Lecture 6: Search Equilibrium

Economics 714, Spring 2018

1 Equilibrium Search Model

Pissarides (1985) model, later modified by Mortensen-Pissarides (1994)
Continuous time, constant interest rate r.
Continuum L of identical workers, risk neutral preferences:

$$
\int_{0}^{\infty} e^{-r t} x_{t} d t
$$

Endogenous number of firms, each with one job. Competitive producer of final good at price p.

Firms post vacancies, cost c per unit time, $p c$ relative to output
$u L$ unemployed, $v L$ vacant jobs, $f L$ jobs filled, related by matching function m :

$$
f L=m(u L, v L)
$$

Assume m increasing, concave, and has constant returns to scale, so $f=m(u, v)$. Define $\theta=v / u$ then

$$
q(\theta)=m(u / v, 1)=m(1 / \theta, 1)
$$

(Poisson) Rate at which vacant jobs are filled. Mean duration of vacancy $=1 / q(\theta)$.
$\theta q(\theta)$ is rate at which unemployed workers find job, unemployment duration $1 /(\theta q(\theta))$.

Properties:

$$
\begin{aligned}
q^{\prime}(\theta) & \leq 0 \\
\frac{q^{\prime}(\theta) \theta}{q(\theta)} & \in[-1,0]
\end{aligned}
$$

Job creation when firm and worker meet, agree on wage. Jobs created:

$$
f L=\operatorname{Lm}(u, v)=\operatorname{Lvm}(u / v, 1)=\operatorname{Lu} \theta q(\theta)
$$

Creation rate:

$$
\frac{u \theta q(\theta)}{1-u}
$$

Jobs destroyed at exogenous Poisson rate s. Total job destruction: $s(1-u) L$.
Evolution of unemployment:

$$
\dot{u}=s(1-u)-u \theta q(\theta)
$$

steady state:

$$
u=\frac{s}{s+\theta q(\theta)}
$$

2 Firm Decision

Wage w, hours fixed at 1 , either party can freely break contract.
J value of filled job, V value of vacant job.

$$
\begin{aligned}
r V & =-p c+q(\theta)(J-V) \\
r J & =p-w-s J
\end{aligned}
$$

So we have:

$$
J=\frac{p-w}{r+s}
$$

Free entry of firms means $V=0$. So we also have:

$$
J=\frac{p c}{q(\theta)}
$$

Equating gives the job creation condition:

$$
p-w-(r+s) \frac{p c}{q(\theta)}=0
$$

2.1 Workers' Decisions

Now no longer a distribution of offers, no reason to turn down wage as long as $W>U$.
Value of unemployed:

$$
r U=z+\theta q(\theta)(W-U)
$$

Value of employed:

$$
r W=w+s(U-W(w))
$$

We can solve:

$$
W(w)=\frac{w}{r+s}+\frac{s}{r+s} U, \quad W^{\prime}(w)=\frac{1}{r+s}
$$

Use expression for W, solve for (W, U) explicitly:

$$
\begin{aligned}
U & =\frac{s z+\theta q(\theta) w+r z}{r^{2}+r \theta q(\theta)+s r} \\
W & =\frac{s z+\theta q(\theta) w+r w}{r^{2}+r \theta q(\theta)+s r}
\end{aligned}
$$

So $W>U \Leftrightarrow w>z$.

2.2 Wage Determination

Solve for wages by Nash bargaining solution:

$$
w=\arg \max _{\hat{w}}(W(\hat{w})-U)^{\beta}(J(\hat{w})-V)^{1-\beta}
$$

Optimality condition:

$$
\beta \frac{W^{\prime}(w)}{W-U}=-(1-\beta) \frac{J^{\prime}(w)}{J-V}
$$

Simplify:

$$
W=U+\beta(W-U+J)
$$

Use expression for J :

$$
W-U=\frac{\beta}{1-\beta} \frac{p c}{q(\theta)}
$$

Also can solve to show:

$$
w=r U+\beta(p-r U)
$$

Finally, can derive the wage equation:

$$
w=(1-\beta) z+\beta(p+\theta p c)
$$

2.3 Steady State Unemployment

Three key equations:

$$
\begin{aligned}
w & =(1-\beta) z+\beta(p+\theta p c) \\
p & -w-(r+s) \frac{p c}{q(\theta)}=0 \\
u & =\frac{s}{s+\theta q(\theta)}
\end{aligned}
$$

Combine first two to determine steady state θ :

$$
(1-\beta)(p-z)-\frac{r+s+\beta \theta q(\theta)}{q(\theta)} p c=0
$$

Then Beveridge curve determines steady state u given θ.

