
Lecture 9: Back to Dynamic Programming

Economics 712, Fall 2014

1 Dynamic Programming

1.1 Constructing Solutions to the Bellman Equation

Bellman equation:

V (x) = sup
y∈Γ(x)

{F (x, y) + βV (y)}

Assume:

(Γ1): X ⊆ Rl is convex, Γ : X ⇒ X nonempty, compact-valued, continuous

(F1:) F : A→ R is bounded and continuous, 0 < β < 1.

Define the Bellman operator:

(Tf)(x) = max
y∈Γ(x)

{F (x, y) + βf(y)}

Theorem: Under (Γ1), (F1), T : C(X) → C(X) is a contraction, and hence has a

unique fixed point v ∈ C(X) and for all v0 ∈ C(X) , ‖T nv0− v‖ ≤ βn‖v0− v‖. Moreover,

the optimal policy correspondence:

G(x) = {y ∈ Γ(x) : v(x) = F (x, y) + βv(y)}

is compact-valued and uhc.

In addition, assume:

(F2): For each y, F (·, y) is strictly increasing
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(Γ2): Γ is monotone: x ≤ x′ ⇒ Γ(x) ⊆ Γ(x′).

Theorem: Under (Γ1)-(Γ2), (F1)-(F2), the value function v solving (FE) is strictly

increasing.

Alternatively (or in addition), assume:

(F3): F is strictly concave

(Γ3): Γ is convex

Theorem: Under (Γ1),(Γ3), (F1),(F3), the value function v solving (FE) is strictly

concave, and the G is a continuous, single-valued optimal policy function.

1.2 Differentiability of the Value Function

Theorem (Benveniste-Scheinkman): Let X ⊆ Rl be convex, V : X → R be concave.

Take x0 ∈ intX, D open neighborhood of x0. If there exists a concave, differentiable

function W : D → R with W (x0) = V (x0) and W (x) ≤ V (x) ∀x ∈ D, then V is

differentiable at x0 and Vx(x0) = Wx(x0).

Assume:

(F4): F : A→ R is continuously differentiable on the interior of A.

Theorem: Under (Γ1),(Γ3), (F1),(F3),(F4) let v be the value function solving (FE)

is strictly concave, and the g be the optimal policy function. If x0 ∈ intX and g(x0) ∈

intΓ(x0) then v is continuously differentiable at x0 with:

Vx(x0) = Fx(x0, g(x0))
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1.3 Euler Equations

Under the previous assumptions, first-order conditions and envelope (Benveniste-Scheinkman)

characterize solution of Bellman

V (x) = max
y∈Γ(x)

{F (x, y) + βV (y)}

First order condition:

Fy(x, g(x)) + βVx(g(x)) = 0

Envelope condition:

Vx(x) = Fx(x, g(x))

Combine for Euler equation (functional)

Fy(x, g(x)) + βFx(g(x), g(g(x))) = 0

Can also be derived via variational argument.

1.4 Linear-Quadratic Problems

Consider minimization problem:

min
{vt}

∞∑
t=0

βt (y′tQyt + v′tRvt)

subject to:

yt+1 = Ayt +Bvt

Transform to remove discounting: xt = βt/2yt, ut = βt/2vt.

min
{ut}

∞∑
t=0

(x′tQxt + u′tRut)
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subject to:

xt+1 = Axt +But

Bellman equation:

V (x) = min
u
{x′Qx+ u′Ru+ V (Ax+Bu)}

Guess and verify: V (x) = x′Wx.

x′Wx = min
u
{x′Qx+ u′Ru+ (Ax+Bu)′W (Ax+Bu)}

First-order condition:

Ru + B′W (Ax+Bu) = 0

u = −(R +B′WB)−1B′WAx

≡ −Fx

Substitute back in, verify that W solves the (discrete) algebraic Riccati equation:

W = Q+ A′WA− A′WB(R +B′WB)−1B′WA

2 Consumption Savings-Problem: Infinite Horizon

2.1 Basic Problem

max
{ct}

∞∑
t=0

βtu(ct)

subject to:

xt+1 = R(xt − ct + yt)
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Can formulate in SLP terms, noting ct = xt + yt − xt+1/R.

Conditions easy to verify if u bounded, u′ > 0, u′′ < 0.

Write choice variable as savings s = x− c+ y:

V (x) = max
s
{u(x+ y − s) + βV (Rs)}

First-order condition, s = g(x):

u′(x+ y − g(x)) = βRV ′(Rg(x))

Envelope condition:

V ′(x) = u′(x+ y − g(x))

Combine to get (functional) consumption Euler equation:

u′(x+ y − g(x)) = βRu′(Rg(x) + y − g(g(x)))

2.2 A Solvable Example

Set u(c) = c1−γ

1−γ , y = 0.

Guess V (x) = A
1−γx

1−γ

Ax1−γ = max
s

{
(x− s)1−γ

1− γ
+ βA(Rs)1−γ

}
Can verify that:

A =
(

1− β
1
γR

1−γ
γ

)−γ
s = kx = β

1
γR

1−γ
γ
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