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In this paper we develop methods to analyze the long run behavior of models
with multiple equilibria, and we apply them to a well known model of learning
in games. Our methods apply to discrete-time continuous-state stochastic models,
and as a particular application in we study a model of stochastic fictitious play.
We focus on a variant of this model in which agents’ payoffs are subject to random
shocks and they discount past observations exponentially. We analyze the behavior
of agents’ beliefs as the discount rate on past information becomes small but the
payoff shock variance remains fixed. We show that agents tend to be drawn toward
an equilibrium, but occasionally the stochastic shocks lead agents to endogenously
shift between equilibria. We then calculate the invariant distribution of players’
beliefs, and use it to determine the most likely outcome observed in long run. Our
application shows that by making some slight changes to a standard learning model,
we can derive an equilibrium selection criterion similar to stochastic evolutionary
models but with some important differences.

1. INTRODUCTION

Numerous economic models have multiple equilibria, which immediately raises the
question of how to select among equilibria. In this paper we develop methods to char-
acterize the long run behavior of discrete time models with multiple stable equilibria.
This allows us to characterize the distribution over equilibria and to determine which
among many possible equilibria is most likely to be observed in the long run. We apply
our methods to a well-known model of learning in games, showing how equilibrium
selection may result from a model of individual agent learning.

The problem of multiplicity is especially common in game theory, and there are a
host of criteria for selecting among equilibria. This paper follows much of the recent
literature in viewing the equilibrium of a game as resulting from a process of learning by
agents. Since many games have multiple Nash equilibria, a common question is which
equilibria would be likely outcomes of an adaptive process. For example, models of
learning have sought to determine which equilibria are stable under a specified learning
process. However, this criterion is not sufficient to determine which equilibrium is
the most plausible in models where there are multiple stable equilibria. In contrast,
evolutionary models such as Foster and Young (1990), Kandori, Mailath, and Rob
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(1993) and Young (1993) among others, have sought to determine which equilibria are
stable outcomes of a long run process of evolution in which occasional random shocks
perturb agents’ decisions. These models have provided sharp characterizations of the
most likely equilibrium observed in the long run, which is often unique, although it
typically depends on the details of the adjustment and perturbation process.

This paper provides a partial synthesis of the lines of research on learning and long
run equilibrium selection. We analyze the well-known stochastic fictitious play learning
model in which agents’ payoffs are subject to random shocks. We study a variant of the
model in which agents learn by placing a constant weight or “gain” on new information,
and so discount past observations exponentially. We analyze the behavior of agents’
beliefs as this discount rate gets small, but the shock variance is bounded away from
zero. We provide conditions which insure that agents’ beliefs converge to a stable
equilibrium in a distributional sense. However the persistence of randomness and the
nonvanishing weight on new information leads agents to continually revise their beliefs,
and leads to occasional transitions between equilibria. This allows us to determine a
stationary distribution of agents’ beliefs which asymptotically places all of its mass on
a (typically) unique long run equilibrium.

A main contribution of this paper is the development of applicable methods to
analyze the long run behavior of discrete-time continuous-state models with multiple
equilibria. In particular, we use techniques from large deviation theory to analyze
the rare events in which agents escape from a stable equilibrium. These methods
allow us to characterize transitions between equilibria by solving deterministic dynamic
control problems. We discuss below some related known results for continuous time
models and models with discrete state spaces. However, as many economic models are
naturally cast in discrete time and have continuous state spaces, our results may be
more broadly applicable beyond the specific model we consider here. Toward this end,
we formulate our key theoretical results in general terms, and then show how they
specialize in the case of fictitious play.

The stochastic fictitious play model that we analyze follows Fudenberg and Kreps
(1993). In the first part of the paper we consider the stability of equilibria under
learning. In previous analyses of this model, Fudenberg and Kreps (1993) showed that
in games with a unique Nash equilibrium in mixed strategies, play under this learning
scheme converges to the Nash equilibrium. Kaniovski and Young (1995) extended
these results to a general class of 2× 2 games, and Benaim and Hirsch (1999a) further
determined convergence criteria for a class of 2×2 games with N players, with the most
general results recently provided by Hofbauer and Sandholm (2002). Some related
results have been shown by Hofbauer and Hopkins (2000) and Benaim (2000) who
provide conditions for global convergence in certain classes of games. We summarize
and apply these stability results to our discounted stochastic fictitious play model for
two-player N×N games.1 As an example of stability analysis, we prove a conjecture by

1In a related model, Ellison and Fudenberg (2000) considered the local stability of equilibria in 3×3 games.
Their notion of purification differs from our specification of stochastic shocks, and their development is in
continuous time.



LONG RUN EQUILIBRIUM 3

Fudenberg and Kreps (1993) about the stability of the Shapley (1964) game, showing
that the unique Nash equilibrium is unstable for small noise.

After establishing stability of equilibria, we turn to the long run behavior of the
adaptive system induced by the players’ beliefs and actions. Under constant gain
learning the weight on current observations is always nonzero, and thus the ongoing
exogenous shocks insure that there is persistent randomness in the system. Although
agents’ beliefs converge to a stable equilibrium in a distributional sense, occasional
sequences of shocks lead agents to change their strategy choices and can induce oc-
casional “escapes” from a stable equilibrium. We formulate a deterministic control
problem that provides the (probabilistic) rate of transition between equilibria. Fol-
lowing Freidlin and Wentzell (1999), we then calculate the stationary distribution of
beliefs over equilibria, and show that typically this distribution is asymptotically con-
centrated on a unique equilibrium. Thus as time evolves the system will tend to spend
most of its time within a neighborhood of a particular equilibrium, which we term
the long run equilibrium.2 For general games, we provide expressions which must be
evaluated numerically in order to determine the long run equilibrium. However for
the important special case of 2 × 2 symmetric games, we establish that the long run
equilibrium is the risk dominant equilibrium. As we discuss below, this result agrees
with many in the literature. However for larger games our methods differ from existing
criteria, as we show in an example below.

As we noted, there are related results for discrete-state-space models such as Kan-
dori, Mailath, and Rob (1993) and especially Young (1993). These papers consider the
dynamics in which “mutations” or mistakes perturb agents’ choices and use arguments
similar to those in this paper to classify long run equilibria. Here we consider a discrete
time model with a continuous state space.3 Aside from this technical difference, there
is a difference in focus. Rather than perturbing agents’ decisions directly, we assume
that there are shocks to agents’ payoffs.4 This exogenous randomness interacts with
agents’ learning rules, and may lead them to switch strategies. The fact that agents’
choice is directed, instead of being completely random, changes the probabilities that
low payoff actions are played. This leads to some differences in long run equilib-
rium selection. In addition, most of the results in literature considered limits as the
stochastic perturbations decrease to zero. In our model, the environment remains fully
stochastic in the limit which may be more natural for many economic models which
are fundamentally stochastic. In formulating this type of limit, our results are broadly
similar to Binmore, Samuelson, and Vaughn (1995) and Boylan (1995). The paper
closest to our results, although in a somewhat different setting, is Benaim and Weibull
(2003). Our large deviation results are formally similar, but their paper analyzes large
population limits and considers a rather different adjustment process.

2We follow KMR in our terminology. Young (1993) uses the term “stochastically stable,”. We avoid this
terminology because we call equilibria “stable” if they are possible limits of the learning process.

3Foster and Young (1990) and Fudenberg and Harris (1992) present continuous-time continuous-state evo-
lutionary models which use techniques similar to this paper.

4Myatt and Wallace (1999) also consider equilibrium selection in a 2 × 2 model with stochastic payoff
shocks. They consider a different adjustment dynamic in which each period only one agent drawn from a
population can revise his strategy.
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The rest of the paper is organized as follows. In the next section we present the
model of stochastic fictitious play that we focus on. In Section 3, we analyze the
convergence of the beliefs, first presenting general convergence results from stochastic
approximation theory, and then applying them to fictitious play. In Section 4, we turn
to analyzing the escape problem and determining the long run equilibrium in a general
framework. First we present the results from large deviation theory which allow us
to compute the rates of escape from the different equilibria. These results provide a
characterization of the stationary distribution of beliefs, and therefore determine the
long run equilibrium. In Section 5, we analyze the stochastic fictitious play model
and determine the long run equilibrium in some example games. Section 6 concludes.
Technical assumptions and proofs of some results are collected in Appendix A.

2. DISCOUNTED STOCHASTIC FICTITIOUS PLAY

In this section we briefly present the model of discounted stochastic fictitious play.
Our model is a variation on the stochastic fictitious play model which was introduced
and first analyzed by Fudenberg and Kreps (1993), and further examined by Kaniovski
and Young (1995), Benaim and Hirsch (1999a), Hofbauer and Hopkins (2000), and
Hofbauer and Sandholm (2002). Stochastic fictitious play (SFP) introduces random
shocks to players’ payoffs in the spirit of the purification results of Harsanyi (1973)
to the original (deterministic) fictitious play model of Brown (1951) and Robinson
(1951). Under discounted SFP, instead of averaging evenly over the past observation
of their opponent’s play, agents discount past observations and put more weight on
more recent ones. Throughout we restrict our attention to two player games in which
the payoffs to each player are subject to stochastic shocks.5 The game is repeated a
possibly infinite number of times, but at each round each player treats the game as
static and myopically chooses a pure strategy best response. (The only dynamics come
through the evolution of beliefs.) The assumption of myopia can be motivated either
by assuming bounded rationality or as a result of random matching of two players
from a large population.

