Lecture 9: Back to Dynamic Programming

Economics 712, Fall 2014

1 Dynamic Programming

1.1 Constructing Solutions to the Bellman Equation

Bellman equation:

V(z) = sup {F(x,y)+ BV (y)}

y€el'(z)

Assume:

(I'1): X CRYis convex, I' : X = X nonempty, compact-valued, continuous
(F1:) F: A — R is bounded and continuous, 0 < g < 1.

Define the Bellman operator:

(Tf)(z) = Jnax {F(z,y)+ Bf(y)}

Theorem: Under (I'l), (F1), T : C(X) — C(X) is a contraction, and hence has a
unique fixed point v € C(X) and for all vy € C(X) , [|T"vo — v|| < B"||vo —v||. Moreover,

the optimal policy correspondence:

G(x) ={y € I'(x) : v(z) = F(z,y) + fo(y)}

is compact-valued and uhc.

In addition, assume:

(F2): For each y, F(-,y) is strictly increasing



(I'2): T'is monotone: x <z’ = I'(x) C I'(z').

Theorem: Under (I'1)-(I'2), (F1)-(F2), the value function v solving (FE) is strictly
increasing.

Alternatively (or in addition), assume:

(F3): F is strictly concave

(I'3): T'is convex

Theorem: Under (I'1),(I'3), (F1),(F3), the value function v solving (FE) is strictly

concave, and the GG is a continuous, single-valued optimal policy function.

1.2 Differentiability of the Value Function

Theorem (Benveniste-Scheinkman): Let X C R! be convex, V : X — R be concave.
Take xy € intX, D open neighborhood of xj. If there exists a concave, differentiable
function W : D — R with W(zy) = V(29) and W(z) < V(z) Vz € D, then V is
differentiable at xy and V. (z¢) = W, ().

Assume:

(F4): F: A — R is continuously differentiable on the interior of A.

Theorem: Under (I'1),(I'3), (F1),(F3),(F4) let v be the value function solving (FE)
is strictly concave, and the g be the optimal policy function. If zy € intX and g(zg) €

intl(xg) then v is continuously differentiable at zq with:

Ve(2o) = Fy(w0, 9(20))



1.3 Euler Equations

Under the previous assumptions, first-order conditions and envelope (Benveniste-Scheinkman )

characterize solution of Bellman

V(z) = max {F(z,y) + 8V (y)}

y€el(z)

First order condition:
Fy(z,9(x)) 4+ BVa(g(z)) =0

Envelope condition:

Combine for Euler equation (functional)

Fy(x,9(x)) + BF:(9(x), 9(g(x))) = 0

Can also be derived via variational argument.

1.4 Linear-Quadratic Problems

Consider minimization problem:

min Z B (v Qu: + v Ruy)

o 433

subject to:

Y1 = Ay, + By

Transform to remove discounting: z;, = 52y, u; = B/?v,.
o0
mir}1 Z (,Qx + uyRuy)
S
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subject to:

$t+1 = Axt + But
Bellman equation:
V(z) = min {2'Qz + v'Ru + V(Az + Bu)}

Guess and verify: V(x) = 2’'Wa.

Wz = min {2'Qx + v'Ru + (Az + Bu)'W (Azx + Bu)}
First-order condition:
Ru + B'W(Ax+ Bu)=0
u = —(R+BWB)'BWAz

—Fz

Substitute back in, verify that W solves the (discrete) algebraic Riccati equation:

W=0Q+AWA—AWB(R+ BWB)'BWA

2 Consumption Savings-Problem: Infinite Horizon

2.1 Basic Problem

max Blu(c
fer) ; (c)
subject to:

Ty = R(xy — ¢ + 1)
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Can formulate in SLP terms, noting ¢; = z; + y; — x441/R.
Conditions easy to verify if u bounded, v’ > 0,u” < 0.

Write choice variable as savings s = x — c+ y:
Vi(x) = max {u(x +y—s)+ BV (Rs)}
First-order condition, s = g(x):
u'(z+y—g(r)) = BRV'(Rg(r))

Envelope condition:

V'(x) = (x+y — g(x))

Combine to get (functional) consumption Euler equation:

u'(z+y—g(x)) = fRu'(Rg(x) + y — g(g(x)))

2.2 A Solvable Example

Set u(c) = &=, y = 0.

1—v>

Guess V(z) = Ao

Can verify that:



