## Lecture 8: Dynamic Programming

## Economics 712, Fall 2014

## 1 Basic Consumption-Savings Problem

### 1.1 Characterization of Solution

Reconsider date $T-1$ problem:

$$
V_{T-1}(x)=\max _{0 \leq c \leq x+y}\left\{u(c)+\beta V_{T}(R(x-c+y))\right\}
$$

First order condition:

$$
\begin{aligned}
u^{\prime}(c) & =\beta R V_{T}^{\prime}(R(x-c+y)) \\
& =\beta R u^{\prime}(R(x-c+y)+y)
\end{aligned}
$$

determines $c_{T-1}=c_{T-1}(x)$. Then:

$$
V_{T-1}(x)=u\left(c_{T-1}(x)\right)+\beta V_{T}\left(R\left(x-c_{T-1}(x)+y\right)\right)
$$

So $V_{T-1}$ is continuous, differentiable. Then we have the envelope condition:

$$
V_{T-1}^{\prime}(x)=u^{\prime}\left(c_{T-1}(x)+y\right)
$$

Similar conditions hold for any $t$ :

$$
\begin{aligned}
u^{\prime}\left(c_{t}(x)\right) & =\beta R u^{\prime}\left(R\left(x-c_{t}(x)+y\right)+y\right), \text { or: } \\
u^{\prime}\left(c_{t}\right) & =\beta R u^{\prime}\left(c_{t+1}\right)
\end{aligned}
$$

Consumption Euler equation

### 1.2 Permanent Income Theory

Suppose $\beta R=1$, then $c_{t}=\bar{c} \forall t$. Then intertemporal constraint gives:

$$
\bar{c}=\frac{\sum_{t=0}^{T}\left(\frac{1}{R}\right)^{t} y_{t}+x_{0}}{\sum_{t=0}^{T}\left(\frac{1}{R}\right)^{t}}
$$

Even with large variation in $\left\{y_{t}\right\}$ saving and borrowing used to smooth consumption.

## 2 Dynamic Programming

### 2.1 Sequence and Recursive Formulations

(SP) Sequence problem:

$$
V^{*}\left(x_{0}\right)=\sup _{\left\{x_{t+1}\right\}} \sum_{t=0}^{\infty} \beta^{t} F\left(x_{t}, x_{t+1}\right)
$$

subject to

$$
x_{t+1} \in \Gamma\left(x_{t}\right), \quad x_{0} \text { given }
$$

(FE) Bellman equation:

$$
V(x)=\sup _{y \in \Gamma(x)}\{F(x, y)+\beta V(y)\}
$$

Define set of feasible plans (from $x_{0}$ ):

$$
\Pi\left(x_{0}\right)=\left\{\left\{x_{t}\right\}: x_{t+1} \in \Gamma\left(x_{t}\right) \quad \forall t\right\}
$$

Theorem: If $\Gamma(x)$ is nonempty for all $x \in X$ and $\forall x_{0} \in X$ and $x \in \Pi\left(x_{0}\right)$ :

$$
\lim _{T \rightarrow \infty} \sum_{t=0}^{T} \beta^{t} F\left(x_{t}, x_{t+1}\right) \text { exists }
$$

Then if $v$ solves (FE) and satisfies:

$$
\lim _{T \rightarrow \infty} \beta^{T} v\left(x_{T}\right)=0
$$

then $v=v^{*}$.

### 2.2 Contraction Mappings

Definition: $T: S \rightarrow S$ is a contraction with modulus $\beta$ on the metric space $(S, \mu)$ if $\mu(T x, T y) \leq \beta \mu(x, y)$ for all $x, y \in S$, for some $0<\beta<1$.

Theorem (Contraction Mapping): If $(S, \mu)$ is a complete metric space and $T: S \rightarrow S$ is a contraction, then $T$ has a unique fixed point $v \in S, v=T v$.

Note that for any $v_{0} \in S, \mu\left(T^{n}, v\right) \leq \beta^{n} \mu\left(v_{0}, v\right)$.
Corollary: $(S, \mu)$ is a complete metric space and $T: S \rightarrow S$ is a contraction with $v=T v$. If $S^{\prime} \subseteq S$ and $S^{\prime}$ is closed, and $T\left(S^{\prime}\right) \subseteq S^{\prime}$, then $v \in S^{\prime}$. If in addition, $T\left(S^{\prime}\right) \subseteq S^{\prime \prime} \subseteq S^{\prime}$ then $v \in S^{\prime \prime}$.