In the model, each player has the choice of N actions. Before an agent decides which
action to select, he observes a stochastic shock to his payoffs that is not observable
to his opponent. Formally, we assume player 1’s payoffs are aij + e1

it when he plays
i and player 2 plays j, for i, j = 1, .., N . Here aij represents the mean payoff and e1

it

is a mean zero random variable which is common to the player’s action (note that it
does not depend on j.) Analogously, player 2’s payoffs are given by bij + e2

it, so that
the payoff bi-matrix has entries (aij + e1

it, bji + e2
jt). Player 1 assesses probability θ2it

that player 2 plays action i at date t, with θ1it defined analogously. Define the (N ×1)
vectors ai = (ai1, ..., aiN)′ and θ2t = (θ21t, ..., θ2Nt)

′, again with the obvious analogues
bj and θ1t. For simplicity we assume:

5Hofbauer and Sandholm (2002) show that the same dynamics can result with deterministic perturbations.
However the stochastic nature is important for our characterization of long run equilibria.
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Assumption 2.1. The shocks ei
jt have the common continuous distribution func-

tion F , and are independent across actions, across agents, and over time:
ei
1t⊥ei

2t, e
1
jt⊥e2

jt, e
i
jt⊥ei

js, for i, j = 1, 2, t, s > 0, i 6= j, t 6= s.

We focus on the two special cases in which the errors are normally distributed with
mean zero and variance σ2 so that F (x) = Φ(x

σ
), and when the errors have a type-II

extreme value distribution with parameter λ, in which case F (x) = exp(− exp(−λx−
γ)). Here γ is a constant which insures that the mean is zero. Note that as σ → 0 and
λ → ∞ the shock distributions become more concentrated around zero. As we will
see, these two distributions give rise to probit and logit decision rules, respectively.
Some of our results hold for more general shock distributions, but these cases are the
most commonly used and they allow us to obtain explicit results.

At each date, each player plays a myopic pure strategy best response based on
his current beliefs, and then updates his beliefs about the other player’s behavior
based on his observations. Since the shocks have continuous distributions, there is
(almost surely) no loss in generality in considering only pure strategies, and so we use
“strategy” and “action” synonymously throughout. Thus, at date t, player 1 chooses
action i if it yields the highest subjectively expected payoff:

θ2t · ai + e1
it ≥ max

j 6=i

{
θ2t · aj + e1

jt

}
. (1)

(Any tie-breaking rule will suffice for the zero probability event that there are multiple
maximal actions.) We further specify that the players’ beliefs are updated according
to the following learning rule:

θ1it+1 = θ1it + ε
[
1{Player 1 plays i} − θ1it

]

θ2jt+1 = θ2jt + ε
[
1{Player 2 plays j} − θ2jt

]
, (2)

where 1{x} is an indicator function for the outcome x and ε is the “gain” which de-
termines the weight on current observations relative to the past. Our discounted SFP
model assumes that ε is a constant (hence it is known as a “constant gain” algorithm).

Previous analyses of stochastic fictitious play have focused on the case were ε de-
creases over time as 1/t.6 With this gain setting, the learning algorithm is just a proce-
dure for recursively estimating the empirical distribution of the opponent’s strategies.
Underlying this specification of the learning rule is the assumption that each agent
believes that his opponent is drawing his strategy choices from a fixed distribution.
As an agent gains more observations, he refines his estimates of this fixed underly-
ing distribution. Since he considers the opponent’s strategy distribution to be time
invariant, all draws from this distribution are weighted equally.

In the discounted case, the gain is constant, and each player recognizes the possibil-
ity that the other player’s beliefs may change over time, so observations are discounted

6However, as was pointed out by Ellison and Fudenberg (2000), the stability conditions are identical in this
case and in our discounted model.
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at an exponential rate. This implies that recent observations are given more weight
in estimation. This seems reasonable in our model because both agents are learning,
so that their strategies are not drawn from a fixed distribution. Due to this non-
stationarity of the system, a discounted algorithm may be more appropriate. Our
particular discounted rule is only optimal in some special cases, but it is clear that
in nonstationary environments, discounted rules may outperform rules which weight
observations equally. Moreover, a discounted specification was used by Cheung and
Friedman (1997) in their empirical analysis of experimental data on learning in games.
Their typical estimated discount rates were much less than one, and thus were consis-
tent with relatively large settings of the gain ε. In the context of a different learning
model, Sarin and Vahid (1999) also used a similar discounted specification under the
assumption that agents did not know whether the environment was stationary. By
placing a constant weight on current observations relative to the past, the discounted
learning rule allows beliefs to react to the persistent randomness in the system, and
this leads to our characterization of long run equilibria below.

3. STABILITY AND CONVERGENCE

In this section, we begin analysis of the agents’ beliefs by characterizing the sense
in which beliefs converge and identifying the limit sets. First, we state some general
convergence results from stochastic approximation theory, due to Kushner and Yin
(1997) and Benaim (1999), which are relevant for the current model. In particular,
we show that the limiting behavior of the learning rule is governed by a differential
equation. We then summarize known results on global convergence, and consider two
example games.

3.1. Convergence Results

In this section we summarize the results on the convergence of our discounted
stochastic fictitious play learning rule. We apply results on 2 × 2 games due to Fu-
denberg and Kreps (1993) for games with a unique mixed equilibrium, and Kaniovski
and Young (1995) and Benaim and Hirsch (1999a) for the general case. We also in-
clude some special cases of larger games due to Hofbauer and Hopkins (2000) for zero
sum and “partnership” games, and Benaim and Hirsch (1999b) and Benaim (2000)
for “cooperative” games.

We first rewrite the learning rule above in a more abstract form. First we stack the
beliefs of both players into a vector θ, all the shocks into a vector e and the “update”
terms into a function b. Then we can write the learning rule as:

θt+1 = θt + εb(θt, et). (3)

As in Assumption A1 above, we restrict the error process et to be i.i.d. This could be
weakened to allow for some forms of temporal dependence at a cost of complexity. We
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find it useful in the analysis to split b into its expected and martingale components:

b (θt) = Eb(θt, et),

vt = b(θt, et)− b (θt) .

Thus we have the alternate form of (3):

θt+1 = θt + εb (θt) + εvt. (4)

In Appendix A.1 we provide details on the calculation of b in our setting.
The convergence theorems below show that the limit behavior of (4) can be char-

acterized by a differential equation. We now provide some heuristic motivation for the
results. Note that we can re-write (4) as:

θt+1 − θt

ε
= b (θt) + vt. (5)

On the left side of (5), we have the difference between consecutive estimates, normal-
ized by the gain. We then interpolate the discrete time process onto a continuous time
scale, letting εt be the time between observations. Thus the estimates are θt and θt+1

are ε units of time apart, so that the left side of (5) is a finite-difference approximation
of a time derivative. As εt → 0, this approximation converges to the true time deriva-
tive. Turning to the right side of (5), the first term is a constant function of θt, while
the second term is the random difference between the new information in the latest
observation and its expectation. For small gain, agents average more evenly over the
past, and so this difference is likely to be small. In particular, below we apply a law
of large numbers to insure that vt → 0 as ε → 0. Together, these results imply that
as ε → 0, agents’ beliefs in (4) converge to the differential equation:

.

θ= b (θ) . (6)

The same ODE characterizes the limits of the undiscounted SFP learning rule which
has been studied in the literature. However the asymptotic results are slightly different.
In the usual case, the gain is shrinking to zero as t →∞. Thus we take the limit along
a sequence of iterations, and so for large t we can approximate the behavior of the
difference equation (4) by the differential equation (6). In the discounted case, the
gain is fixed along a given sequence as t increases. Therefore we look across sequences
of iterations, each of which is indexed by a strictly positive gain. These different limits
also lead to different convergence notions, reflecting the different laws of large numbers
we apply. In the usual case, beliefs typically converge with probability one, while in
the discounted case they only converge weakly.

The basis for our convergence results are provided by the following theorem con-
densed from results of Kushner and Yin (1997) and Benaim (1999). In Appendix A.2
we list the necessary assumptions for the theorem, along with more details about the
continuous time interpolation leading to (6). The theorem insures the convergence of
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the algorithms to an invariant set of the ODE (6). We emphasize the asymptotics by
including a superscript ε on the parameters when the gain is ε.

Theorem 3.1. Under Assumptions A.1 in Appendix A.2, as ε → 0, {θε
n} con-

verges weakly to a process that satisfies (6). Then if εn →∞ as ε → 0, {θε
n} converges

weakly to a path in an invariant set of (6).

