
Lecture 1: Lucas Model and Asset Pricing

Economics 714, Spring 2018

1 Asset Pricing

1.1 Lucas (1978) Asset Pricing Model

We assume that there are a large number of identical agents, modeled as a representative

agents. This is an endowment economy with a single nonstorable consumption good

(fruit), which is given off stochastically by productive units (trees) with net supply of 1.

The representative agent has standard time additively separable preferences, with a

period utility function that satisfies the usual conditions: u′(c) > 0, u′′(c) < 0, Inada:

limc→0 u
′(c) = +∞.

We start with a market in the shares of trees. The owner of the tree receives a

stochastic dividend st, whose realizations are governed by Markov transition function

Q(s, ds′).

Thus we have the representative agent problem:

max
{ct,at+1}

E0

∞∑
t=0

βtu(ct)

subject to:

ct + ptat+1 = (pt + st)at

We could characterize optimal choices and equilibrium sequentially or recursively.

Based on what you’ve learned previously, we will start with the recursive formulation.
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But in order to solve agent optimization problem, we need structure on pt.

Conjecture pricing function pt = p(st). Then can write Bellman equation for the

representative agent:

v(a, s) = max
(c,a′)

{
u(c) + β

∫
v(a′, s′)Q(s, ds′)

}

subject to:

c+ p(s)a′ ≤ (p(s) + s)a, c ≥ 0, 0 ≤ a′ ≤ 1

1.2 Equilibrium

Definition A recursive competitive equilibrium is a continuous function p(s) and a con-

tinuous, bounded function v(a, s) such that:

1. v(a, s) solves the Bellman equation

2. ∀s, v(1, s) is attained by c = s, a′ = 1.

Note that this definition builds in optimization and market clearing: representative agent

holds all shares of the tree and consumes the fruit.

To characterize the solution, note that wealth on hand is what really matters (p(s)+s)a

rather than a and s separately. Then we can re-write Bellman equation:

v((p(s) + s)a) = max
(a′)

{
u((p(s) + s)a− p(s)a′) + β

∫
v((p(s′) + s′)a′)Q(s, ds′)

}

Which gives the first order condition:

−u′(c(s))p(s) + β

∫
v′((p(s′) + s′)a′)[p(s′) + s′]Q(s, ds′) = 0
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and the envelope condition:

v′((p(s) + s)a) = u′(c(s))

We can combine the two optimality conditions to get Euler equation:

u′(c(s)) = β

∫
u′(c(s′))

p(s′) + s′

p(s)
Q(s, ds′).

This expression may be more familiar if we write it in sequence notation. If pt = p(st),

Rt+1 = pt+1+st+1

pt
:

u′(ct) = βEt[u
′(ct+1)Rt+1]

This is the standard optimality condition for a consumption-savings problem. But

what is different is our perspective here. Rather than taking returns as given, and de-

termining consumption, we now use the Euler equation to determine equilibrium returns.

Since this is an endowment economy, equilibrium consumption is given.

That is, equilibrium a = a′ = 1, c(s) = s. So we can rewrite the (functional) Euler

equation to determine the equilibrium pricing function:

p(s) = β

∫
u′(s′)(p(s′) + s′)

u′(s)
Q(s, ds′)

1.3 Pricing General Claims

We have used the equilibrium of the model to determine a single price, the price of a

tree. With trading in trees, markets are complete. However we can introduce additional

(redundant) assets and use the same approach to determine their prices.
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For this, suppose that the transition function Q has a density f(s, s′):

Q(s, s′) =

∫ s′

−∞
f(s, u)du

In general we can define a pricing kernel q(s′, s) such that the equilibrium price PA

of unit of the good in period t+ 1 when st+1 ∈ A conditional on st = s is:

PA(s) =

∫
s′∈A

q(s, s′)ds′

In the Lucas model, the pricing kernel is:

q(s, s′) = β
u′(s′)

u′(s)
f(s, s′)

Roughly, this is the intertemporal marginal rate of substitution multiplied by the state

probabilities.

Using the pricing kernel, we can find the equilibrium price of any contingent claim

g(s′) one-period ahead:

pg(s) =

∫
q(s, s′)g(s′)ds′

=

∫
β
u′(s′)

u′(s)
g(s′)f(s, s′)ds′

= E

[
β
u′(s′)

u′(s)
g(s′)

∣∣∣∣ s]

The component m = β u′(s′)
u′(s)

is called the stochastic discount factor, as it discounts

random payoffs one period ahead to determine current period prices.

We can also introduce longer-lived assets, which are related on one-period assets via

an arbitrage argument (that in equilibrium there can be no risk-free positive profits from

a costless (self-financing) trading strategy). That is, we can replicate multi-period claims
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by rolling over one-period claims. Thus we can find the pricing kernel for multi-period

claims by chaining together one-step claims:

qj(s, sj) =

∫
q(s, s′)qj−1(s′, sj)ds′

This multi-period perspective gives us another expression for the price of a tree. In

fact, ownership of the tree is a claim to the entire dividend sequence {st}. Therefore we

can define the price of the tree as:

p(s) = β

∫
u′(s′)

u′(s)
s′f(s, s′)ds′ + β2

∫
u′(s′′)

u′(s)
s′′f 2(s, s′′)ds′′ + . . .

Or in sequence notation:

pt = Et

[
∞∑
j=1

βj u
′(st+j)

u′(st)
st+j

]

Note that be working directly with an infinite horizon equilibrium, we rule out bubbles

which may arise in finite-length markets.
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