EDUCATIONAL SIGNAL (OF t IN THIS CASE) MORE CHEAPLY THAN OTHERS. IF—

this is critical—those who have lower costs of acquiring education, are also more productive on the job, then requiring educational signals can be useful for employers.

To understand the role of costs in signaling, refer to Figure 9.8, in which the expected return from Figure 9.7 is expressed in terms of the present value of lifetime earnings (at a wage of $1 their discounted lifetime earnings sum to PV). If we assume that each year of education costs C for those with less productivity, and $C/2$ for those with greater productivity, the fundamental influences on worker choices concerning education are easily seen.

Workers will choose the level of schooling at which the difference between their discounted lifetime earnings and their total educational costs is maximized. For those with yearly educational costs of C, the difference between lifetime earnings and total educational costs is maximized at zero years of education beyond high school. For these workers, the net benefit of year beyond high school (distance BD) is less than the net benefit of zero additional years (distance AB), and for them, the benefits of acquiring the signal of e^* years is not worth the added costs. For those whose costs are $C/2$, it can be seen that the net benefits of investing in e^* (distance BF) exceed the net benefits of other schooling choices. Therefore, only those with costs of $C/2$—the workers with productivities of 2—find it advantageous to acquire e^* years of schooling.

Three points should be made about our simple example of signaling above. First, workers may not think of themselves as acquiring a signal if they attend school, even though in our example they are. All most workers will know is that by obtaining more education they can increase their wages, and their decision about how much education to acquire depends on the costs and returns to them.

Second, our simple example demonstrated how education could have signaling value even if it did not directly enhance worker productivity. It is necessary to stress, though, that for education to have signaling value in this case, on-the-job
productivity and the costs of education must be negatively related. In our example, if the higher costs reflected along line C were associated with lower cognitive ability or a distaste for learning, then it is conceivable that in many jobs these costs could be indicative of lower productivity. If, however, those with costs along C have higher costs only because of lower family wealth (and therefore smaller "contributions" from others toward their schooling costs), then they may be no less productive on the job than those along line C'/2. In this latter case, signaling would fail in the sense that it would only indicate those with low family wealth, not lower productivity.

Third, even if educational signaling is a useful way to predict future productivity, there is an optimum signal beyond which society would not find it desirable to go. Suppose, for example, that employers now requiring e years for entry into jobs paying a wage of 2 were to raise their hiring standards to e' years, as shown in Figure 9.9. Those with educational costs along C would still find it in their best interests to remain at zero years of schooling beyond high school, and those with costs along C'/2 would find it profitable to invest in the required signal of e' (because distance B'F' is greater than A0). Requiring more schooling of those who are selected for high-wage jobs, however, is more costly for those workers (and thus for society as a whole). While the new required signal would distinguish between the two groups of workers, it would do so at increased social
cost. Put differently, using e^* as the required signal would be just as effective as using e', yet would entail lower opportunity costs. Therefore, using e' cannot be socially optimal.25

Whether schooling is purely a signaling device or adds to productivity is not a particularly important question for individuals. Whatever role schools play, additional schooling does enhance one's lifetime income. Where the issue of signaling is important is at the social level. If the only purpose of schools is to provide signals, why encourage investments in the expansion or qualitative upgrading of schooling? If forty years ago being a high school graduate signaled above-average intelligence and work discipline, why incur the enormous costs of expanding college attendance only to find out that now these qualities are signaled by having a bachelor's degree? The issue is of even more importance in less-developed countries, where mistakes in allocating extremely scarce capital resources could be disastrous (see Example 9.4).

25Some critics of the human capital view of education argue that escalation of educational standards has occurred for jobs in which work requirements have remained largely unchanged. These critics can be understood as saying that firms require e' when requiring e^* would be cheaper and work just as well. See, for example, Karl Berg, Education and Jobs: The Great Training Robbery (New York: Praeger Publishers, 1970).
EXAMPLE 3.4

The Socially Optimal Level of Educational Investment

In addition to asking whether schooling is a good social investment, we could also ask, what is the socially optimal level of schooling? The general principle guiding our answer to this question is that society should increase or reduce its educational investments until the marginal rate of return (to society) equals the marginal rate of return on other forms of capital investments (investment in physical capital, for example).