The convergence theorems show agents’ beliefs converge to a limit set of the ODE
(6), but there may be many such sets. In particular, when there are multiple stable
equilibria which are limits of the learning rule the convergence results do not distin-
guish among them. However since the same stability criteria apply in the discounted
and undiscounted cases, we can use results from the literature which establish global
convergence to a limit point in some special games. We call an equilibrium point
θ = (θ1, θ2) of the ODE locally stable if the real parts of all the eigenvalues of the ma-
trix ∂B

∂θ
(θ) are strictly negative. A point is locally unstable if at least one eigenvalue

has strictly positive real part. We denote the set of locally stable points by Θ. Then
we have the following result.

Theorem 3.2. The invariant sets of the ODE (A.1) consist of points θ ∈ Θ if:

1. the game is 2× 2,
2. the game is zero sum,
3. the game is a partnership game: the payoff matrices (A,B) satisfy: x·Ay = y ·Bx

for all x and y, or

4. the game is cooperative: all off-diagonal elements of the Jacobian matrix ∂B(θ)
∂θ

are nonnegative.
Therefore in the LS case {θt} converges with probability one and in the CG case {θε

t}
converges weakly to a point in Θ.

Proof. Part 1 follows from Fudenberg and Kreps (1993) for a unique mixed equi-
librium and Kaniovski and Young (1995) for the general case. (See also Benaim and
Hirsch (1999a).) Parts 2 and 3 follow from Hofbauer and Hopkins (2000). Part 4 fol-

lows from Benaim and Hirsch (1999b) and Benaim (2000).

In the special cases covered by Theorem 3.2, the learning algorithm will converge
globally to a locally stable point. In games that do not satisfy these conditions, there
still is positive probability of convergence to a locally stable point under some addi-
tional recurrence conditions, or convergence may at least be assured from appropriate
initial conditions. A converse result (see Benaim and Hirsch (1999a)) also can be
used to show that beliefs will not converge to an equilibrium point which is locally
unstable. In Section 4 below, we show how infrequent transitions between equilibria
can lead to a particular stable equilibrium being the most likely outcome observed in
the long run. But first we turn to two examples of stability analysis are given in the
next section. The first illustrates the possibility of multiple stable equilibria, and the
second examines the well-known Shapley (1964) game.
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FIGURE 1. Stable rest points for a symmetric coordination game.

3.2. Stability Examples
3.2.1. A 2× 2 Coordination Game

This example illustrates the possibility of multiple stable equilibria by examining
a simple coordination game.

Example 3.1. Let the mean payoffs of a 2× 2 coordination game be given by:

Player 2
1 2

Player 1 1 3,3 2,0
2 0,2 4,4

With normal shocks, the ODEs governing convergence are then:

.

θi = Φ

(
5θj − 2

σ

)
− θi, i 6= j, i = 1, 2, (7)

where Φ is the standard normal cumulative distribution function. Figure 1 shows the
rest points for the ODE for this game (the logit case is very similar). The figure plots
Φ from the ODE (7), so that equilibria are given by the intersections of Φ with the
45-degree line, and the stable equilibria are points where Φ intersects the line from
above. For relatively large values of σ, the figure shows there is only one equilibrium,
but as σ → 0 there are three equilibria: two stable points in the neighborhood of the
pure strategy Nash equilibria (at 0 and 1), and one unstable point in the neighborhood
of the mixed strategy equilibrium (at 2/5 in this case). Thus Theorem 3.2 states that
the algorithm will converge to (a neighborhood of) one of the pure strategy equilibria,
but it is silent on which of these outcomes to expect. We revisit this example below,
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where we show that (in the CG case) one of the equilibria is more likely to be observed
in the long run.

3.2.2. The Shapley (1964) Game

In this section, we use basic stability analysis of (A.1) in order to formally prove
a conjecture of Fudenberg and Kreps’s (1993) about the Shapley (1964) game. In
discussing extensions of their results on 2 × 2 games, Fudenberg and Kreps (1993)
stated that, “We suspect, however, that convergence cannot be guaranteed for general
augmented games; we conjecture that an augmented version of Shapley’s example will
provide the desired counterexample, but we have not verified this.” In this section we
verify that the stochastic counterpart to Shapley’s example is unstable if the shocks
are small enough. Similar results for different games have been shown by Ellison and
Fudenberg (2000) and Benaim and Hirsch (1999a).

Example 3.2. The payoffs in the Shapley game are given by the following:

Player 2
1 2 3

1 1,0 0,0 0,1
Player 1 2 0,1 1,0 0,0

3 0,0 0,1 1,0

This game has a unique Nash equilibrium in which each player symmetrically plays
all three actions with equal probabilities. In this deterministic game, Shapley (1964)
proved that the fictitious play beliefs converge to a limit cycle in the three dimensional
simplex. For the stochastic version of the game, we augment the payoffs by introducing
the i.i.d. shocks as above. As we noted after Theorem 3.2, to show that an equilibrium
is unstable it suffices to show that at least one the eigenvalues of ∂B

∂θ
has positive real

part. The following theorem, with proof in the appendix, summarizes our results.

Theorem 3.3. In the normal case, for σ < 0.0821 and in the logit case for λ > 6
the unique mixed equilibrium θi =

(
1
3
, 1

3
, 1

3

)
, i = 1, 2 in Example 3.2 is unstable.

The calculations in the theorem also make clear that for large enough shocks, the
equilibrium will be (at least) locally stable. This is simply an application of the well
known result that for large enough noise, the center of the state space will be a stable
attractor. While the result may not be surprising, it is interesting to note that the
required noise in this example is not very large. For example, in the normal case the
ratio of the mean payoff to the shock standard deviation is 0.333/0.0821 = 4.06. Thus
this is not a case of the noise simply swamping the mean payoff, as the “z-statistic”
is highly significant. Thus it is possible that in stochastic games players can learn to
play equilibria, even when convergence fails in their deterministic counterparts.
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4. ESCAPE AND LONG RUN EQUILIBRIUM

In the previous section we provided conditions insuring that agents’ beliefs converge
to a stable equilibrium. But we noted that convergence analysis alone can not deter-
mine which of many stable equilibria will be most likely to be observed. In this section
we answer this question by characterizing the invariant distribution of beliefs in the
constant gain case, showing that the limit distribution typically places point mass on
a single stable equilibrium, which we call the long run equilibrium. Asymptotically as
the gain decreases (across sequences) agents’ beliefs tend to spend most of their time
within a small neighborhood of the long run equilibrium. We develop the results in
this section at a general level, as they may be applicable to many different discrete
time models of multiple equilibria and continuous state variables. This contrasts with
the results in the literature which have focused on continuous time models (Foster
and Young (1990), Fudenberg and Harris (1992)), or discrete state models (Kandori,
Mailath, and Rob (1993), Young (1993)). As many economic models are naturally for-
mulated in discrete time, our results have broad potential applications. In particular,
in the next section we apply our results to the stochastic fictitious play model.

On average, agents are drawn to a stable equilibrium, but occasional sequences of
exogenous shocks may alter their assessments and cause them to change their strate-
gies. This can cause the beliefs to “escape” from a stable equilibrium. These escape
dynamics drive our characterization of the long run equilibrium. In our analysis below,
we compute the probabilities that beliefs escape from one equilibrium to another, and
therefore we determine a Markov chain over the set of stable equilibria. The invariant
distribution of this chain determines the long run equilibrium.

To obtain the characterization of the long run equilibrium, we focus entirely on the
constant gain case. Above we showed that in the LS case beliefs converge along a
given sequence as time evolves. Thus the probability that the beliefs escape a stable
equilibrium goes to zero along the sequence, so that there is not sufficient “mixing” to
determine a unique limit distribution. The final outcome that results in the LS case
is therefore highly dependent on the initial condition and the particular realizations
of shocks, and thus is difficult to characterize a priori. However in the CG case, we
showed above that there is (weak) convergence in beliefs across sequences. This means
that along any given trajectory of beliefs with a fixed gain setting, the probability
that beliefs escape a given equilibrium remains nonzero. Thus we are able to deduce
a stationary distribution that characterizes beliefs and is independent of the initial
condition and specific shock realizations.

As an illustration of these issues, Figure 2 plots some simulated time paths from
the coordination game in Example 3.1. Recall there are two stable equilibria which are
in a neighborhood of the symmetric pure strategy profiles. In the top panel, we plot
two separate time paths of beliefs in the LS case, which start at the same initial value
(which we set at the unstable mixed equilibrium) but converge to the two different
stable equilibria. In the bottom panel, we plot a single time path in the CG case
(again initialized at the unstable equilibrium), in which the beliefs are first drawn
toward one of the equilibria and then escape to the other. The figure illustrates the
difficulty in characterizing outcomes in the LS case and is suggestive of the possibility
of characterizing the long run equilibrium in the CG case. In this section, we provide
formal results characterizing the long run equilibrium.
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FIGURE 2. Simulated time paths from a coordination game under least squares and constant gain
learning.

In particular, we use techniques from large deviation theory in order to analyze
the escape problem and calculate the stationary distribution in the CG case. We
know from our convergence theorems above that the beliefs converge to a limit point.
Therefore if we consider any event in which the beliefs start at a limit point and
get arbitrarily far it, we know that the event must have a probability converging to
zero. However, as we have seen in Figure 2, for nonzero gain settings we do observe
infrequent events where the beliefs move a substantial distance from a limit point.
In this section we first establish a large deviation principle, due to Kushner and Yin
(1997), which shows that the probability of these “escape” events decreases exponen-
tially in the gain size and characterizes this rate of decrease. We then adapt results
from Freidlin and Wentzell (1999) which use the large deviation principle to calculate
an invariant distribution of beliefs. Finally we discuss how to implement the large
deviation principle and calculate the stationary distribution, and therefore determine
the long run equilibrium.

4.1. A Large Deviation Principle
In this section, we present a large deviation principle due to Kushner and Yin

(1997), which draws on results by Dupuis and Kushner (1985, 1989). We present the
theorem using the general notation of Section 3.1 above, and in Section 5 below we
show how to implement this general setup in the fictitious play model. In this section
we assume that there is at least one point θ which is an invariant set for the ODE (A.1).
The theorem provides upper and lower bounds on probability of observing an event in
which agents’ beliefs are arbitrarily far from a limit point. In particular, the theorem
shows that once agents’ beliefs are in the neighborhood of a stable equilibrium they
remain there for an exponentially increasing period of time. In the next section we
use this theorem to characterize the transition probabilities between equilibria, which
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then allows us to compute the invariant distribution of beliefs. We now define some
terminology and then develop some of the functions which are needed in statement of
the theorem.

Definition 4.1. An escape path is a sequence of estimates that leave a compact
set D containing a limit point θ:

{θε
t}t

t=0 , θε
0 ∈ D (θ ∈ D), θε

t /∈ D for some t ≤ t < ∞.

Let Γε(D) be the set of all such escape paths. For each {θε
n} ∈ Γε(D), define

τ ε = ε inf
{
t : θ0 = θ, θε

t /∈ D
}

as the (first) exit time out of D. Note that by pre-multiplying by the gain ε we convert
the exit time to the continuous time scale. In this section we focus on identifying the
most likely or dominant escape paths in Γε(D), in the sense that as the gain ε converges
to zero, with probability approaching one all escapes occur along a dominant path.

Definition 4.2. Let τ ε({θε
t}) be the (first) exit time associated with escape path

{θε
t} ∈ Γε(D). An absolutely continuous trajectory ϕ is a dominant escape path if

ϕ(0) = θ, ϕ(τ ∗) ∈ ∂D, and for all ρ > 0:

lim
ε→0

Pr (∀t < τ ε({θε
t})/ε, ∃τ ′ ≤ τ ∗, |ϕ(τ ′)− θε

t | < ρ) = 1.

In order to calculate the probability that the beliefs escape a stable equilibrium,
we need to determine the dominant escape path that the beliefs follow away from that
equilibrium. In the theorem to follow, we characterize the dominant escape path as
the solution to a cost minimization problem, and the functions that we develop now
are the elements of that problem. First, the main function in our analysis is given by:

H(θ, α) = log E exp 〈α, b(θ, ξt)〉 (8)

=
〈
α, b(θ)

〉
+ log E exp 〈α, v〉 ,

where 〈·, ·〉denotes an inner product and the second equality uses equation (4). This
function is simply the logarithm of the moment generating function of the b(θ, ξn)
process, which is known as the cumulant generating function. Then we take the
Legendre transform of H :

L(θ, β) = sup
α

[〈α, β〉 −H(θ, α)] . (9)

In the theorem that follows, L plays the role of an the instantaneous cost function,
which “charges” paths that deviate from the stable point. With the flow cost L, we
define a cumulative cost S for time paths x = (x(s))T

0 :

S(T,x) =

∫ T

0

L(x(s),
·
x (s))ds.
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The H function is the Hamiltonian from a cost minimization problem, the dominant
escape path is the path that achieves the minimum, and the minimized cost func-
tion provides an estimate of the convergence rate. We spell out this Hamiltonian
interpretation of H more fully in Section 4.3 below.

We now state our large deviation theorem. Let Bx be the set of continuous functions
on a finite horizon [0, T ] taking values in the set D with initial condition x. Recall that
for a set Bx, B0

x denotes is interior while Bx denotes its closure. The large deviation
principle is given in the following theorem. The necessary assumptions are collected
in Assumptions A.2 in Appendix A, along with a brief discussion of a proof.

Theorem 4.1. Assume that Assumptions A.2 in Appendix A hold, that the gain
ε > 0 is constant, and that the shocks ξt are i.i.d. Let θε(s) be the piecewise linear
interpolation of {θε

t}. Then for a compact neighborhood D of θ and for T < ∞:

− inf
x∈B0

x

S(T,x) ≤ lim inf
ε→0

ε log P (θε(·)∈Bx ‖θε(0) = x) (10)

≤ lim sup
ε→0

ε log P (θε(·)∈Bx ‖θε(0) = x)

≤ − inf
x∈Bx

S(T,x).

The theorem shows that there is exponential decay (as ε → 0) in the probability
that the parameters will be far from their limit point. If the S function is continuous
in the size of the escape set, then the limits in (10) exist and the inequalities become
equalities. For example, if we define:

S = inf



x : x(0) = θ,
x(s) /∈ D for some s < T





S(s,x), (11)

from (10) we have that:

P (θε(s) /∈ D for some 0 < s ≤ T
∥∥θε(0) = θ ) = o

(
exp(−1

ε
S)

)
.

In addition, if we let τ ε be the time of first escape from the set D, (10) implies that
there exists some c0 such that for small ε:

Eτ ε ≈ c0 exp(
1

ε
S). (12)

Thus the mean escape times increase exponentially in 1
ε

as ε → 0. In the next section
we use (10) to calculate the transition probabilities between stable equilibria, which
leads to a characterization of the asymptotic invariant distribution.

4.2. The Invariant Distribution and Long Run Equilibrium
In this subsection we adapt a theorem from Freidlin and Wentzell (1999), henceforth

FW, to characterize the invariant distribution of beliefs. FW analyzed models of
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continuous time diffusions with small noise statistics. Although our development is
in discrete time, the large deviation principle of the previous section allows us to
extend the FW results to our present model. Kandori, Mailath, and Rob (1993) and
Young (1993) similarly adapted the FW analysis for discrete-time, discrete state space
models. (We focus on Young’s work which is more general and closer to our analysis.)
The model of this paper covers the intermediate case in which time is discrete but
the state space is continuous, and thus it is not surprising that the FW/Young results
extend to this case.

In the previous section we stated a large deviation principle for time paths which
start at a point near a stable equilibrium and escape a set containing the equilib-
rium. In this section, we modify this analysis slightly to calculate the probability of
transition between equilibria. Specifically, we now assume that there are K distinct
stable equilibria that are the only invariant sets of the ODE (A.1). Thus we have:

Θ =
{

θ
1
, ..., θ

K
}

. Since these are the only limit points of the learning process, to de-

duce the asymptotic stationary distribution we can restrict our attention to this finite
state space. Then, similar to the function S in (11) above, we define the following

minimized cost function for paths connecting the stable equilibria θ
i
and θ

j
:

Vij = inf



x : x(0) = θ
i
,

x(T ) = θ
j

for some T < ∞,

x(s) 6= θ
k
, k 6= i, j for s ∈ (0, T )





S(T,x). (13)

Above we showed that the asymptotic probability of escape was determined by the
function S, and FW show (Lemma 6.2.1) that the asymptotic transition probabilities
of the Markov chain on Θ are determined by V . Thus the invariant distribution of
beliefs can be computed from these transition probabilities, as we now establish. First,
following FW (p.177) and analogous to Young (1993), we define the following.

Definition 4.3. For a subset ω ⊂ Θ, a graph consisting of arrows θ
m → θ

n

(
θ

m ∈ Θ \ ω, θ
n ∈ Θ, n 6= m

)
is called a ω-graph if it satisfies the following:

(i) every point θ
m ∈ Θ \ ω is the initial point of exactly one arrow,

(ii) there are no closed cycles in the graph.

We denote the set of ω-graphs by G(ω), and define the following function:

Wi = min
g∈G

(
θ

i
)

∑

(θ
m→θ

n)∈g

Vmn. (14)

In words, this function looks at the sum of the costs V of transitions between equilibria

along all graphs anchored at θ
i
and chooses the minimizing graph. When there are only

two stable equilibria, there is a single graph for each equilibrium and thus Wi = Vji. In
cases with more stable equilibria, the number of graphs proliferates and the calculation
of W becomes slightly more complex. (See Young (1993) for an example.)
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Finally, let µε be the invariant measure of the beliefs {θε
n}. Then we have the

following theorem which identifies the long run equilibrium. It follows directly from
Theorem 6.4.1 of FW, with our Theorem 4.1 replacing FW Theorem 5.3.2. All of the
supporting lemmas required in the proof of the theorem can be seen to hold in the
current model.

Theorem 4.2. Assume that the conditions of Theorem 4.1 above hold, and that
invariant sets of the ODE A.1 are a finite set Θ of stable equilibria. Then for any
γ > 0 there exists a ρ > 0 such that the µε-measure of the ρ-neighborhood of the

equilibrium θ
i
is between:

exp

(
−ε

(
Wi −min

j
Wj ± γ

))

for sufficiently small ε.

