Lecture 2: Dynamics, Completeness, Asset Pricing

Economics 714, Spring 2018

1 Linear Expectational Difference Equations

1.1 Setup

In the last class with linear utility we derived the linear expectational difference equation:

$$
p_{t}=\beta E_{t}\left(p_{t+1}+s_{t+1}\right) .
$$

This type of equation arises frequently in linearized equilibrium models, which is a common solution technique. The stability criteria for this type of equation determine whether equilibrium exists and is unique. Let's consider slightly more general form:

$$
p_{t}=a E_{t} p_{t+1}+c s_{t} .
$$

where a and c are arbitrary constants. Here s_{t} is a predetermined or state variable, p_{t} is an endogenous or equilibrium or "jump" variable.

If $|a|<1$, as it will be in our case with $a=\beta \in(0,1)$, we can solve this equation forward:

$$
p_{t}=c \sum_{j=0}^{\infty} a^{j} E_{t} s_{t+j}+\lim _{T \rightarrow \infty} a^{T} E_{t} p_{t+T}
$$

1.2 Bubbles and Fundamentals

We can decompose the general solution into the fundamental and the bubble component

$$
p_{t}=p_{t}^{f}+b_{t}
$$

Fundamentals solution:

$$
p_{t}^{f}=c \sum_{j=0}^{\infty} a^{j} E_{t} s_{t+j}
$$

Bubble component:

$$
b_{t}=\lim _{T \rightarrow \infty} a^{T} E_{t} p_{t+T}
$$

Note that bubbles explode in expectation:

$$
E_{t} b_{t+j}=\left(\frac{1}{a}\right)^{j} b_{t}
$$

We argued before that our infinite horizon model ruled out bubbles. We'll return to that later. In the absence of bubbles, knowledge of the process for s_{t} will determine the price. For example suppose:

$$
s_{t+1}=\rho s_{t}+w_{t+1},
$$

where $0<\rho<1$ and $E_{t} w_{t+1}=0$. Then we have:

$$
p_{t}=\frac{c}{1-a \rho} s_{t} .
$$

The hallmark of rational expectations models is that they satisfy the Lucas critique (changes in the driving processes change the equilibrium) and cross-equation restrictions (equilibrium reduced form parameters depend on underlying structural parameters), as here.

1.3 Indeterminacy

What if $|a|>1$? That's not relevant in our case, but could hold in general. Then we couldn't solve forward, and in that case equilibrium would no longer be unique.

For example, say $s_{t} \equiv 1$ and $c=0$.

$$
E_{t} p_{t+1}=\frac{1}{a} p_{t}
$$

so

$$
p_{t+1}=\frac{1}{a} p_{t}+e_{t+1},
$$

where e_{t+1} is an expectational error, defined by $E_{t} e_{t+1}=0$. But it otherwise arbitrary: a sunspot. Then we can solve backward:

$$
p_{t+1}=\left(\frac{1}{a}\right)^{t+1} p_{0}+\sum_{j=0}^{t+1}\left(\frac{1}{a}\right)^{j} e_{t+1-j}
$$

Thus we now have a continuum of equilibria defined by the (arbitrary) initial condition p_{0} and the specification of the sunspot process $\left\{e_{t}\right\}$.

The same basic approach extends to multivariate models, where there we use an eigenvector/eigenvalue decomposition. For determinacy, need as many eigenvalues $\left|\lambda_{i}\right|>1$ as there are predetermined variables.

2 Asset Pricing

2.1 Compete markets

Now we return to the Lucas model. We have used the equilibrium of the model to determine a single price, the price of a tree. With trading in trees, markets are complete. By this we mean that by trading in shares of the tree the representative agent could achieve any state-contingent payoff.

