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Abstract

We propose a method for augmenting conventional demand estimation methods with crowd-
sourced data on products’ locations in product space. In addition to the usual data on prices and
quantities, our method incorporates triplets data (of the form “product A is closer to B than it
is to C”) obtained from an online survey. The triplets are used to compute an embedding—i.e.,
a low-dimensional representation of the latent product space—which can then be used either (i)
as a substitute for data on observed characteristics in a conventional mixed logit model, or (ii)
to compute pairwise product distances that can discipline the cross-elasticity parameters of a
simple log-linear demand model. We illustrate the performance of both approaches by estimating
demand for ready-to-eat cereals, and find that the information contained in the embedding leads
to more plausible substitution patterns and better model fit.

∗
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Differentiated Products.” We thank Chris Sullivan, Giovanni Compiani, Jeff Thurk, and seminar participants at
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, and IIOC for helpful comments. The results reported below represent our own analyses
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herein.
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1 Introduction

Estimating demand systems in differentiated product markets is fundamental in empirical Industrial

Organization (IO), and the toolkit of methods can be roughly divided into two approaches.1 The

product space approach assumes that consumers have preferences over products, and product-level

demand comes from the aggregation of those preferences. This is perhaps the most natural way

to conceptualize demand, and has the advantage of yielding demand equations that are computa-

tionally simple to estimate (e.g., Christensen, Jorgenson, and Lau, 1975; Deaton and Muellbauer,

1980). The characteristics space approach, pioneered by Lancaster (1966) and McFadden (1974),

instead treats products as bundles of characteristics, and defines consumers’ preferences over these

characteristics. Methods in this vein have their own advantages: they are based on theoretically

grounded models of discrete choice, they have convenient analytical properties (e.g., closed-form

solutions for firms’ predicted market shares), and with the inclusion of random coefficients on

some characteristics (as suggested, for example, by Berry, Levinsohn, and Pakes (1995) (BLP) and

McFadden and Train (2000)) they allow for rich patterns of substitution between products.

Of course, each of these approaches also has meaningful drawbacks. The principal challenge of

estimating product space models is one of dimensionality: absent any restrictions, a market with J

products will require estimation of separate parameters for each of the J2 demand elasticities. And

while a key rationale for the characteristics space approach is that it collapses preferences over J

products down to a set of K � J characteristics, in practice it can be challenging to define and/or

collect data on the demand-relevant characteristics.

In this paper we propose a pragmatic approach for obtaining complementary data that can be used

either to discipline the parameters in a product space model or to serve as (latent) characteristics in

a characteristics space model. We first solicit product comparisons via an online survey to generate

data of the form “product A is closer to B than it is to C”—commonly referred to as ‘triplets data’

in the machine learning literature—and then apply the t-Distributed Stochastic Triplet Embedding

(tSTE) algorithm proposed by Van Der Maaten and Weinberger (2012) to compute an embedding of

the products in low-dimensional space. Distances between products are then easily calculated from

this embedding, and cross-price elasticties in a product space model can be estimated as a function

of these distances as in Pinkse, Slade, and Brett (2002). Alternatively, the products’ coordinates

in the embedding can be treated as the characteristics in a conventional mixed logit demand model

like BLP. As we explain below, these embeddings are easy to generate, and the data required to

compute them are straightforward to obtain.

1
See Berry and Haile (2021) and Gandhi and Nevo (2021) for recent surveys.
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We illustrate the method by estimating demand for ready-to-eat breakfast cereals—a common labo-

ratory for evaluating demand estimation methodologies—augmenting the usual price-and-quantity

data with survey data obtained from college students and Mechanical Turk workers. The triplets

data from the survey lead to an embedding of products that appears quite sensible. We use the

embedding to first show how it can be used in a product space model similar to that of Pinkse

et al. (2002), where the (log) quantity demanded for any product is a linear function of its own

(log) price and of all competing products’ (log) prices, allowing the cross-price elasticity param-

eters to be functions of pairwise product distances computed from the embedding. Estimates of

this model are computationally trivial to obtain, and they yield reasonable own- and cross-price

elasticities—similar to those reported in prior studies like Nevo (2001) and Backus, Conlon, and

Sinkinson (2021). Importantly, we show that the distances computed from the embedding deliver

meaningfully better estimates than distances computed from observed product characteristics.

We then show how the coordinates from the embedding can be used in more conventional discrete

choice models like BLP. If we treat the products’ coordinates in the embedding as latent character-

istics, essentially including them as the covariates in an otherwise standard BLP model, we obtain

elasticity estimates that are very similar to those from a model that uses observable characteristics.

This result is particularly encouraging because it suggests our method can deliver credible estimates

even in markets where demand-relevant characteristics are more elusive, such as fashion apparel,

movies, or music. Using survey data to obtain an embedding is essentially a way of crowd-sourcing

data on product characteristics, an option that will be especially useful in cases where data on

characteristics are otherwise difficult to collect.

While the specifics of our method are novel, we are not the first to propose the use of embed-

dings in demand estimation. Bajari, Cen, Chernozhukov, Manukonda, Wang, Huerta, Li, Leng,

Monokroussos, Vijaykunar et al. (2021) use deep neural nets to generate numeric latent attributes

(i.e., an embedding) from products’ images and text descriptions, and then use those attributes

to estimate a hedonic price function for apparel items on Amazon.com. This is a nice example

where the demand-relevant information about a product—say, a woman’s dress—cannot be easily

summarized by a set of characteristics, even though humans can easily process and synthesize the

relevant information from the product’s image and/or text description. With a similar motivation,

Han, Schulman, Grauman, and Ramakrishnan (2021) use a deep neural net to compute an embed-

ding describing the product space for fonts. Armona, Lewis, and Zervas (2021) show how to use

Bayesian Personalized Ranking to learn products’ latent attributes from search data (consumers’

web-browsing histories), and use their method to estimate demand for hotels. Related articles that

use data on consumers’ transactions and search to fit embeddings and estimate demand also include

Ruiz, Athey, and Blei (2020), Kumar, Eckles, and Aral (2020) and Gabel and Timoshenko (2022).
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An important distinction is that in these articles search or transactions data are informative about

products’ latent attributes and consumers’ preferences for those attributes.2 In our case, we use

the triplets data from the survey to learn about products’ latent attributes, but our estimates of

consumers’ preferences are driven by price and quantity data.3

We also view our approach as being similar in spirit to studies that employ auxiliary data to

augment existing demand estimation methodologies. Berry, Levinsohn, and Pakes (2004) is a

canonical study in which second-choice data from surveys are used to generate additional moments

in the estimation of demand for automobiles. Petrin (2002) is an early example of combining

demographic data with the usual price-and-quantity data to get richer estimates of substitution

patterns. More recently, Conlon, Mortimer, and Sarkis (2021) show how demand estimates can

be meaningfully improved by incorporating data on “second-choice diversion ratios,” in their case

obtained from experimentally generated stockouts. They even show that the information contained

in such data is powerful enough to enable estimation of a semi-parametric model that imposes much

lighter assumptions than conventional mixed logits.

