Lecture 9: Back to Dynamic Programming

Economics 712, Fall 2014

1 Dynamic Programming

1.1 Constructing Solutions to the Bellman Equation

Bellman equation:

$$
V(x)=\sup _{y \in \Gamma(x)}\{F(x, y)+\beta V(y)\}
$$

Assume:
$(\Gamma 1): X \subseteq \mathbb{R}^{l}$ is convex, $\Gamma: X \rightrightarrows X$ nonempty, compact-valued, continuous
(F1:) $F: A \rightarrow \mathbb{R}$ is bounded and continuous, $0<\beta<1$.
Define the Bellman operator:

$$
(T f)(x)=\max _{y \in \Gamma(x)}\{F(x, y)+\beta f(y)\}
$$

Theorem: Under ($\mathrm{\Gamma} 1$), (F 1$), T: C(X) \rightarrow C(X)$ is a contraction, and hence has a unique fixed point $v \in C(X)$ and for all $v_{0} \in C(X),\left\|T^{n} v_{0}-v\right\| \leq \beta^{n}\left\|v_{0}-v\right\|$. Moreover, the optimal policy correspondence:

$$
G(x)=\{y \in \Gamma(x): v(x)=F(x, y)+\beta v(y)\}
$$

is compact-valued and uhc.
In addition, assume:
(F2): For each $y, F(\cdot, y)$ is strictly increasing
($\Gamma 2$): Γ is monotone: $x \leq x^{\prime} \Rightarrow \Gamma(x) \subseteq \Gamma\left(x^{\prime}\right)$.
Theorem: Under (Г1)-(Г2), (F1)-(F2), the value function v solving (FE) is strictly increasing.

Alternatively (or in addition), assume:
(F3): F is strictly concave
$(\Gamma 3): \Gamma$ is convex
Theorem: Under (Г1),(Г3), (F1),(F3), the value function v solving (FE) is strictly concave, and the G is a continuous, single-valued optimal policy function.

1.2 Differentiability of the Value Function

Theorem (Benveniste-Scheinkman): Let $X \subseteq \mathbb{R}^{l}$ be convex, $V: X \rightarrow \mathbb{R}$ be concave. Take $x_{0} \in \operatorname{int} X, D$ open neighborhood of x_{0}. If there exists a concave, differentiable function $W: D \rightarrow \mathbb{R}$ with $W\left(x_{0}\right)=V\left(x_{0}\right)$ and $W(x) \leq V(x) \quad \forall x \in D$, then V is differentiable at x_{0} and $V_{x}\left(x_{0}\right)=W_{x}\left(x_{0}\right)$.

Assume:
(F4): $F: A \rightarrow \mathbb{R}$ is continuously differentiable on the interior of A.
Theorem: Under (Г1),(Г3), (F1),(F3),(F4) let v be the value function solving (FE) is strictly concave, and the g be the optimal policy function. If $x_{0} \in \operatorname{int} X$ and $g\left(x_{0}\right) \in$ $\operatorname{int} \Gamma\left(x_{0}\right)$ then v is continuously differentiable at x_{0} with:

$$
V_{x}\left(x_{0}\right)=F_{x}\left(x_{0}, g\left(x_{0}\right)\right)
$$

1.3 Euler Equations

Under the previous assumptions, first-order conditions and envelope (Benveniste-Scheinkman) characterize solution of Bellman

$$
V(x)=\max _{y \in \Gamma(x)}\{F(x, y)+\beta V(y)\}
$$

First order condition:

$$
F_{y}(x, g(x))+\beta V_{x}(g(x))=0
$$

Envelope condition:

$$
V_{x}(x)=F_{x}(x, g(x))
$$

Combine for Euler equation (functional)

$$
F_{y}(x, g(x))+\beta F_{x}(g(x), g(g(x)))=0
$$

Can also be derived via variational argument.

1.4 Linear-Quadratic Problems

Consider minimization problem:

$$
\min _{\left\{v_{t}\right\}} \sum_{t=0}^{\infty} \beta^{t}\left(y_{t}^{\prime} Q y_{t}+v_{t}^{\prime} R v_{t}\right)
$$

subject to:

$$
y_{t+1}=A y_{t}+B v_{t}
$$

Transform to remove discounting: $x_{t}=\beta^{t / 2} y_{t}, u_{t}=\beta^{t / 2} v_{t}$.

$$
\min _{\left\{u_{t}\right\}} \sum_{t=0}^{\infty}\left(x_{t}^{\prime} Q x_{t}+u_{t}^{\prime} R u_{t}\right)
$$

subject to:

$$
x_{t+1}=A x_{t}+B u_{t}
$$

Bellman equation:

$$
V(x)=\min _{u}\left\{x^{\prime} Q x+u^{\prime} R u+V(A x+B u)\right\}
$$

Guess and verify: $V(x)=x^{\prime} W x$.

$$
x^{\prime} W x=\min _{u}\left\{x^{\prime} Q x+u^{\prime} R u+(A x+B u)^{\prime} W(A x+B u)\right\}
$$

First-order condition:

$$
\begin{aligned}
R u & +B^{\prime} W(A x+B u)=0 \\
u & =-\left(R+B^{\prime} W B\right)^{-1} B^{\prime} W A x \\
& \equiv-F x
\end{aligned}
$$

Substitute back in, verify that W solves the (discrete) algebraic Riccati equation:

$$
W=Q+A^{\prime} W A-A^{\prime} W B\left(R+B^{\prime} W B\right)^{-1} B^{\prime} W A
$$

2 Consumption Savings-Problem: Infinite Horizon

2.1 Basic Problem

$$
\max _{\left\{c_{t}\right\}} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)
$$

subject to:

$$
x_{t+1}=R\left(x_{t}-c_{t}+y_{t}\right)
$$

Can formulate in SLP terms, noting $c_{t}=x_{t}+y_{t}-x_{t+1} / R$.
Conditions easy to verify if u bounded, $u^{\prime}>0, u^{\prime \prime}<0$.
Write choice variable as savings $s=x-c+y$:

$$
V(x)=\max _{s}\{u(x+y-s)+\beta V(R s)\}
$$

First-order condition, $s=g(x)$:

$$
u^{\prime}(x+y-g(x))=\beta R V^{\prime}(R g(x))
$$

Envelope condition:

$$
V^{\prime}(x)=u^{\prime}(x+y-g(x))
$$

Combine to get (functional) consumption Euler equation:

$$
u^{\prime}(x+y-g(x))=\beta R u^{\prime}(R g(x)+y-g(g(x)))
$$

2.2 A Solvable Example

Set $u(c)=\frac{c^{1-\gamma}}{1-\gamma}, y=0$.
Guess $V(x)=\frac{A}{1-\gamma} x^{1-\gamma}$

$$
A x^{1-\gamma}=\max _{s}\left\{\frac{(x-s)^{1-\gamma}}{1-\gamma}+\beta A(R s)^{1-\gamma}\right\}
$$

Can verify that:

$$
\begin{aligned}
& A=\left(1-\beta^{\frac{1}{\gamma}} R^{\frac{1-\gamma}{\gamma}}\right)^{-\gamma} \\
& s=k x=\beta^{\frac{1}{\gamma}} R^{\frac{1-\gamma}{\gamma}}
\end{aligned}
$$

