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1 Equity Premium

We can write excess returns on stocks over the risk free rate, or the equity premium as:

E(rt)− rf = γcov(rt,∆ct)

Which in turn can be re-written to give the risk-return tradeoff:

E(rt)− rf

σ(r)
= γσ(∆ct)corr(∆ct, rt)

Left side known as Sharpe ratio

Moments of aggregate consumption growth and level of risk aversion then determine

equity premium. The equity premium puzzle is that to rationalize observed asset prices

requires implausibly high levels of risk aversion.

1.1 Attempted Resolutions

There has been a very large literature in macro asset pricing to try to explain the equity

premium puzzle. These theories can be grouped into three broad classes:

• Change preferences: Get away from time additively separable power utility function.

Examples: recursive preferences, robustness, habit persistence
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• Change constraints: Get away from representative agent complete markets with no

frictions. Examples:Limited participation, transaction costs, incomplete markets

• Change shocks: Get away from typical log-normal assumption for consumption

growth. Examples: disaster models, long-run risk, learning

2 Implications of Complete Markets

2.1 A finite setting

Suppose now for simplicity that st ∈ {s1, . . . , sN} finite, transitions then are governed by

the Markov transition matrix Q(s, s′) = P (st+1 = s′|st = s) which is the finite counterpart

of the transition function we’ve been working with.

The pricing kernels q and qj have the obvious counterparts

We will use the shorthand notation for histories st = {s0, s1, . . . , st}, and summations

like
∑

sj q
j(s, sj) mean summing over all possible histories j periods ahead.

Then with the full set of contingent securities, we can write the budget constraints

like we had before:

w = c+ p(s)a′ +
∞∑
j=1

∑
sj

qj(s, sj)θj(s, sj)

w′(s′) = a′(p(s′) + s′) + θ1(s′, s) +
∞∑
j=2

∑
sj |s′

qj−1(s′, sj)θj(sj, s)

The Bellman equation for the agent’s problem can be written:

V (w, s) = max
c,a′,θj

{
u(c) +

∑
s′

βV (w′(s′), s′)Q(s, s′)

}
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subject to the law of motion for w.

Then the first order condition for any θ1(s, si) is:

u′(c)q(s, si) = β
∑
s′

βVw(w′(s′), s′)1{s′=si}Q(s, s′) = βVw(w′(si), si)Q(s, si)

With the envelope condition:

Vw(w, s) = u′(c)

Thus we have the Euler equation for the asset:

u′(c)q(s, si) = βu′(c(si))Q(s, si)

Along the same lines, we can derive the more general expression for the agent’s opti-

mality conditions for any future date and state:

u′(ct)q
j(st, s

j) = βju′(ct+j(s
j))Qj(st, s

j)

2.2 Allowing heterogeneity

We have focused on a representative agent setting, but now suppose we allow for het-

erogeneity in preferences and endowments. There are i = 1, . . . , I consumers who have

different preferences ui(c), βi and endowments eit = ei(st) where
∑

i e
i(st) = st.

Note then that the same optimality condition holds for any consumer. Let’s look from

date 0:

u′i(c
i
0)q

t(s0, s
t) = βtiu

′
i(c

i
t(s

t))Qt(s0, s
t)

Since a similar expression holds for any consumer j as well, we have:

u′i(c
i
0)q

t(s0, s
t)

u′j(c
j
0)q

t(s0, st)
=
βtiu

′(cit(s
t))Qt(s0, s

t)

βtju
′
j(c

j
t(s

t))Qt(s0, st)
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or

u′i(c
i
0)

u′j(c
j
0)

=

(
βi
βj

)t
u′(cit(s

t))

u′j(c
j
t(s

t))

We can use this to derive a few simple implications:

• Therefore if βi > βj, as t → ∞ we must have
u′(cit(s

t))

u′j(c
j
t (s

t))
→ 0 and thus cjt → 0. The

same holds for any pairwise comparison, so in the long run the most patient agent

will consume the entire aggregate endowment.

• Now suppose that we have preference homogeneity βi = β and ui(c) = c1−γ

1−γ . Then

we have:

(ci0)
−γ

(cj0)
−γ

=
(cit)

−γ

(cjt)
−γ

That is, each agent’s consumption is a constant fraction of any other’s. Equivalently,

each agent consumes a constant fraction of the aggregate endowment. Thus we have

perfect risk sharing: no agent bears any idiosyncratic risk .
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