2 Demand Estimation and Linear Embeddings

Consider a market, indexed by t, where firms offer a set Jt of differentiated products. Prices and

quantities for each good j are denoted as pjt and qjt. The demand system that maps prices into

quantitites depends on two key sets of primitives: consumers’ preferences and demographics; and the

product space. We assume that products can be represented by coordinates in the m-dimensional

Euclidean space; thus, the product space in market t is a set of vectors xt ≡ {x1t, . . . , xJt} ∈ Rm×Jt .
Hence, demand can be written as qjt = σj(pt;xt) for some function σj .

The product space xt is a key element of the empirical demand system under either estimation

approach mentioned above. In the characteristics space approach, demand is assumed to arise from

discrete choices of individual consumers, whose preferences are defined directly over the product

space coordinates. Thus, xjt enters consumers’ indirect utility for product j, interacted with

preference parameters. In the product space approach, the functions σj are estimated directly,

with functional form restrictions imposed (typically based on either convenience or a representative

consumer micro-foundation). The importance of the product space xt is that it can play a role

2
This is also the spirit of conjoint analysis in marketing.

3
An earlier empirical study that aims to recover both attributes and preferences from the same data is Goettler

and Shachar (2001). They use panel data on consumers’ television viewing choices in combination with a bliss-point
model of demand to simultaneously estimate television shows’ latent attributes along with consumers’ preferences
for those attributes. Though similar in spirit to our exercise, again the distinction is that we propose to compute an
embedding from auxiliary data before using it as an input to demand estimation.
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in disciplining the otherwise overabundant cross-elasticity parameters: as in Pinkse et al. (2002),

cross-elasticities of demand between products j and k can be modeled as a function of the distance

djk(xt) between the two products.

Within this framework, our method can be understood as a way of recovering xt from auxiliary data

as an embedding when product characteristics are not observable or are otherwise difficult to codify.

The next subsection provides an overview of embeddings, and the following sections summarize how

they can be incorporated into either of the two main approaches to demand estimation.

2.1 Product embeddings

In machine learning, an embedding is a low-dimensional, learned continuous vector representation

of discrete variables.4 In our case the discrete variables are just product indicators (“this is product

j”), and the objective is to assign locations (real-valued vectors) to these products in a way that

best satisfies the distance comparisons from a training dataset. As training data we use triplets—

i.e., comparisons of the form “product A is closer to B than it is to C”—obtained from a survey

that we describe in detail below in the context of our application.

Thus, given our set of products, we want to find a set of vectors x ≡ {x1, . . . , xJ} ∈ Rm×J that

represent the products in m-dimensional space, and assume that this corresponds to the product

space that enters the demand system. To learn the embedding from triplets data, we use the

t-distributed Stochastic Triplet Embedding (tSTE) algorithm proposed by Van Der Maaten and

Weinberger (2012). Letting T be the set of triplet comparisons in our data, each one indicating

that some product i is closer to j than it is to k, tSTE solves

max
x

∑
(i,j,k)∈T

ln(πijk) where πijk =

(
1 +

‖xi−xj‖
2

α

)−α+1
2

(
1 +

‖xi−xj‖
2

α

)−α+1
2

+
(

1 + ‖xi−xk‖
2

α

)−α+1
2

and α is the degrees of freedom parameter for the underlying Student-t kernel. To gain intuition

about this program, note that to fit one single triplet the embedding assigns equal coordinates to

products i and j, and infinitely far coordinates to products i and k, so that ln(πijk) diverges. As

4
Common uses of embeddings in machine learning include image classification and natural language processing.

For example, Google’s Word2Vec algorithm uses a neural network to assign vector representations to words so that the
cosine similarity between any two words’ vectors can be used as a measure of their semantic similarity. Embeddings
are also commonly used for visualizing high-dimensional data: collapsing to two or three dimensions allows for simple
plots in which clusters and other patterns are easy to see.
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we introduce further triplet comparisons, the solution is more intricate: the embedding has to fit

more complex patterns because the same products are involved in multiple comparisons.

In our empirical application to ready-to-eat breakfast cereal we have J = 86 products, so if we

choose to fit a 6-dimensional embedding (m = 6) then the above program is a numerical op-

timization problem with 516 free variables. It may thus seem remarkable that the problem is

computationally tractable, but ordinary gradient descent algorithms converge in a matter of min-

utes.5

2.2 Using embeddings in product space demand models

Although product-space demand models have a long tradition in applied economics, they are often

deemed unsuitable for IO applications. This is for one main reason: in even the simplest product-

space demand systems (e.g., linear or log-linear) the number of parameters grows exponentially

with the number of products, making them impractical in markets for differentiated goods.6

Various solutions to this problem have been devised;7 in this paper we adopt the method proposed

by Pinkse et al. (2002), who note that when competition among firms is spatial (i.e., it depends on

some topology of the product space) the parameters that govern substitution between products can

be projected on a flexible function of their distances. When products have an observable location

in the physical space, as in the application of Pinkse et al. (2002) or in Houde (2012), distances are

straightforward to measure. When spatial competition is only figurative, as in the case of Pinkse

and Slade (2004)’s study of the UK beer market, distance can instead be modeled as a function of

observable product characteristics.

Using an embedding computed from triplets data as described above, we can obtain a map of the

product space even when the products’ characteristics are difficult to observe or quantify, and the

distances between products in the embedding can be used in the framework of Pinkse et al. (2002).

In the empirical exercise below, we estimate with product-level data the log-linear demand model

ln(qjt) = αj + βjln(pjt) +
∑
k 6=j

f(djk; γ)ln(pkt) + εjt (1)

5
We used a version of the MATLAB code provided by Laurens Van der Maaten: https://lvdmaaten.github.

io/ste/Stochastic_Triplet_Embedding.html.
6
Other reasons include the difficulties in incorporating (and estimating) heterogeneity across consumers, and in

evaluating the demand for new products. See Gandhi and Nevo (2021) for more discussion.
7
For example, the researcher can restrict substitution across categories of goods by modeling choice as a multi-

stage budgeting problem (Gorman, 1959). Hausman, Leonard, and Zona (1994) use a model in this spirit based on
Deaton and Muellbauer (1980)’s Almost Ideal Demand System.
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where αj , βj and γ are parameters, and εjt is a consumer-product specific unobservable. The

function f is a real-valued transformation of the pairwise distances among products we compute

from the embedding; we discuss specific parameterizations of this function below.