The theorem implies that as ε → 0 the invariant measure of beliefs µε is concen-
trated in a small neighborhood of the equilibria that attain the minimum of W . If the
minimum is attained at a unique equilibrium, then the invariant distribution asymp-
totically places all of its mass within a small neighborhood of this equilibrium. These
results justify the following definition.

Definition 4.4. A long run equilibrium is a stable equilibrium θ that satisfies
θ ∈ arg minj Wj and so is in the support of the invariant distribution µε as ε → 0.

Thus, as the name suggests, a long run equilibrium is an outcome that is likely
to be observed in the long run evolution of the system. In particular, if there is a
unique long run equilibrium, then as the gain ε decreases we expect to observe the
agents’ beliefs spending an increasing fraction of time within a small neighborhood
of the long run equilibrium. Starting from an arbitrary initial point, by Theorem 3.1
we know that the beliefs are drawn to one of the stable equilibria. However as time
passes, by Theorem 4.1 we know that there is a nonzero probability that the beliefs will
eventually escape this equilibrium and be drawn to another. As this process continues
through time, Theorem 4.2 establishes that the beliefs eventually spend most of the
time near the long run equilibrium. It is in this sense that the long run equilibrium
provides a selection criterion for models with multiple stable equilibria. In order to
characterize the long run equilibrium, we then need to determine the escape paths
that lead from one equilibrium to another. In Theorem 4.1, and in the definition of V
in (13) above, we saw that the escape paths solve control problems, and in the next
section we further characterize the solutions to these control problems.

4.3. Characterizing the Long Run Equilibrium
Following Fleming and Soner (1993), we can find an analytical expression for the

differential equations that characterize the dominant escape paths between equilibria.
We need one further assumption, which is typically easy to verify in practice.
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Assumption 4.2. L is strictly convex in β and obeys a superlinear growth condition:

L(θ, β)

|β| → ∞ as |β| → ∞.

Under this assumption, we can characterize the solution of the calculus of variations
problem for the escape problem as the solution to appropriate differential equations.
This is just an application of Pontryagin’s maximum principle, with the resulting first
order conditions and adjoint equations. Notice that H and L are convex duals, so that
similar to (9) we have:

H(θ, α) = sup
β

[〈α, β〉 − L(θ, β)] .

The cost minimization problem which characterizes an escape path between equi-
libria and determines the value Vij can then be written:

V j(x) = inf
x

∫ T

0

L(x(s),
·
x (s))ds (15)

s.t. x(0) = x, x(T ) = θ
j

for some T < ∞. (16)

Then Vij = V j(θ
i
). The Hamiltonian for this problem with state x, co-state λ, and

control
·
x is:

−H(x, λ) = inf
·
x

{
L(x,

·
x) + λ· ·x

}
= −H(x, a), (17)

where a = −λ. Thus we see that the Hamiltonian is the H function that we defined
above. Further, by taking the appropriate derivatives of the Hamiltonian we see that
the dominant escape path can be found as the solution to the differential equations:

.
x (s) = Hα(x(s), a(s)) (18)
.
a (s) = −Hθ(x(s), a(s)),

subject to the boundary conditions (16).
Alternatively, following Fleming and Soner (1993) we can characterize the solution

of the cost-minimization problem (15)-(16) by dynamic programming methods.7 If we
let V j

x (x) = ∂V j(x)/∂x, we have that the value function V j(x) satisfies the following
Hamilton-Jacobi partial differential equation:

H(x,−V j
x (x)) = 0, (19)

where we’ve used (17).
We can solve the key cost minimization problem (15)-(16) using either the PDE

characterization in (19) or the ODE characterization in (18). In some special cases, the

7See also Dembo and Zeitouni (1998), Exercise 5.7.36.
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PDE characterization leads to explicit analytic results, as we show below. However for
general multidimensional games, we must rely on numerical solutions, and the ODE
characterization is easier to implement numerically. To see this, note that we can
solve (18) as a two-point boundary problem with the given initial condition for x and

a terminal condition x(T0) = θ
j

for some T0. This solution gives an escape path from

θ
i

to θ
j
. In other words, adapting notation, by solving the boundary value problem

we obtain a path that allows us to calculate:

Vij(T0) = inf{
x: x(0)=θ

i
, x(T0)=θ

j
}

∫ T0

0

L(x(s),
.
x (s))ds.

In order to find the dominant escape path, we minimize this function over T < ∞:

Vij = inf
T<∞

Vij(T ). (20)

Thus we have determined the asymptotic transition probabilities between equilibria.
By using these values to calculate the W function as in (14), we can then determine
the invariant distribution and find the long run equilibrium. In the special case where
there are two stable equilibria, we have already seen that the W function reduces to
V . We collect these results in the following corollary.

Corollary 4.1. Suppose there are two stable equilibria: Θ =
{

θ
1
, θ

2
}

. Then θ
1

is the long run equilibrium if V12 > V21, where Vij =
∫ T

0
L(x(s),

.
x (s))ds, L is defined

in (8) and (9), x(t) solves (18) subject to (16), and T is the minimizer in (20).

5. LONG RUN EQUILIBRIA IN FICTITIOUS PLAY

In this section we apply the results of the previous section to the model of stochastic
fictitious play. First we derive some of the key functions in the 2× 2 case and indicate
how to extend the results to higher dimensions. Under stochastic fictitious play, the
cost function L simplifies and has a natural interpretation. Then we establish that
in 2 × 2 symmetric games the long run equilibrium is the risk dominant equilibrium.
Finally, we turn to some illustrations of our results via numerical calculations and
simulations. We first illustrate the main theorem of this section on the coordination
game from Example 3.1. Here we see that it is extremely difficult to switch from the
risk dominant equilibrium to the other. Then we turn to a 3×3 coordination game due
to Young (1993), where our results differ from that paper. The persistent stochastic
nature of our model causes one of the equilibria to become unstable, which changes
the nature of the long run equilibrium results.

5.1. Application to Fictitious Play
Here we specialize the results of the previous section by explicitly deriving the key

functions in the fictitious play model. We first focus on the 2 × 2 case with two
stable equilibria and then discuss extensions to larger dimensions. Due to the discrete
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nature of the learning algorithm in (2), the H function is rather simple to compute. Let
θ = (θ1, θ2)

′ and recall the definitions of G1(θ2, i) and G2(θ1, j) from above. As we only
keep track of a single probability for each agent, we use the notation G1(θ2) = G1(θ2, 1)
and G2(θ1) = G2(θ2, 1). By the independence of the ei

jt we have that:

H(θ, α) = log E exp
(
α1

(
1{Player 1 plays 1} − θ1

))
+

log E exp
(
α2

(
1{Player 2 plays 1} − θ2

))

= − (α1θ1 + α2θ2) + log
[
1 + (exp (α1)− 1) G1(θ2)

]
(21)

+ log
[
1 + (exp (α2)− 1) G2(θ1)

]
.

Next, recall that the relative entropy of the discrete distribution p with respect to
the discrete distribution q is defined as:

I(p, q) =
N∑

i=1

pi log
pi

qi

.

Further, recall that I is nonnegative and equal to zero only when p = q. Then using
(9) and (21) we see that L takes the form:

L(θ, β) = I(β1 + θ1, G
1(θ2)) + I(β2 + θ2, G

2(θ1)). (22)

Recall that the “cumulative cost” S of a potential path from one equilibrium to another
is measured by the integral of L(θ, θ̇) along the path. The properties of the entropy
function ensure that the instantaneous cost is zero only along paths which follow the
ODEs (A.1) governing convergence. Therefore to escape an equilibrium requires the
beliefs to overcome the force pushing them back toward the equilibrium, which entails
a cost. Further, the dominant escape paths are those paths between stable equilibria
that minimize the cumulative relative entropy between what an agent believes and
what his opponent believes about him.

To find the dominant escape path, we then solve the control problem (15) for each
of the two equilibrium transitions. Corollary 4.1 implies the long run equilibrium is the

equilibrium θ
i
with the larger value of Vij. By Theorem 4.1 above, the value of −Vij

provides an estimate of the log probability that the beliefs will escape from θ
i
to θ

j
,

and so the long run equilibrium is the equilibrium with the lower escape probability.
In the next section we use the PDE characterization in (19) to deduce that in

symmetric 2 × 2 games the long run equilibrium is the risk dominant equilibrium.
However to obtain quantitative results on the speed of equilibrium transitions, we can
solve the problem using the ODE characterization in (18). The differential equations
which determine the evolution of the states and co-states along the escape path are
then given by:

.

θi = Hαi
(θ, α) = −θi +

exp (αi) Gi (θj)

1 + (exp (αi)− 1) Gi (θj)
(23)

.
αj = −Hθj

(θ, α) = αj −
(exp (αi)− 1)

∂Gi(θj)

∂θj

1 + (exp (αi)− 1) Gi (θj)
,
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for i, j = 1, 2, i 6= j. We solve these differential equations subject to the boundary
conditions (16).