The rationale for the above principle is that if society has some funds it wants to invest, it will desire to invest them in projects yielding the highest rates of return. If an investment in physical capital yields a 20 percent rate of return and the same funds invested in schooling yield all things considered, only a 10 percent rate of return, society will clearly prefer to invest in physical capital. As long as the two rates of return differ, society could be made better off by reducing its investments in low-yield projects and increasing them in those with higher rates of return.

The text has discussed many of the difficulties and biases inherent in estimating rates of return to schooling. However, the general principle of equating the rates of social return on all forms of investments is still a useful one to consider. It suggests, for example, that capital-poor countries should invest in additional schooling only if the returns are very high—higher, in all probability, than the rates of return required for optimality in more-capital-rich countries. Indeed, the rates of return to both secondary schooling and higher education appear to be generally higher in less-developed countries than in developed countries. One review estimated that the rate of return on secondary schooling investment was 10 percent for a developed country (on average), while for a less-developed country it was 13 to 15 percent. Comparable rates of return on investments in higher education were 8 percent and 11 percent, respectively.

Signaling or Human Capital? Direct evidence on the role schooling plays in society is difficult to obtain. Advocates of the signaling viewpoint, for example, might point to the higher rates of return for college graduates than for college dropouts as evidence that schooling is a signaling device. They argue that what is learned in school is proportional to the time spent there and that an added bonus (rate of return) for a diploma is proof of the signaling hypothesis. Advocates of the view that schooling enhances human capital could counter that one who...
graduates after four years probably has learned more than four times what the freshman dropout has learned. They argue that dropouts are more likely to be poorer students—the ones who overestimated their return on schooling and quit when they discovered their mistake. Thus, their relatively low rate of return is associated not with their dropping out but with their reason for dropping out.

To take another example, proponents of the human capital view of education could argue that the fact that earnings differentials between college and high school graduates grow with age supports their view. If schooling were just a signaling device, employers would rely on it initially, but as they accumulated direct information from experience with their employees, schooling would play a smaller role in determining earnings. Signaling advocates could counter that continued growth in earnings differentials and the continued association of schooling and earnings only illustrate that educational attainment is a successful signaling device.

As a final example, proponents of the signaling view of education point to the widespread placement of workers into jobs for which they are "overqualified." Put succinctly, if education is purely a signaling device and if levels of education are increasing over time, then as time goes on employers will be led to hire workers whose educational levels exceed the true requirements for their jobs. One study, however, found that workers who were educationally overqualified tended to be less experienced and to have received less job training than others; thus, their "extra" human capital from schooling appeared to be compensating for deficiencies in other forms of human capital. Here again, the "human capital" and "signaling" views of education are difficult to distinguish with available data.

School Quality

Given the difficulty of generating predictions of labor market outcomes that can directly distinguish the signaling from the human capital hypothesis, one is led to wonder if there are other ways to resolve the debate. A research scarcity with some potential grows out of issues related to school quality.

As mentioned earlier, concern has been raised about the cognitive achievement of American students. If schooling performs primarily a signaling function, by helping to discover people's cognitive abilities, one would not necessarily look to the educational system to remedy the problem of low cognitive...
achievement. However, if schooling can enhance the kinds of skills that pay off in the labor market, then increased investment in the quality of the nation's schools could be warranted.

There is little doubt that workers of higher cognitive skill have higher earnings, even among those with equal levels of education. Proponents of the signaling and human capital views of education can agree that people of higher ability are likely to be more productive, where they disagree is on whether better schools can enhance worker productivity by improving cognitive skills. Advocates of the signaling viewpoint cite a substantial literature—suggesting there is almost no demonstrated relationship between schooling expenditures and student performance on tests of cognitive skill. Advocates of the human capital view, however, find support in studies of earnings and school quality. These studies generally indicate that students attending higher-quality schools (that is, ones with greater resources per student) have higher subsequent earnings, other things equal.

Clearly, assessments of the social return to schooling that examine the role of school quality have so far yielded somewhat ambiguous results. Better schools may enhance labor market earnings, but evidence that they enhance measured cognitive abilities is relatively weak. One possibility, of course, is that better schools enhance productivity by teaching useful problem-solving skills or better work habits—characteristics that may be valued in the labor market but not captured especially well by standardized tests of cognitive achievement. Another possibility, however, is that better schools give students better information about their own interests and abilities, thus helping them to make more successful career choices. Some important questions, then, remain unanswered.