The log-linear formulation we adopt is convenient because the coefficients on log prices can be

interpreted directly as elasticities: βj is the own-price elasticity for product j, and the cross-

elasticity between products j and k is a function of their distance djk. As a consequence, this

approach offers an obvious computational advantage: elasticities can be obtained from simple

linear or nonlinear regressions once a functional form for f has been chosen, and suitable identifying

assumptions have been made.8 This is in contrast with state-of-the art implementations of discrete-

choice demand models, which instead require computationally intensive nonlinear optimization

routines.

While the log-linear specification is convenient for showcasing our method, other specifications

of the model that incorporate distances are possible, and may be preferable depending on the

application at hand.9 First, from an econometric perspective, while the log-linear specification

models demand as a regression – with one structural error per equation – this is a strong restriction

that is violated in more flexible classes of models (Berry and Haile, 2021). Embeddings data could

however be used to discipline flexible models of inverse demand. Second, as the log-linear model

lacks economic structure, it may be preferable to use a specification corresponding to a micro-

founded demand system—to enable welfare analysis for the representative consumer, and/or to

enforce certain theoretical properties that might be important.10 With this in mind, we discuss in

Appendix A.2 an alternative specification based on the AIDS framework of Deaton and Muellbauer

(1980).

2.3 Using embeddings in characteristics space demand models

The natural way to use an embedding in a conventional logit-style demand model (like BLP) is

to treat the products’ coordinates in the embedding as characteristics (i.e., x variables in the

consumer’s indirect utility function). If an m-dimensional embedding is computed, then each of

the m dimensions can be treated as a characteristic. Because each dimension of the embedding

8
Identification and estimation of the model are discussed in Section 3.4 below.

9
For instance, Anderson and Vilcassim (2001) note that log-linear models have undesirable implications for retailer

category pricing.
10

For instance, Jaffe and Weyl (2010) establish that linear demand cannot be generated by discrete choice, and
Jaffe and Kominers (2012) establish that in fact any demand system that is additively separable in own price cannot
be generated by discrete choice. Of course, many markets that are modeled in a discrete-choice framework are not
truly based on single discrete choices by consumers. Even in the market for breakfast cereal, which we study in our
application, the true consumer decision problem is not simply which one of many cereals to buy, but which set of
cereals to buy, and how much of each.
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enters the model separately, this approach is more flexible than the one described above for the

product space model; it allows the data to determine which dimensions of the embedding are most

relevant to substitution.11

An obvious disadvantage of this approach is that these are latent characteristics without any au-

tomatic interpretation. However, we expect that in many cases the latent characteristics from a

crowd-sourced embedding will give a better overall description of the products and their relation-

ships to one another than could be obtained from observable characteristics. For example, the 2020

Toyota Camry and the 2020 MINI Clubman are very similar cars based on horsepower, fuel effi-

ciency, passenger volume, and curb weight;12 but we suspect consumers would not identify the two

cars as being near each other in product space. In our cereal application, our survey appropriately

indicates that Cocoa Pebbles are closer to Cocoa Krispies than Tootie Frooties, even though Tootie

Frooties are closer based on sugar, fiber, and calories from fat.

3 Empirical application

We illustrate our method by estimating demand for breakfast cereals. This product category

has been the subject of important studies on demand estimation (e.g., Nevo, 2001), and is well

understood by IO economists. As fairly rich data on cereals’ nutritional and other characteristics

are available, we will measure the usefulness of embeddings data in this category by comparing the

performance of models using embeddings data with that of models using standard characteristics

data.

We first describe the survey we used to collect the triplets data, and then summarize the embedding

that we compute from those data. We then provide details of the demand estimation, both for the

product space model and the characteristics space model. In each case we emphasize the comparison

to demand estimates from the same model without the use of an embedding—i.e., either using

pairwise product distances computed from observable characteristics in the product space model,

or using observable characteristics as the “x variables” in the discrete choice model.

11
In Section 4.2 below we discuss how to add similar flexibility to the log-linear product space model.

12
The HP, MPG, volume, and weight specifications for the Camry (Clubman) are 203 (189), 34 (29), 100 (93),

and 3241 (3235).
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3.1 Survey

To obtain the triplets data needed to learn the embedding of cereal products, we conducted an

online survey that asked respondents to make a series of product comparisons. Each page showed a

reference product along with eight comparison products, and the respondent was asked to indicate

which two were most similar to the reference product.13 Figure 1 shows a sample page from the

survey.

Figure 1: Sample survey page
4/4/2020 Cereal comparisons

https://www.ssc.wisc.edu/productsurveys/survey_product_e.php 1/2

Which two cereals on the right
are most similar to 

FROOT LOOPS?

SPECIAL K VANILLA
ALMOND KIX CINNAMON LIFE FIBER ONE HONEY

CLUSTERS

FRUITY CHEERIOS FROSTED
FLAKES COOKIE-CRISP COCOA PUFFS

Submit

The figure shows a sample page from our online survey.

Each comparison page thus yields 12 triplets: each of the 2 checked products is considered closer to

the reference product than the 6 unchecked products. Survey respondents were asked to complete

up to 20 comparison pages, so each respondent generated as many as 240 triplet comparisons.

The survey respondents included 456 undergraduate students at the University of Wisconsin and

220 workers from Amazon’s Mechanical Turk platform. Respondents were first asked to indicate

how often they eat cereal and how many different cereals they have tried (see Figure 7 in Appendix

B), and were then shown the sequence of comparison pages. We found only negligible differences

between the embeddings based on Turk workers’ responses vs. undergraduate students’ responses,

13
This approach to obtaining triplet comparisons is discussed in Wilber, Kwak, and Belongie (2014).
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so we pooled their responses when computing the embedding used in the analyses below. We

discarded data from a very small percentage of respondents who indicated no prior experience with

breakfast cereal, but this has little impact on the computed embedding. The final sample includes

107,820 triplet comparisons.

3.2 Computed embedding

For the demand estimation below we use 6-dimensional embeddings, but for purposes of visualiza-

tion Figure 2 shows a 2-dimensional embedding computed from the same triplets data. Even with

only two dimensions, the algorithm neatly organizes the products into reasonable clusters—for ex-

ample, sugary fruity cereals (clustered in the northeast region of the figure) and sugary chocolatey

cereals (clustered in the southeast).

Figure 2: Plot of two-dimensional embedding
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OATS & HONEY CLUSTERS
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2

 
 

 -4 0 4  
 The figure shows a two-dimensional embedding for ready-to-eat cereals estimated from the triplets data.

Based on distances from the 6-dimensional embedding, Table 1 lists the two nearest cereals to some

of the highest-revenue brands in our sample. In general the embedding appears to be correctly

identifying the most similar products. This should not be surprising, since identifying similar
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cereals is not difficult for a human, and our procedure is essentially synthesizing thousands of

comparisons made by humans.

Table 1: Examples of nearby brands based on 6-dimensional embedding

Brand Nearest brand Second-nearest brand

GM Honey Nut Cheerios GM Honey Nut Cheerios Medley Crunch Post Honey Graham Oh’s

Kellogg’s Frosted Flakes Malt-o-Meal Frosted Flakes Kellogg’s Corn Flakes

GM Cinammon Toast Crunch GM French Toast Crunch Malt-o-Meal Cinammon Toasters

Kellogg’s Froot Loops Malt-o-Meal Tootie Fruities Kellogg’s Apple Jacks

Kellogg’s Raisin Bran Kellogg’s Raisin Bran Crunch Post Raisin Bran

Kellogg’s Rice Krispies GM Kix Kellogg’s Corn Pops

GM Cocoa Puffs Kellogg’s Cocoa Krispies Post Cocoa Pebbles

The table reports, for the sample of ready-to-eat cereal brands in the first column, the nearest and second-nearest
brand in the 6-dimensional embedding.

Nevertheless, a natural question is whether the product distances that come from the survey are the

right distances for the purposes of demand estimation. It is important to note that the distances

themselves are not intended to be measures of substitution. Like ordinary product characteristics

in conventional discrete-choice methods, they are inputs into the demand estimation, which uses

price and quantity data to measure substitution patterns. Ideally we want the demand estimation

to use these inputs as flexibly as needed to deliver the true substitution patterns—much as allowing

for random coefficients on product characteristics allows for flexible substitution in the discrete-

choice framework—so it may not be enough to simply use Euclidean distances. For purposes of

illustrating the method, we proceed with Euclidean distances when estimating the product space

demand model below, but in Section 4.2 below we discuss how to incorporate the distances more

flexibly.

Our use of surveys to elicit information about products’ positions is reminiscent of conjoint analysis,

but our survey is intended to recover product attributes, not consumers’ preferences for those

attributes. In conjoint studies, survey respondents are asked to rate the desirability of each product

in a set of hypothetical offerings, and response data are then used to estimate preferences for

the products’ observed attributes. A common use of this technique is to optimize the design of

new products. Thus, conjoint analysis aims to learn consumers’ preferences for known product

attributes. By contrast, the purpose of our survey is merely to learn products’ latent attributes.

The embedding computed from the survey is then combined with revealed preference data (prices

and quantities from actual markets) to estimate preferences.
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3.3 Price and quantity data

Our data on prices and quantities come from Nielsen’s Retail Scanner data from the year 2017.

The unit of observation in our analysis is a UPC-store-week. Our sample of UPCs consists of the

highest-selling UPCs for the 86 brands that together account for 80% of total sales in the breakfast

cereal category. We focus on large markets with many competing products, limiting the sample

by (i) keeping product-market combinations which appear in all 52 weeks of the data, (ii) keeping

markets with at least 50 UPCs, and (iii) keeping UPCs which appear in at least 50 markets. This

results in a sample of 684,476 UPC-retailer-DMA-week observations, containing 43 retailer chains,

111 DMAs, and 189 unique retailer-DMA pairs across 52 weeks. Table 2 shows some basic summary

statistics for the 86 products in the sample, as well as for the 189 retailer-DMA pairs.

Table 2: Summary statistics

Cereal products (N=86)

Percentiles

Mean Std. Dev. .10 .50 .90

Average price 3.58 0.83 2.50 3.51 4.77

Average weekly sales 216.16 649.63 9 55 480

Number of stores 153.06 33.27 105 165 189

Retailer-DMA pairs (N=189)

Percentiles

Mean Std. Dev. .10 .50 .90

# of cereal products carried 69.65 8.20 57 72 79

Avg. weekly cereal revenues (000) 45.30 77.48 3.71 17.15 117.46

The table reports summary statistics for the 86 cereal UPCs and 189 retailer-DMA pairs we use for demand
estimation.

3.4 Log-linear demand estimates

To estimate demand in product space, we use the Nielsen price and quantity data to estimate the

linear model shown above in equation 1, using the embedding to compute the pairwise product

distances djk. Theory suggests that the function f(djk; γ) should be monotonically decreasing in

djk, since more distant products should have lower substitution. While functional forms such as

f(djk; γ) = γ
1+djk

easily incorporate this, there are important reasons to estimate f(djk; γ) flexibly.

First, it allows estimated substitution patterns to be driven more by the sales data than by the

embedding. Second, if we are unsure that the embedding is returning reasonable product distances,

a flexible distance function provides a method of validation. If the estimated distance function is

non-monotonic or flat, it suggests the embedding is doing a poor job of capturing product attributes

that are relevant to substitution.
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We experimented with various flexible approaches, including sieves and b-splines, but found that a

simple cubic polynomial in scaled distances worked well:

f(djk; γ) = γ0 + γ1djk + γ2d
2
jk + γ3d

3
jk with djk =

‖xj − xk‖
max{h,i} {‖xh − xi‖}

(2)

This is the functional form we used for the baseline results shown below; we return to discuss more

flexible distance metrics in Section 4.2.

As noted in Berry and Haile (2021), identification of demand for differentiated products is com-

plicated by two fundamental challenges: price endogeneity, and co-dependence of the demand of

each product on the latent demand shocks for all other products in the market. For the purpose of

showcasing the embeddings data in the simplest possible context, we impose strong assumptions to

set aside these challenges. In particular, we make the strong assumption that prices and product

distances are uncorrelated with the econometric unobservable εjt. Coupled with the restrictions

embedded in the specification of Equation (1), the assumption of exogenous prices allows us to

estimate the model with OLS, which is robust and computationally easy in large datasets.

The assumption of exogenous prices deserves further discussion, as price endogeneity in demand

estimation is typically a first-order concern, especially with cross-sectional data. To understand the

assumption that prices are exogenous, it is useful to discuss the sources of variation in εjt in our

data. As we observe for each product weekly sales data at the DMA-retailer level, we can control

via fixed effects for standard sources of variation in εjt that are correlated with prices. For instance,

unobserved product characteristics can be absorbed by product or brand fixed effects. Similarly,

unobserved promotional activity (such as feature promotions, typically planned quarterly) can be

captured by monthly or quarterly fixed effects. While exogenous prices and fixed effects are in

general not sufficient for identification of demand (Berry and Haile, 2021), we assume that any

residual variation in εjt across time and DMA-retailers is due to variables such as wholesale prices,

retailer strategy, or other retailer-specific costs that affect demand only through prices.

Alternatively, we can use instruments to identify the log-linear model. In our specification, we

need instruments not only for own price, but also for the prices of all other products. In principle,

Hausman or BLP instruments can be used in this context. But in a setting like ours with high-

frequency data, these instruments may not generate estimators with good sampling properties, as

argued by Rossi (2014). We proceed with the assumption that prices are exogenous and estimate

the model with OLS, and leave the discussion of an IV specification to Appendix A.1.14 We also

14
Hitsch, Hortacsu, and Lin (2019) use a high-frequency dataset similar to ours and also argue it is best to estimate

with OLS instead of instrumenting for price.
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note that, in cases where the researcher wants to estimate a log-linear (or similar) specification using

instruments, having distances from embeddings limits the number of parameters to be estimated

and thus makes it easier for the exogenous variation provided by the instruments to pin down the

parameters of the model.

In evaluating our results, the main comparison we want to make is to an alternative specification

that relies only on observable characteristics to compute pairwise product distances. That is, we

estimate the same log-linear model (1) but compute the product distances djk based on sugar

(grams per serving), fiber (grams per serving), and calories from fat (per serving).15 We use the

same cubic polynomial distance function as in (2), but also add a term to reflect differences in the

target demographic. Letting Gj ∈ {Kids, Adult, All Family} denote the category of cereal j, the

modified distance function is

f(djk; γ) = γ0 + γ1djk + γ2d
2
jk + γ3d

3
jk + γ41(Gj 6= Gk)

We expect γ4 to be negative, as two products in different categories should be less substitutable

than two in the same category.

Figure 3 summarizes the distributions of estimated own- and cross-price elasticities from the two

specifications. The left panel shows kernel density estimates of the own-price elasticities. These

estimates fall in a reasonable range (all negative, mostly between -1 and -4) and are very similar

between the two specifications. The similarity is not surprising, since own-price elasticity estimates

are driven almost entirely by the price and quantity data. Where the two models differ is in the

estimated cross-price elasticities, which depend on the estimated distance functions, shown in the

right panel of Figure 3. When product distances are computed from the embedding, this function

has the expected monotonically decreasing shape: nearby products are estimated to have larger

cross-price elasticities. When distances are computed from observable characteristics, the estimated

distance function has an implausible shape (non-monotonic) and is overall relatively flat, implying

that cross-price elasticities for the “nearest” products are hardly different from those for the most

distant products.

To illustrate the differences between the two specifications, Table 3 shows estimated cross-price

elasticities for two pairs of very similar cereals. The model that uses the embedding delivers

relatively high cross-elasticities between Honey Nut Cheerios and Honey Graham Oh!s (0.095) and

between Cocoa Pebbles and Cocoa Krispies (0.106), and relatively low cross-elasticities between

15
Data on cereals’ nutritional characteristics are collected from the Nutritionix database. We rescale the sugar,

fiber, and calorie measures to have mean zero and unit variance.
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Figure 3: Elasticity estimates for the log-linear model

(a) Density of Own-Price Elasticities
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Panel A shows the density of own-price elasticities βj for the log-linear model (Equation (1)). Panel B shows f(d)
of Equation (2) implied by the estimated γ parameters. The two parallel distance functions for the model based on
observed characteristics represent estimated distances for products in the same vs. different categories (Kids, Adult,
All Family).

dissimilar pairs (e.g., 0.045 between Honey Nut Cheerios and Cocoa Pebbles). By contrast, the

model that uses observed characteristics produces cross-elasticities in a narrow range (0.040 to 0.069

for the example products in the table), and the cross-elasticities are actually highest for dissimilar

products.

Table 3: Comparison of Elasticities between Similar Products – log-linear model

Cereal 1 2 3 4

Honey Nut Cheerios 1 -2.936 0.095 0.045 0.046

-2.903 0.040 0.065 0.060

Honey Graham Oh!s 2 0.095 -1.734 0.043 0.044

0.040 -1.653 0.041 0.043

Cocoa Pebbles 3 0.045 0.043 -3.301 0.106

0.065 0.041 -3.277 0.069

Cocoa Krispies 4 0.046 0.044 0.106 -2.503

0.060 0.043 0.069 -2.432

The table reports in each cell elasticities ejk corresponding to the row model j and the column model k. Cells
contain elasticities estimated with the log-linear model of Equation 1, with distances based either on the embedding
(on top) or on observed characteristics (on bottom).

In addition to generating more plausible elasticity estimates, the specification based on the embed-

ding also delivers a better fit of the data. When we use distances computed from the embedding,

the R2 from regression (1) is 0.838, vs. 0.837 if we use distances based on observed characteristics.

We can compare these to a baseline case where the distance function is simply a constant (meaning

that all pairs of products are estimated to have the same cross-price elasticity), for which the R2 is

0.834. On the one hand, these numbers imply that making cross-elasticities a function of product
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distances does little to improve the overall fit of the model. This is perhaps not surprising, since

most of the variation in sales quantities is likely induced by changes in products’ own prices. On

the other hand, the (small) gain from incorporating distances from the embedding is more than 1.5

times larger than the analogous gain from incorporating distances based on observed characteristics.

3.5 BLP demand estimates

To show how the embedding can be used in a characteristics space model, we estimate a standard

BLP demand system similar to Nevo (2001) and Backus et al. (2021). We refer the reader to

those articles for a full description of the micro-foundations of the model; in this section we briefly

describe the details of our implementation. Our specification includes market and product fixed

effects as variables that enter consumers’ indirect utility linearly. These fixed effects capture some

unobserved determinants of utility, as in Nevo (2001). Variables that have a non-linear impact

on demand are price, the constant, and product characteristics: either the product’s content of

sugar, fiber, calories from fat, and indicators for whether the cereal is for kids or all-family (in the

observable characteristics case), or the coordinates from a six-dimensional embedding calculated

from the survey triplets. For convenience we will refer to the former model as Characteristics BLP

and the latter as Embedding BLP. Aside from the different characteristics (x variables), everything

in the two specifications is identical.

The effect of non-linear variables on demand is modeled via random coefficients in the indirect

utility of a household i. These coefficients are βi ∼ N(β + ΠDi,Σ), where β and Π are vectors

of parameters, and Di are demographic characteristics of household i. We estimate the diagonal

elements in Σ corresponding to each non-linear variable.16 The model includes demographic inter-

actions ΠDi for prices and the nutritional variables (or embedding coordinates), with log household

income and an indicator for the presence of children in the household as the included demographic

characteristics.17 We estimate a log-normal income distribution with/without kids and a binomial

distribution for the presence of kids from the households in the Nielsen Consumer Panel data.

Values of Di correspond to 200 Halton draws per market from these distributions.