Theorem (Blackwell's Sufficient Conditions): Let $X \subseteq \mathbb{R}^{l}, B(X)$ set of bounded functions $f: X \rightarrow \mathbb{R}$ with $\|f\|=\sup _{x \in X}|f(x)|$, so $\mu(f, g)=\|f-g\|$. Let $T: B(X) \rightarrow B(X)$ satisfy:

1. Monotonicity: For $f, g \in B(X)$, if $f(x) \leq g(x) \forall x \in X$ then $T f(x) \leq T g(x) \forall x \in X$.
2. Discounting: There exists a $0<\beta<1$ such that:

$$
T(f+a)(x) \leq(T f)(x)+\beta a
$$

for $a>0, f \in B(x)$, all $x \in X$.

Then $T$ is a contraction with modulus $\beta$.

### 2.3 Constructing Solutions to the Bellman Equation

Assume:
$(\Gamma 1): X \subseteq \mathbb{R}^{l}$ is convex, $\Gamma: X \rightrightarrows X$ nonempty, compact-valued, continuous
(F1:) $F: A \rightarrow \mathbb{R}$ is bounded and continuous, $0<\beta<1$.
Let $C(X)$ be the space of bounded, continuous functions on $X$ with $\|f\|=\sup _{x \in X}|f(x)|$. Note that $(C(X),\|\cdot\|)$ is a Banach space (complete normed vector space).

Define the Bellman operator:

$$
(T f)(x)=\max _{y \in \Gamma(x)}\{F(x, y)+\beta f(y)\}
$$

Theorem: Under ( $\Gamma 1$ ), (F1), $T: C(X) \rightarrow C(X)$ is a contraction, and hence has a unique fixed point $v \in C(X)$ and for all $v_{0} \in C(X)$ :

$$
\left\|T^{n} v_{0}-v\right\| \leq \beta^{n}\left\|v_{0}-v\right\|
$$

Moreover, the optimal policy correspondence:

$$
G(x)=\{y \in \Gamma(x): v(x)=F(x, y)+\beta v(y)\}
$$

is compact-valued and uhc.
In addition, assume:
(F2): For each $y, F(\cdot, y)$ is strictly increasing
( $\Gamma 2$ ): $\Gamma$ is monotone: $x \leq x^{\prime} \Rightarrow \Gamma(x) \subseteq \Gamma\left(x^{\prime}\right)$.
Theorem: Under (Г1)-(Г2), (F1)-(F2), the value function $v$ solving (FE) is strictly increasing.

Alternatively (or in addition), assume:
(F3): $F$ is strictly concave
$(\Gamma 3): \Gamma$ is convex
Theorem: Under (Г1),( $\mathrm{\Gamma} 3$ ), ( F 1 ), (F3), the value function $v$ solving (FE) is strictly concave, and the $G$ is a continuous, single-valued optimal policy function.

### 2.4 Differentiability of the Value Function

Theorem (Benveniste-Scheinkman): Let $X \subseteq \mathbb{R}^{l}$ be convex, $V: X \rightarrow \mathbb{R}$ be concave. Take $x_{0} \in \operatorname{int} X, D$ open neighborhood of $x_{0}$. If there exists a concave, differentiable function $W: D \rightarrow \mathbb{R}$ with $W\left(x_{0}\right)=V\left(x_{0}\right)$ and $W(x) \leq V(x) \quad \forall x \in D$, then $V$ is differentiable at $x_{0}$ and $V_{x}\left(x_{0}\right)=W_{x}\left(x_{0}\right)$.

Assume:
(F4): $F: A \rightarrow \mathbb{R}$ is continuously differentiable on the interior of $A$.
Theorem: Under (Г1),(Г3), (F1),(F3),(F4) let $v$ be the value function solving (FE) is strictly concave, and the $g$ be the optimal policy function. If $x_{0} \in \operatorname{int} X$ and $g\left(x_{0}\right) \in$ $\operatorname{int} \Gamma\left(x_{0}\right)$ then $v$ is continuously differentiable at $x_{0}$ with:

$$
V_{x}\left(x_{0}\right)=F_{x}\left(x_{0}, g\left(x_{0}\right)\right)
$$