Does the Debate Matter? In the end, perhaps the debate between advocates of the signaling and human capital views of schooling is not terribly important. The fact is that schooling investments offer individuals monetary rates of return that are comparable to those received from other forms of investment. For individuals to recoup their human capital investment costs requires willingness on the part of employers to pay higher wages to people with more schooling, and for employers to be willing to do this, schools must be providing a service that employers could not perform more cheaply themselves.

For example, we argued earlier that to profit from an investment of $100,000 in a college education, college graduates must be paid at least $3,652 more per year than would have received otherwise. Naturally, this requires that they face employers who are willing to pay them the higher yearly wage. If college directly or indirectly adds to one's labor market productivity, it is obvious why employers

For summaries of the lively debate on the effects of school quality on both cognitive skills and earnings, see the following symposium issues: Federal Reserve Bank of New York Economic Policy Review 6, no. 1 (March 1998); Journal of Economic Perspectives 10, no. 4 (Fall 1996); and Review of Economics and Statistics, 8, no. 4 (November 1996).
should be willing to pay this premium and how society benefits from human capital investments. But what if colleges merely help to reveal who is more productive?

If employers believed they could create tests or other devices that reveal productivity characteristics for less than a yearly cost of $3,652 per worker, they would have strong incentives to adapt these alternative modes of screening workers. The fact that employers continue to emphasize (and pay for) educational requirements in the establishment of hiring standards suggests one or two things. Either more education does enhance worker productivity, or it is a less expensive screening tool than any other that firms could use. In either case, the fact that employers are willing to pay a high price for an educated workforce seems to suggest that education produces social benefits.

Is Public Sector Training a Good Social Investment?

The same developments leading American policymakers to ask resource-allocation questions about elementary and secondary schooling have also led to similar questions about job-training programs. Much of the job training available to workers is provided formally or informally at the workplace, and as indicated in chapter 6 (Example 5.4), there is some evidence that American workers receive less employer-provided training than other workers in the developed world. Higher turnover rates among American workers might be a partial explanation, as might the lower cognitive achievement levels among those who end their formal education with high school. If American workers are ill-equipped to receive—or are for some other reasons not receiving—job training in the private sector, would increased public sector training programs be a good social investment?

During the past four decades, the federal government has funded a variety of training programs that primarily targeted disadvantaged men, women, and youth. Some programs have served trainees who applied voluntarily, and others have been mandatory programs for public assistance recipients who stood to lose benefits if they did not enroll. Some of these programs have provided relatively inexpensive help in searching for work, while others have directly provided work experience or (in the case of the Job Corps) comprehensive services associated with living away from home. Over these decades, however, roughly half of those enrolled received classroom training at vocational schools or community colleges, and another 25 percent received on-the-job training. The per-student costs of these latter two types of programs have been in the range of $3,250 to $6,500 (in 1997 dollars).

46Kevin Lang, "Does the Human Capital/Educational Sorting Debate Matter for Development Policy?" American Economic Review 84, no. 1 (March 1994): 353–368, comes to a similar conclusion through a more formal analysis.

Evaluating these programs requires comparing their costs to an estimate of the present value of their benefits. The programs were intended to increase the productivity of trainees, and in the case of this kind of (general) training, enhancements of trainer productivity should be reflected by their increased earnings. Thus, evaluators have set out to estimate by how much the earnings of trainees were increased as a result of their training. Measuring this increase in earnings involves estimating what the trainee would have earned in the absence of the program, and there are several thorny issues the researcher must successfully confront. Nevertheless, summaries of credible studies done to date have concluded that adult women are the only group among the disadvantaged that clearly experience earnings gains as a result of training; adult men and youth show no consistent earnings increases across studies. Moreover, the average increase in earnings for women in voluntary training programs is roughly $1,150 per year, while it is less than half that for the mandatory training associated with welfare programs.

For disadvantaged men and youth, then, investments in federally sponsored training apparently had a negative return; costs were expended, but no clear-cut increases in productivity resulted. For disadvantaged women, earnings increases did result. Were these latter increases large enough to justify program costs?

The programs had direct costs of $3,250 to $6,500 per trainee, but they also had opportunity costs in the form of forgone output. The typical trainee was in her program for 16 weeks, and while many of the trainees had been on welfare prior to training, the opportunity costs of their time surely were not zero; indeed, the student will recall from chapter 7 that a person can be productive in the home as well as the workplace. If one were to place a value on time at home equal to $18,000 per year (see example 7.2 in chapter 7), spending one-third of a year in training had opportunity costs of roughly $6,000. Thus, the total costs of training were probably in the range of $9,000 to $12,000 per woman.

If benefits of $1,450 per year were received annually for 20 years after voluntary training, and if the appropriate discount rate is 2 percent, the present value of benefits comes to $23,700. Benefits of this magnitude are clearly in excess of costs. Indeed, the present value of benefits for voluntary training would still be in excess of $12,000 even if the yearly earnings increases lasted for just more than 9 years. The returns to mandatory training for women, as noted above, are less than half of those for voluntary training, so even if benefits were to last for 20 years, they are not likely to cover costs.

*There is some new evidence that the current voluntary training programs for men are having positive effects or earnings: see Fidenslav, Greenberg, and Robins, "Evaluating Government Training Programs for the Economically Disadvantaged," p. 1847.

*The real rate of interest—that is, the nominal rate less the rate of inflation—on government securities has been in the neighborhood of 2 percent during the postwar period. The real rate of interest is the appropriate discount rate if, as in our example, benefits are not inflation-adjusted.
REVIEW QUESTIONS

1. Women receive lower wages, on average, than men of equal age. What concepts of human capital help to explain this phenomenon? Explain. Why does the discrepancy between earnings for men and women grow with age?

2. Suppose financial aid to college students were financed by income taxes on the general population and the President cut this aid significantly (correspondingly cutting taxes). Analyzing the likely labor market effects of these cuts, identify the various groups that would gain and lose from these cuts over their lifetimes. Discuss your reasoning concerning each in turn. Then analyze the likely effects on the retirement ages of these groups.

3. Many crimes against property (burglary, for example) can be thought of as acts that have immediate gains but entail long-run costs (sooner or later the criminal may be caught and imprisoned). If imprisoned, the criminal loses income from both criminal and noncriminal activities. Using the framework for occupational choice in the long run, analyze what kinds of people are most likely to engage in criminal activities. What can society do to reduce crime?

4. The United States is currently facing an education crisis in its high schools, which are graduating people with insufficient skills in mathematics and communications to perform tasks now required in the workplace. One suggested solution is to increase the level of competency required for high school graduation. The other suggestion stems from the observation that employers seem to care much more about job applicants’ possession of a high school degree than their high school grades; this suggestion is that employers tie wage offers for entry-level jobs to applicants’ high school grades (higher grades would mean higher wages). Compare the labor market effects of these two strategies for improving competency levels among high school graduates.

5. Why do those who argue that more education "signals" greater ability believe that the most able people will obtain the most education?

6. Currently, anyone can advertise as an auto mechanic. Some of those who offer their services as mechanics are highly competent, but others are less well trained or otherwise not as good. Suppose that the government, in an effort to upgrade the quality of mechanics, prorogates legislation requiring all new mechanics to take three years of post-high school training and to pass a competency test. Those who are currently mechanics will not be subject to these requirements. What are the likely labor market effects of this legislation? Which labor and consumer groups would gain and which would lose?

7. In many countries higher education is heavily subsidized by the government (that is, university students do not bear the full cost of their college education). While there may be good reasons for heavily subsidizing university education, there are also some dangers in it. Using human capital theory, explain what these dangers are.

8. "The vigorous pursuit by a society of tax policies that tend to equalize wages across skill groups will frustrate the goal of optimum resource allocation." Comment.
PROBLEMS

1. Becky works in sales but is considering quitting work for two years to earn an MBA. Her current job pays $40,000 per year (after taxes), but she could earn $55,000 per year (after taxes) if she had her masters of business administration. Tuition is $10,000 per year and the cost of an apartment near campus is equal to the $10,000 per year she is currently paying. Becky’s discount rate is 6 percent per year. She just turned 48 and plans to retire when she turns 60, whether or not she gets her MBA. Based on this information, should she go to school to earn her MBA? Explain carefully.

2. (Appendix). Suppose that the supply curve for optometrists is given by \(L_s = 6 + AW \), while the demand curve is given by \(L_d = 50 - W \), where \(W \) = annual earnings in thousands of dollars per year and \(L \) = thousands of optometrists.

 a. Find the equilibrium wage and employment level.

 b. Now suppose that the demand for optometrists increases and the new demand curve is \(L_d = 66 - W \). Assume that this market is subject to cobwebs because it takes about three years to produce people who specialize in optometry. While this adjustment is taking place, the short-run supply of optometrists is fixed. Calculate the wage and employment levels in each of the first three rounds and find the new long-run equilibrium. Draw a graph to show these events.

SELECTED READINGS