In order to determine the long run equilibrium in larger games, we simply extend
this analysis. In these cases the PDE characterization becomes more difficult, so we
use the ODE characterization to obtain numerical results. The calculation of the H
function is straightforward, and simply involves replacing Gi(θ) by its multidimen-
sional counterpart in an extension of (21). The differential equations that characterize
the escape paths are also the obvious corollaries of (23), with the complications that
the derivatives of the Gi are more difficult to evaluate, and that the Hθ derivatives
have additional cross-effect terms.

5.2. Long Run Equilibrium in Symmetric 2 × 2 Games
In this section we analyze the important special case of symmetric 2 × 2 games.

Here we show that the long run equilibrium is the risk dominant equilibrium. As we
discuss below, this result is the same as several other evolutionary selection criteria
in the literature. However in Section 5.4, we show that this equivalence does not
necessarily extend beyond the 2× 2 case.

We now suppose that the payoff matrices A and B are identical, which clearly
implies that player’s beliefs are driven by identical dynamics. Therefore, since the
equilibria are symmetric, we can focus on a single state variable θ = θ1 = θ2, driven by
the function G(θ) = G1(θ) = G2(θ). We consider the only relevant case where there

are three (perturbed) equilibria, two stable (θ
1
, θ

2
) and one unstable (θ̃). Without loss

of generality, we suppose that the equilibria can be ordered as:

0 ≤ θ
2

< θ̃ <
1

2
< θ

1 ≤ 1. (24)

Therefore θ
1

is the risk-dominant equilibrium and correspondingly has the larger basin

of attraction. From (A.1) we see that if we initialize the mean dynamics at θ < θ̃, we

get θ(t) → θ
2

and vice versa.
The main theorem of this section is based on the analysis of the cost minimization

problem (15) and its PDE characterization (19). In the special case of this section,
by using (21), the PDE (19) determining the value functions V 1 and V 2 reduces to an
ODE:

−V j
x (x)x = log

[
1 +

(
exp

(−V j
x (x)

)− 1
)
G(x)

]
, j = 1, 2. (25)

Even in this relatively simple setting, it is typically not possible to determine an ana-
lytic solution for the ODE (25). However we can use the ODE to establish properties
of the two solutions. The proof of the following theorem relies on showing that deriva-
tive of V 1(x) is uniformly greater than V 2(x) over the relevant regions defined by (24).

When coupled with the larger basin of attraction of θ
1
, by Corollary 4.1 this implies

that θ
1

is the long run equilibrium. The proof is given in Appendix A.5.

Theorem 5.1. In symmetric 2 × 2 games, the long run equilibrium is the risk
dominant equilibrium.
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Our results in this section agree with the equilibrium selection criteria in Young
(1993) and Kandori, Mailath, and Rob (1993). In fact our analysis agrees with all of the
selection criteria discussed by Kim (1996). The different criteria have different dynamic
adjustment processes, but in each case the risk dominant equilibrium has the largest
basin of attraction. In the discrete state models of Young and KMR, mutations are of a
fixed size. Therefore a larger basin means that more needed mutations to escape to the
equilibrium, which means that escape is less likely. In our setting, payoff perturbations
are of varying size, so there is a trade-off between receiving a few large shocks and an
accumulation of small shocks. Thus although we cannot simply count mutations, the
same intuition results. To escape from the risk dominant equilibrium requires a “more
unlikely” string of perturbations. Kim (1996) showed that the equivalence between
different selection criteria in the 2×2 case does not extend to multi-player games, and
we show below that for larger two player games the criteria differ. But first we give a
quantitative illustration of our results.

5.3. A 2 × 2 Example: A Coordination Game
As an example of our analysis, we return to the symmetric coordination game from

Example 3.1 above. As above, we focus on the cases when the shocks are normally
distributed with standard deviation σ or have extreme value distribution with param-
eter λ. The three rest points and escape probabilities for the two stable equilibria with
different settings of σ and λ are given in Table 1 below.

TABLE 1.

Long run equilibrium in a 2× 2 coordination game.

Model Rest Points −Log Prob.

θ
1
i1 θ̃i1 θ

2
i1 V12 V21

σ = 1.0 0.033 0.288 0.998 0.279 3.712

σ = 0.7 0.002 0.344 1 1.432 6.699

σ = 0.5 0 0.366 1 3.168 11.681

λ = 5 0 0.381 1 2.023 5.729

λ = 10 0 0.391 1 4.515 11.663

λ = 20 0 0.396 1 9.280 22.296

From the table, we first see that (as in Figure 1) as the variance of the shocks
decreases, the rest points become closer to the Nash equilibria. We also see that, in

accord with Theorem 5.1, the log escape probability is much lower at θ
2

than θ
1
, and

thus θ
2
is the long run equilibrium. This means that if agents start out coordinating on

action 1, which is the Pareto-inferior equilibrium, then the probability that they will
switch to the Pareto optimal equilibrium decays rapidly to zero as the gain decreases.
In contrast, although the probability of switching from the Pareto superior equilibrium
to the inferior one also declines to zero, for any given nonzero gain setting there is a
much greater chance of switching in this direction. Thus we expect that, in the long
run, the equilibrium in which both players play action 1 with probability near one will
be observed much more frequently than the other stable equilibrium.

We illustrate the evolution of beliefs in Figure 3, which shows a histogram of beliefs
from 1000 samples from the normal case with σ = 1. Each sample was initialized
at the unstable equilibrium and was run for 5000 time periods. Just as our analysis
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FIGURE 3. Long run evolution of beliefs in a 2× 2 coordination game.

suggests, the beliefs are initially drawn to a neighborhood of one of the pure strategy

equilibria. After 100 periods, the samples are nearly equally divided between θ
1

and

θ
2
. However as time goes by, the beliefs eventually escape θ

1
and are drawn to θ

2
,

which they have a very low probability of escaping. By the time we reach period 5000

nearly the entire mass of the distribution is concentrated near θ
2
. Thus in the long

run evolution of the game, we see that the beliefs eventually converge to the long run
equilibrium and stay there for an increasingly long period of time.

5.4. Long Run Equilibrium in a 3 × 3 Game
We next present an example that illustrates a difference between our model and

Young’s (1993) selection criteria. In this example, Young’s criterion selects a Pareto
inferior (and non-risk-dominant) equilibrium in a coordination game, while our cri-
terion selects the Pareto optimal (and risk dominant) equilibrium. Young’s criterion
supports its choice by transitions through a third coordination equilibrium that yields
the lowest payoffs, but in our model this equilibrium is very seldom visited. In fact,
when the payoff shocks are large enough (but still relatively small in magnitude), this
worst equilibrium disappears. For small enough shocks, the equilibrium emerges but
has a very small basin of attraction. We find that it is difficult to escape to this
equilibrium and very easy to escape from it. The difference between the two models,
as we discuss further below, deals with the nature of the perturbations. Rather than
“mutations” causing agents to randomly choose an action, agents in our model choose
the best action based on the realizations of their perturbed payoffs. Thus in order to
play an action with a low expected payoff, an agent must observe a sequence of large
shocks which make that action look more favorable. The dependence of the perturbed
choice probabilities on the payoffs drives the difference in the results.

Our analysis in this section is necessarily numerical. Unlike our analysis of stability
above, we cannot provide precise analytic characterizations of the equilibria and their
stability. In those examples, the expected payoffs of all strategies were symmetric,
which greatly simplified the analysis. In this section, we will examine games whose
strategies have different mean payoffs. We can still determine analytically the set of
equilibria in the limit as the noise goes to zero, but for any strictly positive shock
variance we must determine the perturbed equilibria and their stability properties
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numerically.8 Furthermore, unlike the previous example, the game that we analyze
here does not fall into the subset of games covered by Theorem 3.2. Thus we cannot
be assured that the limit sets of the ODE consist only of stable points. However
numerical analysis of the differential equation suggests that this is so (see Figure 4
below), and so we proceed under this assumption. We now turn to computing the long
run equilibrium in an example coordination game due to Young (1993).

Example 5.1. Let the expected payoffs in a 3× 3 coordination game be given by:

Player 2
1 2 3

1 6,6 0,5 0,0
Player 1 2 5,0 7,7 5,5

3 0,0 5,5 8,8

In the augmented form of this game, it is easy to show that in the limit as the noise
gets small, all of the coordination equilibria are stable. This holds for both the normal
and logit cases. Therefore for small enough shocks, the set of stable equilibria is:

Θ =
{

θ
1
, θ

2
, θ

3
}

, where θ
1

i = (1, 0, 0) , θ
2

i = (0, 1, 0) , θ
3

i = (0, 0, 1) .

