
1. MCMC: A “New” Approach to Simulation

• Consider the general problem of trying to calculate characteristics
of a complicated multivariate probability distribution f(x) on x =
(x1, . . . , xp).

• For example, suppose we want to calculate the mean of x1,
∫ ∫

x1f(x1, x2)dx1dx2

where

f(x1, x2) ∝ (1 + x2
1)
−1x−n

2 exp

{
− 1

2x2
2

∑

i

(yi − x1)2 − x2

}

(y1, . . . , yn are fixed constants). Bad news: This calculation is
analytically intractable.
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• A Monte Carlo approach: Simulate k observations x(1), . . . , x(k)

from f(x) and use this sample to estimate the characteristics of
interest. (Careful: Each x(j) = (x(j)

1 , . . . , x
(j)
p ) is a multivariate

observation). For example, we could estimate the mean of x1 by

x̄1 =
1
k

∑

j

x
(j)
1 .

• If x(1), . . . , x(k) were independent observations (i.e. an iid sam-
ple), we could use standard central limit theorem results to draw
inference about the quality of our estimate.

• Bad news: In many problems, methods are unavailable for direct
simulation of an iid sample from f(x).
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• Good news: In many problems, methods such as the Gibbs sam-
pler and the Metropolis-Hastings algorithms can be used to sim-
ulate a Markov chain x(1), . . . , x(k) which is converging in distri-
bution to f(x), (i.e. as k increases, the distribution of x(k) gets
closer and closer to f(x)).

• Recall that a Markov chain x(1), . . . , x(k) is a sequence such that
for each j ≥ 1, x(j+1) is sampled from a distribution p(x | x(j))
which depends on x(j) (but not on x(1), . . . , x(j−1)).

• The function p(x | x(j)) is called a Markov transition kernel. If
p(x |x(j)) is time-homogeneous (i.e. p(x |x(j)) does not depend on
j) and the transition kernel satisfies

∫
p(x | x∗)f(x∗)dx∗ = f(x),

then the chain will converge to f(x) if it converges at all.
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• Simulation of a Markov chain requires a starting value x(0). If the
chain is converging to f(x), then the dependence between x(j) and
x(0) diminishes as j increases. After a suitable “burn in” period
of l iterations, x(l), . . . , x(k) behaves like a dependent sample from
f(x).

• Such behavior is illustrated by Figure 1.1 on page 6 of Gilks,
Richardson & Spieglehalter (1995).

• The output from such simulated chains can be used to estimate
the characteristics of f(x). For example, one can obtain approxi-
mate iid samples of size m by taking the final x(k) values from m
separate chains.

• It is probably more efficient, however, to use all the simulated
values. For example, x̄1 = 1

k

∑
j x

(j)
1 will still converge to the

mean of x1.
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• MCMC is the general procedure of simulating such Markov chains
and using them to draw inference about the characteristics of f(x).

• Methods which have ignited MCMC are the Gibbs sampler and
the more general Metropolis-Hastings algorithms. As will we now
see, these are simply prescriptions for constructing a Markov tran-
sition kernel p(x|x∗) which generates a Markov chain x(1), . . . , x(k)

converging to f(x).

2. The Gibbs Sampler (GS)

• The GS is an algorithm for simulating a Markov chain x(1), . . . , x(k)

which is converging to f(x), by successively sampling from the full
conditional component distributions f(xi|x−i), i = 1, . . . , p, where
x−i denotes the components of x other than xi.
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• For simplicity, consider the case where p = 2. The GS generates
a Markov chain

(x(1)
1 , x

(1)
2 ), (x(2)

1 , x
(2)
2 ), . . . , (x(k)

1 , x
(k)
2 )

converging to f(x1, x2), by successively sampling

x
(1)
1 from f(x1 | x(0)

2 )

x
(1)
2 from f(x2 | x(1)

1 )

x
(2)
1 from f(x1 | x(1)

2 )
...

x
(k)
1 from f(x1 | x(k−1)

2 )

x
(k)
2 from f(x2 | x(k)

1 )

(To get started, prespecify an initial value for x
(0)
2 ).
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• For example, suppose

f(x1, x2) ∝
(

n
x1

)
xx1+α−1

2 (1− x2)n−x1+β−1

x1 = 0, 1, . . . , n, 0 ≤ x2 ≤ 1.

The GS proceeds by successively sampling from

f(x1 | x2) = Binomial(n, x2)
f(x2 | x1) = Beta(x1 + α, n− x1 + β)

• To illustrate the GS for the above, Figure 1 of Casella & George
(1992) presents a histogram of a sample of m = 500 final values
of x1 from separate GS runs of length k = 10 when n = 16,
α = 2 and β = 4. This is compared with an iid sample from
the actual distribution f(x1), (which here can be shown to be
Beta-Binomial).
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• Note that f(x1) =
∫

f(x1, x2)dx2 =
∫

f(x1 | x2)f(x2)dx2. This
expression suggests that an improved estimate of f(x1) in this
example can be obtained by inserting the m values of x

(k)
2 into

f̂(x1) =
1
m

m∑

i=1

f(x1 | x(i)
2 ).

Figure 3 of Casella & George (1992) illustrates the improvement
obtained by this estimate.