Instruments are needed to identify and estimate this model. To this aim, we create the quadratic

differentiation IVs of Gandhi and Houde (2020). For δjk(l) = xjl − xkl, given characteristic l and

16
In the Characteristics BLP some values of Σ were consistently estimated to be near zero, so in the final specifi-

cation we set them to zero to aid convergence.
17

We exclude the interaction of demographics and the constant as this largely drives outside shares, and we have
already calibrated market size at the market level.

16



products j, k, define:

zquadjt =

{∑
k

δ2jk(l),
∑
k

δjk(l)× δjk(`)

}
∀(l, `),

where l, ` are the non-linear characteristics (price and observable characteristics or embedding

coordinates). We then follow Backus et al. (2021) in interacting these variables with moments of

the demographics in each market, taking the 10th, 50th, and 90th percentile incomes for households

with and without children as well as the percentage of households with children. We construct thus

a total of 168 instruments as follows:

zjt = zquadjt ×
{

1,%kidst, inc10%,kt , inc50%,kt , inc90%,kt , inc10%,nkt , inc50%,nkt , inc90%,nkt

}
.

After estimating the model using 2-step GMM, we then utilize the approximation to the optimal

instruments of Reynaert and Verboven (2014) to refine the results.

To estimate a discrete-choice demand model we also need to specify market size. We follow Backus

et al. (2021) in estimating the market size as the number of individuals entering the store, using

variation in purchases of staple products (milk and eggs) as predictors. For retailer-DMA c and

week w, we estimate:

ln(qcw) = b1ln(qmilk
cw ) + b2ln(qeggscw ) + δc + εcw,

where qcw indicates the total quantity of cereals sold. We can thus estimate market size M̂ as18

ln(M̂cw) = λ ·
(
b̂1ln(qmilk

cw ) + b̂2ln(qeggscw ) + δ̂c

)
.

To keep computation manageable, we estimate this model on a subsample of our data. We limit

the sample successively to (i) the top 15 DMAs by market sales, (ii) the top 15 retailers within that

set of DMAs, and (iii) a random set of 20 weeks. Our final subsample for BLP estimation contains

32,385 observations, with 540 unique retailer-DMA-week markets.

Parameter estimates are reported in Table 4. The two specifications deliver similar results in most

respects: price coefficients are negative and significant; the interactions of price and income are posi-

tive and significant; and the random coefficients on the constant and on price are statistically signifi-

cant.19 More importantly, the implied elasticities are similar in magnitude and positively correlated:

the median own-price elasticity in the Characteristics BLP is -2.233, vs. -2.352 in the Embedding

18
As in Backus et al. (2021), we scale λ so the the average outside good share s0t = 0.723.

19
The standard errors reported in the table for the Embedding BLP specification do not account for sampling

error in the embedding coordinates; the embedding is simply treated as data. In future drafts we plan to bootstrap
the embedding coordinates (by resampling the triplets data) and compute adjusted standard errors.
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BLP;20 and the correlation between the two specifications’ own-price elasticities is 0.946. For

cross-price elasticities, the medians are 0.016 and 0.009 (respectively), and the correlation is 0.704.

Table 4: Estimated Coefficients of BLP Model

Parameter Variable Characteristics Embeddings

β Price −2.667 −3.093

(0.363) (0.301)

Σ Constant 3.766 4.193

(1.271) (0.453)

Price 0.820 0.946

(0.036) (0.037)

xj1 - 0.015

(0.192)

xj2 0.016 0.0003

(0.026) (0.401)

xj3 - 0.0002

(0.095)

xj4 0.090 0.828

(0.099) (0.194)

xj5 - 0.0003

(0.193)

xj6 - 1.572

(0.186)

Π Income Kids Income Kids

Price 0.121 −19.966 0.141 −0.096

(0.035) (0.00) (0.027) (0.064)

xj1 −0.169 −0.809 0.139 −0.081

(0.018) (0.00) (0.015) (0.021)

xj2 0.135 - 0.058 −0.087

(0.019) (0.027) (0.034)

xj3 0.003 - −0.139 0.072

(0.020) (0.023) (0.033)

xj4 0.060 - 0.029 −0.151

(0.140) (0.021) (0.039)

xj5 0.104 - 0.057 −0.107

(0.137) (0.018) (0.025)

xj6 - - −0.153 0.226

(0.033) (0.044)

Observations 32,385 32,385

Non-linear Variables Observables 6D Embedding

Median Own-price Elasticity −2.352 −2.233

Median Outside Diversion 0.150 0.311

The table reports estimates (on top) and standard errors (below) for the parameters of the BLP model. Columns
1 refer to the specification that uses data on product characteristics. Columns 2 refer to the specification that uses
embedding coordinates. Observable characteristics xj1 through xj5 refer to sugar, fiber, calories from fat, and indicators
for whether the cereal is for kids or an all-family cereal.

Table 5 shows own- and cross-price elasticity estimates for the same examples as in Table 3 above.

20
For comparison, Backus et al. (2021) get a median own-price elasticity of -2.665.
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As with the log-linear product space model, the specification that uses the embedding delivers more

plausible substitution patterns. For similar cereals, cross-elasticities from the Embedding BLP are

higher than from the Characteristics BLP (e.g. 0.216 vs. 0.158 for the cross-elasticity between Honey

Graham Oh!s and Honey Nut Cheerios); and for dissimilar cereals they are lower (e.g. 0.018 vs.

0.043 for the cross-elasticity between Honey Graham Oh!s and Cocoa Krispies). Both specifications

show some evidence of logit-style substitution patterns, with generally higher diversion to products

with high market shares (e.g. Honey Nut Cheerios), but much less so for the Embedding BLP.

Table 5: Comparison of Elasticities between Similar Products – BLP

Cereal 1 2 3 4

Honey Nut Cheerios 1 -2.378 0.034 0.014 0.017

-2.483 0.024 0.021 0.035

Honey Graham Oh!s 2 0.216 -2.798 0.030 0.018

0.158 -2.821 0.048 0.043

Cocoa Pebbles 3 0.072 0.016 -2.468 0.057

0.120 0.040 -2.581 0.031

Cocoa Krispies 4 0.053 0.012 0.040 -1.906

0.127 0.023 0.020 -2.338

The table reports in each cell elasticities ejk corresponding to the row model j and the column model k. Cells
contain elasticities from the Embedding BLP model on top, Characteristics BLP on bottom.

The Embedding BLP thus delivers elasticity estimates that are arguably more plausible—and at

the very least similar—to what we obtain from observed characteristics. We take this as an encour-

aging result, because it means we can obtain credible estimates of demand even when observable

characteristics are unavailable—a challenge we believe is inherent to many markets of interest.