However numerical results show that for a range of strictly positive shock variances

there are only two stable equilibria, θ
2

and θ
3
. This is particularly the relevant in

the normal case. Recall that for an equilibrium, B(θ) = 0 so ‖B(θ)‖ is a measure
of the distance an arbitrary strategy is from being an equilibrium. For example,

for σ = 0.3 we found
∥∥∥B(θ

1
)
∥∥∥ = 0.013,

∥∥∥B(θ
2
)
∥∥∥ = 1.2 × 10−6, and

∥∥∥B(θ
3
)
∥∥∥ =

7.68 × 10−13. The values for equilibria 2 and 3 are very small, and we were able to
find perturbed equilibria near the pure equilibria. However we could find no such

perturbed equilibrium near θ
1

for this noise specification.
For the logit case, for the parameters we considered we were able to find three

perturbed equilibria close to the pure equilibria. As an illustration, Figure 4 plots the
basins of attraction for the different equilibria in the logit case for different values of
λ. In the figure the equilibria are located at the corners of the triangle. The basins of
attraction are the shaded areas around the equilibria, which we determined by solving
the ODE (A.1) numerically. Here we see that for the larger value of the noise (λ = 5),

the basin of attraction of θ
1

(the shaded area in the upper left of the figure) is very
small and that it increases slightly as the noise decreases. To preview the results to

follow, the figure suggests that it should be relatively easy to escape from θ
1
, and

therefore that the results rely mainly on comparing θ
2

and θ
3
. We see below that we

obtain similar results in both the normal and logit cases, indicating that this worst
coordination equilibrium plays a relatively small role in our analysis.

8This amounts to calculating the integrals in B
(
θ
)

and the eigenvalues of ∂B
∂θ

(θ), which are simple numeric
calculations.
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FIGURE 4. The basins of attraction of the equilibria in Example 5.1 in the logit case for different
specifications of the shocks.

We then solve the cost minimization problems as described above in order to de-
termine the long run equilibrium. In particular, we consider the normal case in which

there are only two stable equilibria (θ
2

and θ
3
), and the logit case in which all three

equilibria are stable. Table 2 summarizes our results. The table lists the noise spec-
ifications and the log transition probabilities between each of the equilibria. For the
normal cases, the stochastic nature of the payoffs rules out one of the potential pure
strategy equilibria, we can apply Corollary 4.1. Thus the long run equilibrium is the
stable equilibrium with the higher value of V and so the lower escape probability. The
table shows that the long run equilibrium in this example is the Pareto dominant equi-

librium θ
3
. For the logit cases, we must find the minimum cost graph as in Theorem

4.2 above. From the table, it is easy to see that the minimizing graph is anchored at

θ
3
, and involves the arrows θ

1 → θ
2 → θ

3
for a total cost of W3 = V12 + V23. Thus

again we find that the long run equilibrium is the risk dominant and Pareto optimal

equilibrium θ
3
.

TABLE 2.

Long run equilibrium in a 3× 3 coordination game.

Model −Log Escape Prob.

V12 V13 V21 V23 V31 V32

σ = 0.5 0 - - 2.4 - 7.4

σ = 0.3 0 - - 5.0 - 15.8

λ = 5 0.14 3.4 27.0 2.3 24.7 5.9

λ = 10 0.78 7.1 52.8 4.6 48.3 11.7

Similar to the 2× 2 case, we then verify these results by tracking the evolution of
beliefs over time in some simulations. In Figure 5 we plot the distribution of beliefs
from 1000 simulated time paths at different dates in the normal case with σ = 0.5.
Here we use the gain setting ε = 0.3, and initialize belief randomly on the simplex. In
the top panel we plot the second element θ12 of the belief vector, and the bottom panel
plots the distribution of third element θ13. We see that initially the beliefs are drawn

to one of the stable equilibria, which in our simulations initially favors θ
2
. However
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FIGURE 5. Long run evolution of beliefs in a 3× 3 coordination game.

over time the beliefs eventually escape this equilibrium and are drawn to the long run

equilibrium θ
3
.

As we’ve noted, in this example our selection criterion differs from Young’s and
agrees with Pareto and risk dominance criteria. It is easy to check that in this exam-

ple, the equilibrium θ
1

risk dominates the other two coordination equilibria in pairwise
comparisons, and therefore it is the risk dominant equilibrium. However, Young’s cri-

terion selects the equilibrium θ
2
, which relies on transitions through the worst equilib-

rium θ
1
. For the normal cases we considered, the stochastic shocks insure that agents

never converge to this coordination equilibrium with the lowest payoffs. By ruling out
this equilibrium, we are then essentially left with a 2× 2 pure coordination game, and
we saw an example above in which our criterion selects a risk dominant equilibrium in
such a game. The modifier essentially is important in this statement because we do
not restrict the players to only play the two strategies. However we rule out one of the
equilibria as a possible limit point, and so calculate the transitions between the two
pure strategy equilibria. In our analysis, the third strategy was never chosen along
these transitions. For any nonzero gain, the third strategy may be chosen along the
path of play, but the frequency it is played converges to zero.

This intuition also carries over to the logit cases, where all three of the equilibria
are stable. As we saw in Figure 4, the basin of attraction of the worst coordination

equilibrium θ
1

is very small. Table 2 shows that is very easy to escape this equilibrium

and converge to θ
2
, as V12 is very low. Thus the minimum graph problem essentially

reduces to comparing V23 and V32 as in the normal case.
As discussed above, the differences between our model and the model of Young

(1993) rely on the nature of the perturbations. In Young’s paper, a perturbation or
mistake leads agents to choose a random action, with each alternative being equally
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likely. Thus in his analysis of this game, the easiest way to transit from θ
3

to θ
2

is to have an opponent choose action 1 by mistake a sufficient number of times. In
our model, the perturbations hit agents’ payoffs, and agents select the best option

after observing the realizations of shocks. Starting at θ
3
, an agent assesses very low

expected payoffs to action 1 relative to action 2. Therefore extremely large shocks
are necessary for the agent to choose this action. Much more likely is the case that
action 2 becomes viewed more preferably. Thus in our model, the transitions between
equilibria are direct. The choice probabilities in our model directly reflect the payoffs,
instead of there being a chance that agents choose a completely random action. This
directed choice has important consequences for equilibrium selection.

6. CONCLUSION

In this paper we have presented a general method for analyzing models with multiple
stable equilibria, and have applied it to the stochastic fictitious play model of learning
in games. Our methods focus on individual agents, who myopically optimize based
on their beliefs. By introducing stochastic shocks to their payoffs, and assuming
that agents discount past observations when they learn, we derived criteria for long
run equilibrium selection. In particular, we showed that the stochastic nature of
our model along with the directed choice drive our results. Large enough stochastic
shocks may rule out cycling that prevents convergence in some games, and thus can
lead to stability of mixed equilibria. In addition, the stochastic shocks rule out certain
equilibria which drive some of the results in the evolutionary literature. Further, the
fact that agents choose actions to maximize perturbed payoffs, instead of occasionally
choosing completely random actions, means that very large shocks are needed to play
actions with very low payoffs. This directly affects the probabilities that equilibria are
played in the long run. Therefore although our methods are related to existing results
in the learning and evolutionary game theory literature, they are based on different
principles and lead to some different results.

The main analytic results in this paper were developed at a general level, and
our methods have broad potential applications for economic models with multiple
equilibria. Many such models are naturally cast in the discrete-time continuous state
stochastic framework and can now be analyzed using our methods. The fundamental
point of our results is that in models with a multiplicity of equilibria, not all equilibria
are equal. If agents must learn the structure of the economy, then only limit points
of their learning rules will result. Even among those equilibria which are stable under
learning, the equilibrium which is the easiest to learn and which takes the longest time
to escape will be the most likely outcome observed.

APPENDIX A

Assumptions and Proofs

A.1. CONSTRUCTING THE DIFFERENTIAL EQUATION

Here we derive the differential equation which govern the convergence of beliefs. To find the limit ODE,
we take expectations in (2), which means that we must calculate the probabilities that each player plays
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each action. In the 2 × 2 case, this is a simple calculation leading to a probit decision rule in the normal
case and a logit rule in the extreme value case. However in larger dimensions, the calculations become more
complex. For example, to compute the probability that player 1 chooses action i, note that the term on the
right-hand side of (1) is the (N − 1) order statistic from an independent but not identically distributed sample
of size (N − 1) . We denote this order statistic as X(θ2t, i), to emphasize the dependence on the agent’s beliefs
(θ2t), and the reference strategy (i in this case). The order statistics for the two players have the following
cumulative distribution functions (see David, 1970):

F 1
X(θ2t,i)(x) =

N∏

j 6=i

F (x− θ2t · aj)

F 2
X(θ1t,i)(x) =

N∏

j 6=i

F (x− θ1t · bj) .

Therefore the probabilities that player 1 plays action i and player 2 plays action j are respectively given by:

G1(θ2t, i) =

∫ ∞

−∞
F 1

X(θ2t,i)(x)dF (x− θ2t · ai)

G2(θ1t, j) =

∫ ∞

−∞
F 2

X(θ1t,j)(x)dF (x− θ1t · bj)

These expressions are rather complicated, and do not lead to explicit evaluation when the shocks are
normally distributed. However when the shocks have the extreme value distribution, it is well known that
the probability that player 1 plays action i takes the form:

G1(θ2t, i) =
exp(λθ2t · ai)∑N

j=1 exp(λθ2t · aj)
.

In the discrete choice econometrics literature, this is known as a multinomial logit model. Such a specification
was used by McKelvey and Palfrey (1995) for their notion of a quantal response equilibrium. Fudenberg and
Levine (1995) also derived an identical choice rule based on deterministic perturbations of payoffs.

With these calculations, we can now apply the results from the previous section. In particular, the ODEs
governing convergence become:

.

θ1i = G1(θ2, i)− θ1i (A.1)
.

θ2j = G2(θ1, j)− θ2j ,

for i, j = 1, ..., N. Since agents’ beliefs are constrained to lie on the unit simplex, we can reduce the dimen-
sionality of the state space. Therefore, we define B(θ) as the (2 (N − 1)× 1) vector composed of the right
side of (A.1) for the first N − 1 elements of θ1 and θ2.

A.2. ASSUMPTIONS FOR CONVERGENCE

We first briefly describe the continuous time approximation. Recall that convergence is as ε → 0 across
sequences indexed by the gain setting. For the time scale, let t0 = 0 and tn = nε. Let {qε} be a sequence of
nonnegative, nondecreasing integers, and define for t ≥ 0:

Zε,q(t) = ε

t/ε+qε−1∑
i=qε

b(θε
i , ξi),

where the integer part of t/ε is used in the limit of the summation. Then θε(εqε + t) = θε
qε

+ Zε,q(t) is the
right-continuous, piecewise-constant, continuous time shifted process associated with {θε

n} .
The following conditions lead to the weak convergence result of Kushner and Yin (1997), Theorem 8.5.1.

Since we only consider i.i.d. shocks some of their additional assumptions are immediate.

Assumptions A.1.
(i) {θε

n; ε, n} is tight.1

1A random sequence {An} is tight if:

lim
K→∞

sup
n

P (|An| ≥ K) = 0.
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(ii) For each compact set Q,
{
b(θε

n, ξn)1{θε
n∈Q}; ε, n

}
is uniformly integrable.2

(iii) For each compact set Q, the sequence
{
b(θε

n)1{θε
n∈Q}; ε, n

}
is uniformly integrable.

(iv) There are nonempty compact sets Si that are the closures of their interiors S0
i and satisfy S0 ⊂ S0

1 ⊂
S1 ⊂ S0

2 ⊂ S2 such that all trajectories of the ODE (6) tend to S0 as t → ∞ and all trajectories starting in
S1 stay in S2. Further, the ODE (6) has a unique solution for each initial condition.

(v) The function b(θ) is continuous.

(vi) For each δ > 0, there is a compact set Aδ such that infn,ε P (υε
n ∈ Aδ) ≥ 1− δ.

(THIS WAS FOR THE APP OF THE THM) The result then follows from the KY theorem, where
the assumptions are easily verified by noting that the belief sequence is bounded and that the Gi functions
are continuous.

A.3. STABILITY EXAMPLE

Proof (Theorem 3.3). It is easy to verify that θ is a rest point of the ODE, and we now verify that it is

locally stable. After much calculation, we see that the Jacobian at θ takes on the following form:

∂B

∂θ
(θ) =




−1 0 G 0
0 −1 0 G
0 G −1 0

−G −G 0 −1




where G depends on the shock distribution. Further, the four eigenvalues δ of ∂B
∂θ

(θ) solve:

(−1− δ)2 = ±G
2
.

As long as G > 2 all of the eigenvalues have strictly positive real parts.

In the logit case, G = λ
3
, so we require λ > 6 for instability. In the normal case, we define z = x−1/3

σ
and:

G =

∫ +∞

−∞
Φ(z)φ2(z)dx +

∫ +∞

−∞
Φ2(z)φ(z)zdx (A.2)

=

(
1 +

1

2σ

) ∫ +∞

−∞
Φ2(z)φ(z)zdx

≡
(

1 +
1

2σ

)
Ĝ,

where Ĝ = 0.2821 is a constant independent of σ. Thus we require σ < Ĝ

2(2−Ĝ)
. Evaluating the right side nu-

merically gives the result.

A.4. LARGE DEVIATIONS

The following assumptions from KY are necessary for Theorem 4.1 above.

Assumptions A.2.
KY, A6.10.1. The ODE (6) has a unique solution for each initial condition, and a point θ that is locally

(in D ) asymptotically stable. The function b(·, ξn) is bounded and right-continuous in θ.

KY, A6.10.4. The real-valued function H(θ, α) in (8) is continuous in (θ, α) for θ ∈ D and α in a

neighborhood Q of the origin. The α−derivative of H is continuous on Q for each fixed θ ∈ D.

2A random sequence {An} is uniformly integrable if:

lim
K→∞

sup
n

E
(|An| 1{|An|≥K}

)
= 0.
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Under these assumptions, Theorem 4.1 is an extension of a result in KY, as the following sketch makes
clear.

Proof (Theorem 4.1). Follows from KY, Theorem 6.10.2, with the discussion on pp.177-178 or the deriva-
tion in Dupuis and Kushner (1989) identifying the H function. The stated result in KY also requires that b be
Lipschitz continuous, but the analysis in Dupuis and Kushner (1985) shows that right-continuity and bounded-

ness are sufficient.

A.5. PROOF OF THE 2 × 2 THEOREM

Proof (Theorem 5.1). We first note a few elementary facts about the value functions V j(x) from the
minimization problem (15). Note that since L is increasing and convex, V j(x) is also increasing and convex

(in the distance from θ
j
). Further, it is clear that V j(θ̃) = 0 since the mean dynamics initialized on either

side of θ̃ converge to the closest equilibrium. Also note that even though the equilibria and dynamics are
symmetric, we could allow for asymmetric escape paths. However the convexity of L implies that such paths
would not be minimizing.

The proof uses the PDE characterization from (25), which here is simply an ODE. To conserve slightly

on notation we consider the case when θ
1

= 1 and θ
2

= 0. This clearly holds for small noise, and the more
general case only involves a change in notation. To compare the solutions, we re-orient the state space in each

case. That is, for V 1 we use the transformation x = θ̃−y and for V 2 we transform as x = θ̃ +y. Therefore at

y = 0 both start at x = θ̃ and both are increasing in y. Then, using our results above, we can write solutions
as the following:

V12 = V 2(θ
1
) =

∫ 1−θ̃

0

V 2
y (y)dy,

V21 = V 1(θ
2
) =

∫ θ̃

0

V 1
y (y)dy,

where the derivatives with respect to the transformed variables y are easily deduced from the original and
the transformations.

From our results above, we have that V j
y ≥ 0 for j = 1, 2. Then since V12 involves integrating over a larger

area, if we can show V 2
y (y) ≥ V 1

y (y) for y ∈ (0, θ̃) we then have V12 > V21. This is what we now establish.
First, we use the transformations to re-write the two ODEs from (25) as:

a(y)(θ̃ + y) = log
[
1 + (exp(a(y))− 1) G(θ̃ + y)

]
(A.3)

b(y)(θ̃ − y) = log
[
1 + (exp(b(y))− 1) G(θ̃ − y)

]

where a(y) = −V 2
y (y) and b(y) = −V 1

y (y), so a, b ≤ 0. Note that (A.3) implicitly defines a, b for a given y,

and further that a(0) = b(0) = 0 and a(1 − θ̃) = 0 while b(θ̃) = 0. That is, a(y) and b(y) are non-positive,

are zero at θ̃, and b(y) hits zero before a(y). Therefore, if a(y) and b(y) do not intersect on (0, θ̃) we must
have a(y) ≤ b(y) on that interval, which would complete the proof.

To establish this via a contradiction, suppose that a(y) = b(y) for some y ∈ (0, θ̃). Then by (A.3) we
have:

1 + (exp(a(y))− 1)G(θ̃ + y) = exp

(
θ̃ + y

θ̃ − y

) [
1 + (exp(a(y))− 1)G(θ̃ − y)

]
,

which in turn implies:

exp(a(y))− 1 =
1− exp

(
θ̃+y

θ̃−y

)

G(θ̃ + y)− exp
(

θ̃+y

θ̃−y

)
G(θ̃ − y)

. (A.4)

To insure that a(y) is non-positive and real, we require −1 ≤ exp(a(y))− 1 ≤ 0. Since we have:

θ̃ + y

θ̃ − y
≥ 1 for y ∈ (0, θ̃),
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by (A.4) we then require:

G(θ̃ + y)− exp

(
θ̃ + y

θ̃ − y

)
G(θ̃ − y) ≥ 0, and

G(θ̃ + y)− exp

(
θ̃ + y

θ̃ − y

)
G(θ̃ − y) ≤ 1− exp

(
θ̃ + y

θ̃ − y

)
.

The second inequality can be re-written as:

1 + G(θ̃ + y)

1 + G(θ̃ − y)
≥ exp

(
θ̃ + y

θ̃ − y

)
. (A.5)

Now, on (0, θ̃) the left side of (A.5) takes on a value of at most 2, while the right side takes on values of at least
exp(1) > 2. Thus there is no value of y on the interval so that (A.5) holds. Therefore a(y) and b(y) do not inter-
sect on the interval, which completes the proof.
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