
Lecture 2: Dynamics, Completeness, Asset Pricing

Economics 714, Spring 2018

1 Linear Expectational Difference Equations

1.1 Setup

In the last class with linear utility we derived the linear expectational difference equation:

pt = βEt(pt+1 + st+1).

This type of equation arises frequently in linearized equilibrium models, which is a com-

mon solution technique. The stability criteria for this type of equation determine whether

equilibrium exists and is unique. Let’s consider slightly more general form:

pt = aEtpt+1 + cst.

where a and c are arbitrary constants. Here st is a predetermined or state variable, pt is

an endogenous or equilibrium or “jump” variable.

If |a| < 1, as it will be in our case with a = β ∈ (0, 1), we can solve this equation

forward:

pt = c

∞∑
j=0

ajEtst+j + lim
T→∞

aTEtpt+T

1.2 Bubbles and Fundamentals

We can decompose the general solution into the fundamental and the bubble component

pt = pft + bt
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Fundamentals solution:

pft = c
∞∑
j=0

ajEtst+j

Bubble component:

bt = lim
T→∞

aTEtpt+T

Note that bubbles explode in expectation:

Etbt+j =

(
1

a

)j

bt

We argued before that our infinite horizon model ruled out bubbles. We’ll return to

that later. In the absence of bubbles, knowledge of the process for st will determine the

price. For example suppose:

st+1 = ρst + wt+1,

where 0 < ρ < 1 and Etwt+1 = 0. Then we have:

pt =
c

1− aρ
st.

The hallmark of rational expectations models is that they satisfy the Lucas critique

(changes in the driving processes change the equilibrium) and cross-equation restrictions

(equilibrium reduced form parameters depend on underlying structural parameters), as

here.

1.3 Indeterminacy

What if |a| > 1? That’s not relevant in our case, but could hold in general. Then we

couldn’t solve forward, and in that case equilibrium would no longer be unique.
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For example, say st ≡ 1 and c = 0.

Etpt+1 =
1

a
pt

so

pt+1 =
1

a
pt + et+1,

where et+1 is an expectational error, defined by Etet+1 = 0. But it otherwise arbitrary: a

sunspot. Then we can solve backward:

pt+1 =

(
1

a

)t+1

p0 +
t+1∑
j=0

(
1

a

)j

et+1−j

Thus we now have a continuum of equilibria defined by the (arbitrary) initial condition

p0 and the specification of the sunspot process {et}.

The same basic approach extends to multivariate models, where there we use an eigen-

vector/eigenvalue decomposition. For determinacy, need as many eigenvalues |λi| > 1 as

there are predetermined variables.

2 Asset Pricing

2.1 Compete markets

Now we return to the Lucas model. We have used the equilibrium of the model to

determine a single price, the price of a tree. With trading in trees, markets are complete.

By this we mean that by trading in shares of the tree the representative agent could achieve

any state-contingent payoff.
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2.2 Pricing General Claims

However we can introduce additional (redundant) assets and use the same approach to

determine their prices. For this, suppose that the transition function Q has a density

f(s, s′):

Q(s, s′) =

∫ s′

−∞
f(s, u)du

In general we can define a pricing kernel q(s′, s) such that the equilibrium price PA

of unit of the good in period t+ 1 when st+1 ∈ A conditional on st = s is:

PA(s) =

∫
s′∈A

q(s, s′)ds′

In the Lucas model, the pricing kernel is:

q(s, s′) = β
u′(s′)

u′(s)
f(s, s′)

Roughly, this is the intertemporal marginal rate of substitution multiplied by the state

probabilities.

Using the pricing kernel, we can find the equilibrium price of any contingent claim

g(s′) one-period ahead:

pg(s) =

∫
q(s, s′)g(s′)ds′

=

∫
β
u′(s′)

u′(s)
g(s′)f(s, s′)ds′

= E

[
β
u′(s′)

u′(s)
g(s′)

∣∣∣∣ s]

The component m = β u′(s′)
u′(s)

is called the stochastic discount factor, as it discounts

random payoffs one period ahead to determine current period prices.
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We can also introduce longer-lived assets, which are related on one-period assets via

an arbitrage argument (that in equilibrium there can be no risk-free positive profits from

a costless (self-financing) trading strategy). That is, we can replicate multi-period claims

by rolling over one-period claims. Thus we can find the pricing kernel for multi-period

claims by chaining together one-step claims:

qj(s, sj) =

∫
q(s, s′)qj−1(s′, sj)ds′

This multi-period perspective gives us another expression for the price of a tree. In

fact, ownership of the tree is a claim to the entire dividend sequence {st}. Therefore we

can define the price of the tree as:

p(s) = β

∫
u′(s′)

u′(s)
s′f(s, s′)ds′ + β2

∫
u′(s′′)

u′(s)
s′′f 2(s, s′′)ds′′ + . . .

Or in sequence notation:

pt = Et

[
∞∑
j=1

βj u
′(st+j)

u′(st)
st+j

]

Note that by working directly with an infinite horizon equilibrium, we rule out bubbles.

2.3 Risk Corrections

Risk free rate:

1 = Et

[
β
u′(ct+1)

u′(ct)
R

]
⇒ R =

1

Et

[
β u′(ct+1)

u′(ct)

]
or R = 1/Etmt+1.
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For general payoff xt+1,

pt = Et(mt+1xt+1)

= Etmt+1Etxt+1 + covt(mt+1, xt+1)

=
Etxt+1

R
+ covt(mt+1, xt+1)
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