• Note that the conditional distributions for the above setup, the
Binomial and the Beta, can be simulated by routine methods.
This is not always the case. For example, f(x1 | x2) from page
2 is not of standard form. Fortunately, such distributions can be
simulated using envelope methods such as rejection sampling, the
ratio-of-uniforms method or adaptive rejection resampling. As
we’ll see, Metropolis-Hastings algorithms can also be used for this
purpose.
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3. Metropolis-Hastings Algorithms (MH)

• MH algorithms generate Markov chains which converge to f(x),
by successively sampling from an (essentially) arbitrary proposal
distribution q(x|x∗) (i.e. a Markov transition kernel) and imposing
a random rejection step at each transition.

• An MH algorithm for a candidate proposal distribution q(x | x∗),
entails simulating x(1), . . . , x(k) as follows:

– Simulate a transition candidate xC from q(x | x(j))

– Set x(j+1) = xC with probability

α(x(j), xC) = min
{

1,
q(x(j) | xC)
q(xC | x(j))

f(xC)
f(x(j))

}

Otherwise set x(j+1) = x(j).
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• The original Metropolis algorithm was based on symmetric q,
(i.e. q(x | x∗) = q(x∗ | x)), for which α is of the simple form

α(x(j), xC) = min
{

1,
f(xC)
f(x(j))

}
.

• If q(x | x∗) is chosen such that the Markov chain satisfies modest
conditions (e.g. irreducibility and aperiodicity), then convergence
to f(x) is guaranteed. However, the rate of convergence will de-
pend on the relationship between q(x | x∗) and f(x).

• When x is continuous, a popular choice for q(x | x∗) is x = x∗ + z
where z ∼ Np(0, Σ). The resulting chain is called a random walk
chain. Note that the choice of scale Σ can critically affect the
mixing (i.e. movement) of the chain. Figure 1.1 on page 6 of Gilks,
Richardson & Spieglehalter (1995) illustrates this when p = 1.
Other distributions for z can also be used.
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• Another useful choice, called an independence sampler, is obtained
when the proposal q(x | x∗) = q(x) does not depend on x∗. The
resulting α is of the form

α(x(j), xC) = min
{

1,
q(x(j))
q(xC)

f(xC)
f(x(j))

}
.

Such samplers work well when q(x) is a good heavy-tailed approx-
imation to f(x).

• It may be preferable to use an MH algorithm which updates the
components x

(j)
i of x one at a time. It can shown that the Gibbs

sampler is just a special case of such a single-component MH al-
gorithm where q is chosen so that α ≡ 1.
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• Finally, to see why MH algorithms work, it is not too hard to show
that the implied transition kernel p(x | x∗) of any MH algorithm
satisfies

p(x | x∗)f(x∗) = p(x∗ | x)f(x),

a condition called detailed balance or reversibility. Integrating
both sides of this identity with respect to x∗ yields

∫
p(x | x∗)f(x∗)dx∗ = f(x),

showing that f(x) is the limiting distribution when the chain con-
verges.

4. The Model Liberation Movement

• Advances in computing technology have unleashed the power of
Monte Carlo methods, which in turn, are now unleashing the po-
tential of statistical modeling.
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• Our new ability to simulate from complicated multivariate prob-
ability distributions via MCMC is having impact in many areas
of Statistics, but most profoundly for Bayesian approaches to sta-
tistical modeling.

• The Bayesian paradigm uses probability to characterize ALL un-
certainty as follows:

– Data is a realization from a model p(Data |Θ), where Θ is
an unknown (possibly multivariate) parameter.

– Θ is treated as a realization from a prior distribution p(Θ).

– Post-data inference about Θ is based on the posterior dis-
tribution

p(Θ |Data) =
p(Data |Θ)p(Θ)∫
p(Data |Θ)p(Θ)dΘ
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• In the past, analytical intractability of the expression for p(Θ|Data)
severely stymied realistic practical Bayesian methods. Unrealis-
tic, oversimplified models were too often used to facilitate calcu-
lations. MCMC has changed this, and opened up vast new realms
of modeling possibilities.

• My initial example

f(x1, x2) ∝ (1 + x2
1)
−1x−n

2 exp

{
− 2

x2
2

∑

i

(yi − x1)2 − x2

}

was a just a disguised posterior distribution for the Bayesian setup

y1, . . . , yn iid ∼ N(µ, σ2)

µ ∼ Cauchy(0, 1) σ ∼ Exponential(1).

The posterior of the parameters µ and σ is

p(µ, σ |Data) ∝ (1 + µ2)−1σ−n exp

{
− 1

2σ2

∑

i

(yi − µ)2 − σ

}
.
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• In the above example, f(x) can only be specified up to a norming
constant. This is typical of Bayesian formulations. A huge attrac-
tion of GS and MH algorithms is that these norming constants are
not needed.

• The previous example is just a toy problem. MCMC is in fact
enabling posterior calculation for extremely complicated models
with hundreds and even thousands of parameters.

• Going even further, the Bayesian approach can be used to obtain
posterior distributions over model spaces. Under such formula-
tions, MCMC algorithms are leading to new search engines which
automatically identify promising models.
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