Lecture 7: Consumption-Savings Problem,

Finite Horizon

Economics 712, Fall 2014

1 Basic Consumption-Savings Problem

1.1 Setup

Agent preferences:

$$
\sum_{t=0}^{T} \beta^{t} u\left(c_{t}\right)
$$

Where u is $C^{2}, u^{\prime}>0, u^{\prime \prime}<0$.
Sometimes we'll also assume u is bounded, satisfies Inada: $\lim _{c \rightarrow 0} u^{\prime}(c)=\infty$.
Initial wealth x_{0}, constant gross return $R>1$, exogenous labor income $\left\{y_{t}\right\}$. So flow constraint:

$$
x_{t+1}=R\left(x_{t}-c_{t}+y_{t}\right)
$$

Intertermporal constraint:

$$
\sum_{t=0}^{T}\left(\frac{1}{R}\right)^{t} c_{t}=\sum_{t=0}^{T}\left(\frac{1}{R}\right)^{t} y_{t}+x_{0}
$$

1.2 Sequence Problem

$$
\max _{\left\{c_{t}\right\}} \sum_{t=0}^{T} \beta^{t} u\left(c_{t}\right)
$$

subject to:

$$
\sum_{t=0}^{T}\left(\frac{1}{R}\right)^{t} c_{t}=\sum_{t=0}^{T}\left(\frac{1}{R}\right)^{t} y_{t}+x_{0}
$$

Single optimization problem over consumption plan.
Standard arguments show that a solution exists and is unique.

1.3 Theorem of the Maximum

For general optimization problem, with $X \subseteq \mathbb{R}^{l}, Y \subseteq \mathbb{R}^{m}$.
Objective function $f: X \times Y \rightarrow \mathbb{R}$ continuous
Feasible correspondence $\Gamma: X \rightrightarrows Y$ compact valued, continuous (upper- and lowerhemicontinuous)

Maximization problem and value:

$$
h(x)=\max _{y \in \Gamma(x)} f(x, y)
$$

Set of maximizers:

$$
G(x)=\{y \in \Gamma(x): f(x, y)=h(x)\}
$$

Theorem: Under these conditions, h is continuous and G is nonempty, compactvalued, and upper-hemicontinuous.

1.4 Recursive Formulation

Since finite horizon, solve by backward induction. For simplicity assume $y_{t} \equiv y \forall t$.
At date $T, c_{T}=x_{T}+y$. Define $V_{T}(x)=u(x+y)$.

At date $T-1$ solve 2 period problem, with $x=x_{T-1}, y=y_{T-1}$:

$$
\begin{aligned}
V_{T-1}(x) & =\max _{0 \leq c \leq x+y}\{u(c)+\beta u(R(x-c+y)+y)\} \\
& =\max _{0 \leq c \leq x+y}\left\{u(c)+\beta V_{T}(R(x-c+y))\right\}
\end{aligned}
$$

by the Theorem of the Maximum, $V_{T-1}(x)$ is continuous.
Continuing in this way, for any $0 \leq t \leq T-1$ we have:

$$
V_{t}(x)=\max _{0 \leq c \leq x+y}\left\{u(c)+\beta V_{t+1}(R(x-c+y))\right\}
$$

which is a (time-dependent) Bellman equation.

1.5 Principle of Optimality (Finite Horizon)

We can justify the Bellman equation with a simple case of the principle of optimality.
Let $\left\{c_{t}^{*}\right\}_{t=0}^{T}$ solve the sequence problem with initial wealth x_{0}. Given arbitrary dates $0 \leq a<b \leq T-1$, let x_{a}^{*} and x_{b+1}^{*} be the optimal wealth. Then consider the problem:

$$
\max _{\left\{c_{t}\right\}_{t=a}^{b}} \sum_{t=a}^{b} \beta^{t-a} u\left(c_{t}\right)
$$

subject to:

$$
x_{t+1}=R\left(x_{t}-c_{t}+y\right), \quad x_{a}^{*}, x_{b+1}^{*} \text { given }
$$

Then the solution to this problem is $\left\{c_{t}^{*}\right\}_{t=a}^{b}$.
Bellman equation is a special case.

1.6 Characterization of Solution

Reconsider date $T-1$ problem:

$$
V_{T-1}(x)=\max _{0 \leq c \leq x+y}\left\{u(c)+\beta V_{T}(R(x-c+y))\right\}
$$

First order condition:

$$
\begin{aligned}
u^{\prime}(c) & =\beta R V_{T}^{\prime}(R(x-c+y)) \\
& =\beta R u^{\prime}(R(x-c+y)+y)
\end{aligned}
$$

determines $c_{T-1}=c_{T-1}(x)$. Then:

$$
V_{T-1}(x)=u\left(c_{T-1}(x)\right)+\beta V_{T}\left(R\left(x-c_{T-1}(x)+y\right)\right)
$$

So V_{T-1} is continuous, differentiable. Then we have the envelope condition:

$$
V_{T-1}^{\prime}(x)=u^{\prime}\left(c_{T-1}(x)+y\right)
$$

Similar conditions hold for any t :

$$
\begin{aligned}
u^{\prime}\left(c_{t}(x)\right) & =\beta R u^{\prime}\left(R\left(x-c_{t}(x)+y\right)+y\right), \text { or: } \\
u^{\prime}\left(c_{t}\right) & =\beta R u^{\prime}\left(c_{t+1}\right)
\end{aligned}
$$

Consumption Euler equation

1.7 Permanent Income Theory

Suppose $\beta R=1$, then $c_{t}=\bar{c} \forall t$. Then intertemporal constraint gives:

$$
\bar{c}=\frac{\sum_{t=0}^{T}\left(\frac{1}{R}\right)^{t} y_{t}+x_{0}}{\sum_{t=0}^{T}\left(\frac{1}{R}\right)^{t}}
$$

Even with large variation in $\left\{y_{t}\right\}$ saving and borrowing used to smooth consumption.