2.2 Pricing General Claims

However we can introduce additional (redundant) assets and use the same approach to determine their prices. For this, suppose that the transition function Q has a density $f\left(s, s^{\prime}\right)$:

$$
Q\left(s, s^{\prime}\right)=\int_{-\infty}^{s^{\prime}} f(s, u) d u
$$

In general we can define a pricing kernel $q\left(s^{\prime}, s\right)$ such that the equilibrium price P^{A} of unit of the good in period $t+1$ when $s_{t+1} \in A$ conditional on $s_{t}=s$ is:

$$
P^{A}(s)=\int_{s^{\prime} \in A} q\left(s, s^{\prime}\right) d s^{\prime}
$$

In the Lucas model, the pricing kernel is:

$$
q\left(s, s^{\prime}\right)=\beta \frac{u^{\prime}\left(s^{\prime}\right)}{u^{\prime}(s)} f\left(s, s^{\prime}\right)
$$

Roughly, this is the intertemporal marginal rate of substitution multiplied by the state probabilities.

Using the pricing kernel, we can find the equilibrium price of any contingent claim $g\left(s^{\prime}\right)$ one-period ahead:

$$
\begin{aligned}
p^{g}(s) & =\int q\left(s, s^{\prime}\right) g\left(s^{\prime}\right) d s^{\prime} \\
& =\int \beta \frac{u^{\prime}\left(s^{\prime}\right)}{u^{\prime}(s)} g\left(s^{\prime}\right) f\left(s, s^{\prime}\right) d s^{\prime} \\
& =E\left[\left.\beta \frac{u^{\prime}\left(s^{\prime}\right)}{u^{\prime}(s)} g\left(s^{\prime}\right) \right\rvert\, s\right]
\end{aligned}
$$

The component $m=\beta \frac{u^{\prime}\left(s^{\prime}\right)}{u^{\prime}(s)}$ is called the stochastic discount factor, as it discounts random payoffs one period ahead to determine current period prices.

We can also introduce longer-lived assets, which are related on one-period assets via an arbitrage argument (that in equilibrium there can be no risk-free positive profits from a costless (self-financing) trading strategy). That is, we can replicate multi-period claims by rolling over one-period claims. Thus we can find the pricing kernel for multi-period claims by chaining together one-step claims:

$$
q^{j}\left(s, s^{j}\right)=\int q\left(s, s^{\prime}\right) q^{j-1}\left(s^{\prime}, s^{j}\right) d s^{\prime}
$$

This multi-period perspective gives us another expression for the price of a tree. In fact, ownership of the tree is a claim to the entire dividend sequence $\left\{s_{t}\right\}$. Therefore we can define the price of the tree as:

$$
p(s)=\beta \int \frac{u^{\prime}\left(s^{\prime}\right)}{u^{\prime}(s)} s^{\prime} f\left(s, s^{\prime}\right) d s^{\prime}+\beta^{2} \int \frac{u^{\prime}\left(s^{\prime \prime}\right)}{u^{\prime}(s)} s^{\prime \prime} f^{2}\left(s, s^{\prime \prime}\right) d s^{\prime \prime}+\ldots
$$

Or in sequence notation:

$$
p_{t}=E_{t}\left[\sum_{j=1}^{\infty} \beta^{j} \frac{u^{\prime}\left(s_{t+j}\right)}{u^{\prime}\left(s_{t}\right)} s_{t+j}\right]
$$

Note that by working directly with an infinite horizon equilibrium, we rule out bubbles.

2.3 Risk Corrections

Risk free rate:

$$
1=E_{t}\left[\beta \frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)} R\right] \Rightarrow R=\frac{1}{E_{t}\left[\beta \frac{u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}\right]}
$$

or $R=1 / E_{t} m_{t+1}$.

For general payoff x_{t+1},

$$
\begin{aligned}
p_{t} & =E_{t}\left(m_{t+1} x_{t+1}\right) \\
& =E_{t} m_{t+1} E_{t} x_{t+1}+\operatorname{cov}_{t}\left(m_{t+1}, x_{t+1}\right) \\
& =\frac{E_{t} x_{t+1}}{R}+\operatorname{cov}_{t}\left(m_{t+1}, x_{t+1}\right)
\end{aligned}
$$

