Search Theoretic Models of Money

Economics 714
Noah Williams
University of Wisconsin - Madison

Essential Models of Money

- Hahn (1965): money is essentiạl if it allows agents to achieve allocations they cannot achieve with other mechanisms that also respect the enforcement and information constraints in the environment.
- Why do we care about essential models of money?
- Three frictions that will make money essential:

1. Double-coincidence of wants problem.
2. Long-run commitment cannot be enforced.
3. Agents are anonymous: histories are not public information.

- Money is a consequence of these frictions in trade: medium of exchange.

Three Generations of Models

1. 1 unit of money, 1 unit of good: Kiyotaki and Wright (1993).
2. 1 unit of money, endogenous units of good: Trejos and Wright (1995).
3. Endogenous units of money, endogenous units of good: Lagos and Wright (2005).

Environment

- $[0,1]$ continuum of anonymous agents.
- Live forever and discount future at rate r.
- [0, 1] continuum of goods. Good i is produced by agent i.
- Goods are non-storable: no commodity money.
- Unit cost of production $c \geq 0$.

Double-Coincidence of Wants Problem

- I do not produce what I like (non-restrictive: home production, specialization).
- $i W j$: agent i likes to consume good produced by agent j :.

1. utility $u>c$ from consuming j.
2. utility 0 otherwise.

- Probabilities of matching:

$$
\begin{gathered}
p(i W i)=0 \\
p(j W i)=x \\
p(j W i \mid i W j)=y
\end{gathered}
$$

First Generation: Fixed Money and Fixed Good

- Exogenously given quantity $M \in[0,1]$ of an indivisible unit of storable good.
- Holding money yields zero utility γ : fiat money.
- Initial endowment: M agents are randomly endowed with one unit of money.
- Agents holding money cannot produce (for example because you need to consume before you can produce again).
- We eliminate (non-trivial) distributions.

Trades

- Pairwise random matching of agents with Poisson arrival time α.
- Bilateral trading is important, randomness is not (Corbae, Temzelides, Wright, 2003).
- Upon meeting, agents decide whether to trade. Then, they part company and re-enter the process.
- History of previous trades is unknown.
- Exchange 1 unit of good for 1 unit of good (barter) or 1 unit of money.

Individual Trading Strategies

- Agents never accept a good in trade if he does not like to consume it since it is not storable.
- They will barter if they like the both agents in the pair like each other goods.
- Would they accept money for goods and viceversa?
- We will look at stationary and symmetric Nash equilibria.

Probabilities

- You meet someone with arrival rate α.
- This person can produce with probability $1-M$.
- With probability x you like what he produces.
- With probability $\pi=\pi_{0} \pi_{1}$ (endogenous objects to be determined) both of you want to trade.
- If $\pi>0$, we say that money circulates.

Value Functions

- Value functions with money, V_{1} :

$$
r V_{1}=\alpha x(1-M) \pi\left(u+V_{0}-V_{1}\right)
$$

- Value functions without money, V_{0}.

$$
r V_{0}=\alpha x y(1-M)(u-c)+\alpha x M \pi\left(V_{1}-V_{0}-c\right)
$$

- Renormalize $\alpha x=1$ by picking time units:

$$
\begin{gathered}
r V_{1}=(1-M) \pi\left(u+V_{0}-V_{1}\right) \\
r V_{0}=y(1-M)(u-c)+M \pi\left(V_{1}-V_{0}-c\right)
\end{gathered}
$$

Individual Trading Strategies

- Net gain from trading goods for money:

$$
\Delta_{0}=V_{1}-V_{0}-c=\frac{(1-M)(\pi-y)(u-c)-r c}{r+\pi}
$$

- Net gain from trading money from goods:

$$
\Delta_{1}=u+V_{0}-V_{1}=\frac{(M \pi+(1-M) y)(u-c)+r u}{r+\pi}
$$

Equilibrium Conditions for π_{0} and π_{1}

- Clearly:

$$
\pi_{j}\left\{\begin{array} { l }
{ = 1 } \\
{ \in [0 , 1] } \\
{ = 0 }
\end{array} \quad \text { as } \Delta _ { j } \left\{\begin{array}{l}
>0 \\
=0 \\
<0
\end{array}\right.\right.
$$

- Plug those into the individual trading strategies, and check them.

Characterizing π

- Clearly $\Delta_{1}>0$. Hence $\pi_{1}=1$, i.e., the agent with money always wants to trade.
- For π_{0}, you have

$$
\Delta_{0}=\frac{(1-M)(u-c) \pi_{0}}{r+\pi_{0}}-\frac{(1-M) y(u-c)+r c}{r+\pi_{0}}
$$

- Then, Δ_{0} has the same sign as

$$
\pi_{0}-\frac{r c+(1-M) y(u-c)}{(1-M)(u-c)}=\pi_{0}-\widehat{\pi}
$$

Multiple Equilibria

- Nonmonetary equilibrium: we have an equilibrium where $\pi_{0}=0$.
- Monetary equilibrium: if

$$
c<\frac{(1-M)(1-y)}{r+(1-M)(1-y)} u
$$

then $\widehat{\pi}<1$ and $\pi_{0}=1$ is an equilibrium as well.

- Mixed-monetary equilibrium: $\pi_{0}=\pi^{\wedge}$. However, not robust (Schevchenko and Wright, 2004).

