
Lecture 8: Dynamic Programming

Economics 712, Fall 2014

1 Basic Consumption-Savings Problem

1.1 Characterization of Solution

Reconsider date T − 1 problem:

VT−1(x) = max
0≤c≤x+y

{u(c) + βVT (R(x− c+ y))}

First order condition:

u′(c) = βRV ′T (R(x− c+ y))

= βRu′(R(x− c+ y) + y)

determines cT−1 = cT−1(x). Then:

VT−1(x) = u(cT−1(x)) + βVT (R(x− cT−1(x) + y))

So VT−1 is continuous, differentiable. Then we have the envelope condition:

V ′T−1(x) = u′(cT−1(x) + y)

Similar conditions hold for any t:

u′(ct(x)) = βRu′(R(x− ct(x) + y) + y), or:

u′(ct) = βRu′(ct+1)

Consumption Euler equation
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1.2 Permanent Income Theory

Suppose βR = 1, then ct = c̄∀t. Then intertemporal constraint gives:

c̄ =

∑T
t=0

(
1
R

)t
yt + x0∑T

t=0

(
1
R

)t
Even with large variation in {yt} saving and borrowing used to smooth consumption.

2 Dynamic Programming

2.1 Sequence and Recursive Formulations

(SP) Sequence problem:

V ∗(x0) = sup
{xt+1}

∞∑
t=0

βtF (xt, xt+1)

subject to

xt+1 ∈ Γ(xt), x0 given

(FE) Bellman equation:

V (x) = sup
y∈Γ(x)

{F (x, y) + βV (y)}

Define set of feasible plans (from x0):

Π(x0) = {{xt} : xt+1 ∈ Γ(xt) ∀t}

Theorem: If Γ(x) is nonempty for all x ∈ X and ∀x0 ∈ X and x ∈ Π(x0):

lim
T→∞

T∑
t=0

βtF (xt, xt+1) exists
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Then if v solves (FE) and satisfies:

lim
T→∞

βTv(xT ) = 0

then v = v∗.

2.2 Contraction Mappings

Definition: T : S → S is a contraction with modulus β on the metric space (S, µ) if

µ(Tx, Ty) ≤ βµ(x, y) for all x, y ∈ S, for some 0 < β < 1.

Theorem (Contraction Mapping): If (S, µ) is a complete metric space and

T : S → S is a contraction, then T has a unique fixed point v ∈ S, v = Tv.

Note that for any v0 ∈ S, µ(T n, v) ≤ βnµ(v0, v).

Corollary: (S, µ) is a complete metric space and T : S → S is a contraction with

v = Tv. If S ′ ⊆ S and S ′ is closed, and T (S ′) ⊆ S ′, then v ∈ S ′. If in addition,

T (S ′) ⊆ S ′′ ⊆ S ′ then v ∈ S ′′.

Theorem (Blackwell’s Sufficient Conditions): Let X ⊆ Rl, B(X) set of

bounded functions f : X → R with ‖f‖ = supx∈X |f(x)|, so µ(f, g) = ‖f − g‖. Let

T : B(X)→ B(X) satisfy:

1. Monotonicity: For f, g ∈ B(X), if f(x) ≤ g(x) ∀x ∈ X then Tf(x) ≤ Tg(x) ∀x ∈ X.

2. Discounting: There exists a 0 < β < 1 such that:

T (f + a)(x) ≤ (Tf)(x) + βa

for a > 0, f ∈ B(x), all x ∈ X.

Then T is a contraction with modulus β.
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2.3 Constructing Solutions to the Bellman Equation

Assume:

(Γ1): X ⊆ Rl is convex, Γ : X ⇒ X nonempty, compact-valued, continuous

(F1:) F : A→ R is bounded and continuous, 0 < β < 1.

Let C(X) be the space of bounded, continuous functions onX with ‖f‖ = supx∈X |f(x)|.

Note that (C(X), ‖ · ‖) is a Banach space (complete normed vector space).

Define the Bellman operator:

(Tf)(x) = max
y∈Γ(x)

{F (x, y) + βf(y)}

Theorem: Under (Γ1), (F1), T : C(X) → C(X) is a contraction, and hence has a

unique fixed point v ∈ C(X) and for all v0 ∈ C(X):

‖T nv0 − v‖ ≤ βn‖v0 − v‖

Moreover, the optimal policy correspondence:

G(x) = {y ∈ Γ(x) : v(x) = F (x, y) + βv(y)}

is compact-valued and uhc.

In addition, assume:

(F2): For each y, F (·, y) is strictly increasing

(Γ2): Γ is monotone: x ≤ x′ ⇒ Γ(x) ⊆ Γ(x′).

Theorem: Under (Γ1)-(Γ2), (F1)-(F2), the value function v solving (FE) is strictly

increasing.

Alternatively (or in addition), assume:
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(F3): F is strictly concave

(Γ3): Γ is convex

Theorem: Under (Γ1),(Γ3), (F1),(F3), the value function v solving (FE) is strictly

concave, and the G is a continuous, single-valued optimal policy function.

2.4 Differentiability of the Value Function

Theorem (Benveniste-Scheinkman): Let X ⊆ Rl be convex, V : X → R be concave.

Take x0 ∈ intX, D open neighborhood of x0. If there exists a concave, differentiable

function W : D → R with W (x0) = V (x0) and W (x) ≤ V (x) ∀x ∈ D, then V is

differentiable at x0 and Vx(x0) = Wx(x0).

Assume:

(F4): F : A→ R is continuously differentiable on the interior of A.

Theorem: Under (Γ1),(Γ3), (F1),(F3),(F4) let v be the value function solving (FE)

is strictly concave, and the g be the optimal policy function. If x0 ∈ intX and g(x0) ∈

intΓ(x0) then v is continuously differentiable at x0 with:

Vx(x0) = Fx(x0, g(x0))
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