Lecture 8: Dynamic Programming

Economics 712, Fall 2014

1 Basic Consumption-Savings Problem

1.1 Characterization of Solution

Reconsider date T"— 1 problem:

Vr_i(z) = max {u(c) + Vr(R(x —c+y))}

0<cLz+y

First order condition:
u'(c) = BRVp(R(zx —c+y))
= BRU(R(x —c+y)+y)
determines c¢r_1 = ¢p_1(x). Then:
Vi1 (x) = u(er—1(x)) + BVr(R(x — cp—1(x) +y))
So Vr_q is continuous, differentiable. Then we have the envelope condition:
Vi_i(@) = u'(er-1(z) +y)
Similar conditions hold for any ¢:

u(c(r)) = BRU(R(z—calr)+y) +y), or

W(c) = BRU(cerr)

Consumption Euler equation



1.2 Permanent Income Theory

Suppose SR = 1, then ¢; = ¢Vt. Then intertemporal constraint gives:

Ztho (le)t Yt + Zo

Yo (%)

Even with large variation in {y;} saving and borrowing used to smooth consumption.

Cc =

2 Dynamic Programming

2.1 Sequence and Recursive Formulations

(SP) Sequence problem:

V*(xo) = sup Z@tF($t7$t+1)
{ze41} 129

subject to

zip1 € I'(xy), o given

(FE) Bellman equation:

V(x) = sup {F(z,y)+ B8V (y)}

y€el'(z)

Define set of feasible plans (from x):
M(xo) = {{zs} : v41 € () Vt}

Theorem: If I'(z) is nonempty for all z € X and Vzy € X and z € II(xy):
T

lim ZﬂtF(:pt,th) exists
=0

T—00
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Then if v solves (FE) and satisfies:
lim BTv(xT) =0
T—o0

then v = v*.

2.2 Contraction Mappings

Definition: 7 : S — S is a contraction with modulus 5 on the metric space (S, p) if
w(Tx, Ty) < Bu(x,y) for all z,y € S, for some 0 < § < 1.

Theorem (Contraction Mapping): If (S, ) is a complete metric space and
T :S — S is a contraction, then T has a unique fixed point v € S, v = T.

Note that for any vy € S, u(T",v) < f"u(vo, v).

Corollary: (S, u) is a complete metric space and 7' : .S — S is a contraction with
v="Tv. IfS C S and S is closed, and T(S") C 5, then v € S’ If in addition,
T(S) C 8" C S thenve S

Theorem (Blackwell’s Sufficient Conditions): Let X C R! B(X) set of
bounded functions f : X — R with ||f]| = sup,cx |f(2)], so u(f,9) = ||f — g||. Let
T : B(X) — B(X) satisty:

1. Monotonicity: For f,g € B(X),if f(z) < g(z) Vo € X then T'f(x) < Tg(x) Vz € X.
2. Discounting: There exists a 0 < 8 < 1 such that:
T(f +a)(zx) < (Tf)(z)+ Ba
fora>0, f € B(x), all z € X.

Then T is a contraction with modulus /.
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2.3 Constructing Solutions to the Bellman Equation

Assume:
(T'1): X C R'is convex, I' : X = X nonempty, compact-valued, continuous
(F1:) F: A — R is bounded and continuous, 0 < 8 < 1.
Let C(X) be the space of bounded, continuous functions on X with || f|| = sup,cx |f(2)].

Note that (C'(X),| - ||) is a Banach space (complete normed vector space).

Define the Bellman operator:

(Tf)(x) = Jnax {F(z,y) + Bf(y)}

Theorem: Under (I'l), (F1), T : C(X) — C(X) is a contraction, and hence has a

unique fixed point v € C(X) and for all vy € C(X):
[T vo — vl < 5" ||lvo — v
Moreover, the optimal policy correspondence:

G(r) ={y € I'(z) : v(z) = F(z,y) + Bv(y)}

is compact-valued and uhc.

In addition, assume:

(F2): For each y, F(-,y) is strictly increasing

(I'2): T'is monotone: x <z’ = I'(x) C I'(z').

Theorem: Under (I'1)-(I'2), (F1)-(F2), the value function v solving (FE) is strictly
increasing.

Alternatively (or in addition), assume:



(F3): F is strictly concave
(I'3): T is convex
Theorem: Under (I'1),(I'3), (F1),(F3), the value function v solving (FE) is strictly

concave, and the GG is a continuous, single-valued optimal policy function.

2.4 Differentiability of the Value Function

Theorem (Benveniste-Scheinkman): Let X C R! be convex, V : X — R be concave.
Take zy € intX, D open neighborhood of xy. If there exists a concave, differentiable
function W : D — R with W(xy) = V(x9) and W(x) < V(z) Vz € D, then V is
differentiable at z¢ and V,(z¢) = W, (xo).

Assume:

(F4): F: A — R is continuously differentiable on the interior of A.

Theorem: Under (I'1),(I'3), (F1),(F3),(F4) let v be the value function solving (FE)
is strictly concave, and the g be the optimal policy function. If zq € intX and g(xy) €

int['(x¢) then v is continuously differentiable at zq with:

Va(zo) = Fu(o, 9(20))