Equilibria in (γ, r)-Space When Money Holders Cannot Produce

Welfare

- Define welfare as the average utility:

$$
W=M V_{1}+(1-M) V_{0}
$$

- Then:

$$
r W=(1-M)[(1-M) y+M \pi](u-c)
$$

- Note that welfare is increasing in π.

$$
\text { Welfare } \pi=1
$$

- Note:

$$
\left.r W=\left(\begin{array}{ll}
1 & -M
\end{array}\right)\left[\begin{array}{c}
1 \\
2
\end{array}-M\right) y+M\right](u-c)
$$

- Maximize W with respect to M :

$$
\begin{aligned}
& M^{*}=\frac{1-2 y}{2-2 y} \text { if } y<\frac{1}{2} \\
& M^{*}=0 \text { if } y \geq \frac{1}{2}
\end{aligned}
$$

- Intuition: facilitate trade versus crowding out barter.

Welfare $\pi=0$

- Note:

$$
r W=(1-M)[(1-M) y](u-c)
$$

- Monotonically decreasing in $M \Rightarrow M^{*}=0$.
- Result is a little bit silly: it depends on the absence of free disposal of money. Otherwise, welfare is independent of M.

Welfare π

Define \underline{M} such that $\pi=1$,

- Note:

$$
r W=(1-M)[(1-M) y+M \pi](u-c)
$$

- Monotonically increasing in M in the $[0, \underline{M}]$ interval.

Welfare as a Function of M

Welfare as a Function of y (optimal M)

Comparison with Alternative Arrangements

- Imagine that we have the credit arrangement: "produce for anyone you meet that wants your good."
- Value function

$$
r V_{c}=u-c
$$

- Clearly

$$
r V_{c}>r W
$$

- However, this arrangement is not self-enforceable: histories are not observed.

Second Generation: Endogenous Prices

- We make the very strong assumption that we exchanged one good for one unit of money.
- What if we let prices be endogenous? Shi (1995) and Trejos and Wright (1995).
- We set $y=0$ and we let goods be divisible.
- When agents meet, they bargain about how much q will be exchanged, or equivalently, about price $1 / q$.

Utility and Cost Functions

- Utility is $u(q)$ and cost of production is $c(q)$.
- Assumptions:

$$
\begin{gathered}
u(0)=c(0)=0 \\
u^{\prime}(0)>c^{\prime}(0) \\
u^{\prime}(0)>0, u^{\prime \prime}(0) \leq 0 \\
c^{\prime}(0)>0, c^{\prime \prime}(0) \geq 0
\end{gathered}
$$

- Also, \hat{q} and q^{*} are such that

$$
\begin{aligned}
u\left(q^{\wedge}\right) & =c\left(q^{\wedge}\right) \\
u^{\prime}\left(q^{*}\right) & =c^{\prime}\left(q^{*}\right)
\end{aligned}
$$

Value Functions and Bargaining

- Take $q=Q$ as given. Then:

$$
\begin{gathered}
r V_{1}=(1-M)\left[u(Q)+V_{0}-V_{1}\right] \\
r V_{0}=M\left[V_{1}-V_{0}-c(Q)\right]
\end{gathered}
$$

- Bargaining is the generalized Nash bargaining solution:

$$
\begin{gathered}
\left.q=\operatorname{argmax[u(q)}+V_{0}(Q)-T_{1}\right]^{\theta} \times\left[V_{1}(Q)-c(\mathrm{q})-T_{0}\right]^{\theta} \\
u(q)+V_{0} \geq V_{1} \\
V_{1}-c(q) \geq V_{0}
\end{gathered}
$$

where T_{j} is the threat point of the agent with j units of money.

- We will set $T_{j}=0$ and $\theta=1 / 2$.

Equilibria

- Necessary condition taking $V_{0}(Q)$ and $V_{1}(Q)$ as given:

$$
\left[V_{1}(Q)-c(q)\right] u^{\prime}(q)=\left[u(q)+V_{0}(Q)\right] c^{\prime}(q)
$$

- The bargaining solution defines a function

$$
q=e(Q)
$$

and we look at its fixed points.

- Two fixed points:

1. $q=0$: nonmonetary equilibrium.
2. $q=q^{e}>0$: monetary equilibrium.

Monetary Equilibrium in the Divisible-Goods Model

Efficiency

- Note that the efficient outcome is q^{*}, i.e. $u^{\prime}\left(q^{*}\right)=c^{\prime}\left(q^{*}\right)$.
- In the monetary equilibrium:

$$
\begin{aligned}
& \qquad u^{\prime}\left(q^{e}\right)=\frac{u\left(q^{e}\right)+V_{0}\left(q^{e}\right)}{V_{1}\left(q^{e}\right)-c\left(q^{e}\right)} c^{\prime}\left(q^{e}\right)>u^{\prime}\left(q^{*}\right) \\
& \text { since } u\left(q^{e}\right)+V_{0}\left(q^{e}\right)>V_{1}\left(q^{e}\right)-c\left(q^{e}\right)
\end{aligned}
$$

- Hence $q^{*}>q^{e}$, or equivalenty, the price is too high.

Third Generation: Endogenous Prices and Goods

- Relax the assumption that agents hold 0 or 1 units of money.
- Problem: endogenous distribution of money that we (and the agents!) need to keep track of.
- Computational: Molico (2006).
- Theoretical:

1. Families: Shi (1997).
2. Two markets: Lagos and Wright (2005).