4 Discussion and Extensions

4.1 Log-linear demand vs. BLP

For various reasons we noted above, mixed logit models like BLP have become the gold standard

for estimating rich demand systems in differentiated product markets. However, in some contexts—

most notably, in analyses of antitrust cases conducted by the DOJ or FTC—researchers need to

obtain demand estimates more simply and more quickly than is feasible within the BLP framework.

The results of our empirical exercise are encouraging in this regard. The log-linear (product space)

model that uses distances from the embedding delivers elasticity estimates (both own- and cross-

price) similar to those from BLP, and for some pairs of products the estimated cross-elasticities

from the log-linear model are arguably even more plausible than those from BLP in our application.

In other words, the simple log-linear model, augmented with crowd-sourced data on products’
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locations, does a good job of approximating the state of the art, even though it is substantially

easier to estimate.21

4.2 Incorporating more flexible distance metrics

In estimating the log-linear demand model described in Section 3.4, we calculated pairwise product

distances djk as scaled Euclidean distances that equally weight each dimension of the embedding.

A more flexible approach is to estimate demand regressions like Equation (1) in which different

dimensions of the embedding are allowed to have different weights. For instance, the substitutability

of two products may depend weakly on how close they are in the first dimension of the embedding,

while depending strongly on how close they are in the second dimension. Since the dimensions of

the embedding do not have natural interpretations, we may want to let the data determine which

dimensions matter most for substitution.22

We explore this idea by estimating the log-linear model of Equation (1) with the same cubic

polynomial distance function as in Equation (2), but defining pairwise product distances as

d̃jk =

[∑
m

ωm
(
xjm − xkm

)2] 1
2

, (3)

with ω1 (the weight on the first dimension) normalized to one, and the remaining ωm coefficients

left as parameters to be estimated for all other embedding dimensions m.

A notable disadvantage of this modification is that the regression is no longer linear in the param-

eters. Estimating with nonlinear least squares increases the computational burden, but can still be

done with a single line of code (e.g. using Stata’s nls command).

We find that the modified regression using distances as defined in Equation (3) yields similar elas-

ticity estimates and a meaningfully better fit. Parameter estimates for the baseline with Euclidean

distance and for the flexible distance specifications are reported in Table 6. Interestingly, the dis-

tances in two dimensions of the embedding are estimated to be somewhat more important than the

others (ω4 and ω5 are above 1.5), and one dimension is estimated to hardly matter at all (ω3 is near

zero). The median own- and cross-price elasticities from this model were −2.475 and 0.051 (com-

21
Estimates of the log-linear demand models took less than 20 seconds to compute on a Windows desktop. Esti-

mates of the BLP models took over 100 times longer, even when using the limited sample and running on a powerful
Linux server. But differences in computation time understate the overall difference in time and complexity between
the two approaches, since arriving at reliable BLP estimates requires considerable back-and-forth on things like start
values, scaling, etc., even with the aid of helpful software packages like pyBLP (Conlon and Gortmaker, 2020).

22
We thank Rob Porter for suggesting this enrichment of the model.
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pared to −2.486 and 0.051 from the baseline specification), and the correlations of the own- and

cross-price elasticities with those from our baseline specification were 0.997 and 0.931, respectively.

The more flexible model has an R2 of 0.980, compared with 0.838 for the baseline specification.

Table 6: Comparison of Baseline and Flexible Distance Results

Parameter Variable Baseline Flexible

(1) (2)

Estimate SE Estimate SE

γ d
0
jk 0.121 0.002 0.123 0.002

d
1
jk −0.263 0.013 -0.293 0.011

d
2
jk 0.346 0.026 0.440 0.023

d
3
jk −0.191 0.016 -0.257 0.015

ωm xj1 1 − 1 −−
xj2 1 − 0.983 0.052

xj3 1 − 0.000 0.019

xj4 1 − 1.791 0.102

xj5 1 − 1.592 0.083

xj6 1 − 0.994 0.055

Observations 684,476 684,476

R-squared 0.838 0.973

Median Own-Elast −2.486 −2.475

Median Cross-Elast 0.051 0.051

The table reports estimates of γ and ωm parameters from Equations (2) and (3). Column 1 refers to the baseline
specification of the model, which uses Euclidean distances in the f function. Column 2 refers to the flexible model
using the specification of Equation (3).

4.3 An embedding based on purchase correlations

The ideal scenario for a researcher aiming to estimate substitution patterns is to have price and

quantity data paired with actual data on consumers’ second (and third and fourth...) choices (see

e.g., Berry et al., 2004). Such “second-choice data” can be used to generate additional moments

that, when combined with the BLP moment conditions, discipline the estimates to better predict

actual patterns of substitution. While we do not have second-choice data for our empirical applica-

tion to cereal, we can borrow an idea from Atalay, Frost, Sorensen, Sullivan, and Zhu (2022) that

uses Nielsen’s Consumer Panel data to learn which products households consider to be substitutes.

Atalay et al. (2022) use the Consumer Panel data to determine sets of products that are ever

purchased by the same household across a large number of shopping trips, and then gauge the

substitutability of a given pair of products by how commonly the two products are purchased by

the same household. The underlying premise is that if individuals within each household have

preferences over products’ characteristics and these preferences are stable over time, then tempo-

rary changes in relative prices (e.g. due to periodic sales or stockouts) will induce consumers to
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occasionally purchase substitutes for their preferred product. In our case, if a household sometimes

purchases Frosted Flakes and sometimes purchases Froot Loops, but never purchases Raisin Bran,

the implication is that Froot Loops is a closer substitute to Frosted Flakes than Raisin Bran for

that household.

This idea is formalized by constructing a dissimilarity matrix D with 1−ρjk as its (j, k)-th element,

where ρjk is the pairwise purchase correlation between products j and k—i.e., a measure of how

likely a household is to have ever purchased product k conditional on having ever purchased product

j. An embedding can then be computed based on this dissimilarity matrix; we do this using the

tSNE algorithm Van der Maaten and Hinton (2008).23 A two-dimensional embedding is shown in

Figure 4. As with the embedding based on the survey triplets, it clusters similar products together,

such as sugary cereals in the northwest quadrant.

Figure 4: Two-dimensional embedding based on Consumer Panel
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 The figure shows a two-dimensional embedding for ready-to-eat cereals estimated from the Consumer Panel micro-

data.

If we estimate our product-space demand model using distances from this alternative embedding,

we get reasonably similar estimates of products’ own- and cross-price elasticities. The magnitudes

23
tSNE is analogous to tSTE, except that instead of triplets it uses feature data or (in our case) data on products’

distances or dissimilarities to compute the embedding.
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are similar,24 and more importantly they are positively correlated with the elasticities we estimate

using the embedding based on survey triplets. The correlation of the own-price elasticities is 0.987,

and of cross-price elasticities is 0.507.

Thus, the distances from the survey-based embedding deliver results similar to those that would

result from an embedding computed from micro-data on consumers’ actual choices. We interpret

this as further validation of our approach. When data that directly reflect consumers’ substitution

choices are available (e.g., second-choice survey data as in Grieco, Murry, and Yurukoglu (2021) or

household panel data as in Atalay et al. (2022)), it certainly makes sense to use those data. But in

the absence of such data our method is a viable alternative.

5 Conclusion

The demand estimation toolkit available to empirical researchers in industrial economics has seen

many advances in the last few decades. In particular, we have learned how to specify, identify

and estimate more and more flexible models. Complementary to this line of work, in this paper

we do not propose new modeling approaches but instead introduce a new source of data: triplet

comparisons obtained from an online survey. We use these data to compute an embedding that

represents the latent product space. To showcase the usefulness of the data, we use the embedding

in conjunction with data on prices and quantities to estimate two specifications: a simple log-linear

model of demand, and a BLP model. In an application to the ready-to-eat cereals market, our

method produces estimates that compare favorably with those obtained using standard data on

product characteristics.

Beyond our illustrative application, embeddings are particularly valuable in empirical settings where

characteristics are hard to observe or measure, thus making standard demand models hard to

estimate. In future work, we plan to use the method to estimate demand in an important digital

market: the market for mobile apps. Recovering credible substitution patterns in this market is

essential to answer policy-relevant questions about market power and the effects of consolidation,

but conventional discrete-choice methods are hard to apply because demand-relevant characteristics

are difficult to define and measure. Our method promises to be a useful alternative in this setting.

24
The mean own-price elasticity is -2.42 (identical to when we use the embedding based on survey triplets), and

the mean cross-price elasticity is 0.052 (compared to 0.053).
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Appendix A IV and AIDS specifications

We discuss in this appendix two important extensions to the log-linear specification describe in the

paper.

A.1 Instrumental Variable Estimation of the Log-linear Model

First, we present the results of a specification where we instrument for prices. Although we have

argued in Section 3.4 that our particular empirical context may suggest using OLS for estimation,

endogeneity of prices due to the simultaneous nature of market equilibrium outcomes, prices and

quantities, is a fundamental aspect of the identification of demand systems. Hence, it is useful

to discuss how to incorporate IV estimation in specifications that use embeddings data. For our

empirical environment, we choose to use Hausman instruments, i.e., the prices of the same goods in

other markets. Similar to Hausman and Leonard (2007), these instruments are valid in our context

of weekly data, as factors such as national advertising campaigns – which could endanger validity

– are controlled for by time fixed effects. Using instruments in unrestricted product-space demand

specifications with many goods may give rise to econometric difficulties, as many instruments that

vary independently are required to identify parameters (Gandhi and Nevo, 2021). The role of

distances in disciplining substitutions in our log-linear specification helps substantially: we only

require instruments to identify a limited number of parameters.

We present in Figure 5 the results from estimating the log-linear model in Equation (1) using

Hausman instruments for log price variables. The figure shows that IV estimates of own-price

elasticities are comparable to the OLS estimates, although they present more outliers (including a

few products with upward sloping demand). Median price elasticity is −2.590 for this specification,

close to the OLS result. Despite the restrictions on the demand system made possible by the use of

the embeddings data, the IV estimator may still struggle to precisely identify all parameters. The

distance function implied by the IV estimates has a similar shape to the one generated by the OLS

estimates, but is shifted upwards. Thus, IV estimates generate somewhat larger cross-elasticities in

this application – the median cross-price elasticity is 0.090. Overall, the demand system generated

by the IV estimates is economically similar to the OLS demand system.

A.2 AIDS Specification

As another important extension, we use embeddings data in a micro-founded product-space demand

specification: the AIDS model of Deaton and Muellbauer (1980). To do so, we first transform the
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Figure 5: Estimates for the IV Log-linear Model

(a) Density of Own-Price Elasticity Parameters
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Panel A shows the density of own-price elasticities βj for the log-linear model (Equation (1)). Panel b shows f(d) of
Equation (2) implied by the estimated γ parameters. OLS (IV) estimates are in blue (orange).

data to obtain products’ revenue shares as wj =
qjpj
e where e =

∑J
k=1 qkpk. The demand system

is:

wj = αj +
∑

k=1...J

βjkln(pk) + θjln

(
e

p

)
+ εj ,

where p is the Stone price index

ln(p) =
∑
j

w̃jln(pj) ,

and w̃j is the average revenue share of product j across markets. This demand system is derived

from an expenditure function that is a second-order approximation to any expenditure function

(Diewert, 1971), and the demand system itself is a first-order approximation to any demand system

(Deaton and Muellbauer, 1980).

Further economic properties that are normally imposed on this demand system include adding

up, so that
∑

i αi = 0,
∑

i β̃ij = 0, ∀j; homogeneity, or
∑

i β̃ji = 0,∀j; and symmetry, or βij =
1
2(β̃ij+β̃ji) = βji.An appealing feature of the AIDS demand system is that it allows the researcher to

model consumers’ choice problem in a hierarchical way—that is, as a multi-stage budgeting problem

(Gorman, 1959). Hence, the demand system described above can be interpreted as “conditional,”

describing demand for a product in a certain category conditional on the expenditure in that

category. However, that expenditure is also endogenous. To determine unconditional demand, one

needs to also model the “top-level” demand equation. To do so in a scanner data context, Hausman
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and Leonard (2007) propose a specification:

ln(Qt) = δ0t + Ztθ + δ1ln(pt) + λln(Et) + ηt

where Qt is total category quantity in a certain market, pt is the category price index, and Et is

total expenditure in market t across categories.

Incorporating distances from embeddings in the AIDS model enables us to restrict coefficients as

βij = f(dij), or βij = βif(dij). Hence, the main equation of the demand system becomes:

wj = αj + βownj ln(pj) + βcrossj

∑
k=1...J

f(djk)ln(pk) + θjln

(
e

p

)
+ εj , (4)

and the economic assumptions can be added to discipline parameters βj .

We estimate Equation (4) using the data of our empirical application. Figure 6 reports estimates

for this model. Overall, own-price elasticities are comparable to the log-linear specification, with a

median value of −2.781, but with a larger variance across products. While the distance function is

not comparable to the one estimated for the log-linear model due to different scale, it still comes

out monotonically decreasing.

Figure 6: Estimates for the AIDS Model

(a) Density of Own-Price Elasticity Parameters
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own
j for the AIDS model (Equation (4)). Panel b shows f(d) of

Equation (2) implied by the estimated γ parameters.
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Appendix B Additional figures

Figure 7: Survey intro page

Survey respondents completed this preliminary survey before seeing the product comparison pages.
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