1 Firm Decision

Wage \(w \), hours fixed at 1, either party can freely break contract.

\(J \) value of filled job, \(V \) value of vacant job.

Over short interval \(\Delta > 0 \):

\[
V = -pc\Delta + e^{-r\Delta}[e^{-q(\theta)\Delta}V + (1 - e^{-q(\theta)\Delta})J]
\]

Take limits as \(\Delta \to 0 \):

\[
rv = -pc + q(\theta)(J - V)
\]

\[
rJ = p - w - sJ
\]

So we have:

\[
J = \frac{p - w}{r + s}
\]

Free entry of firms means \(V = 0 \). So we also have:

\[
J = \frac{pc}{q(\theta)}
\]

Equating gives the job creation condition:

\[
p - w - (r + s)\frac{pc}{q(\theta)} = 0
\]

If \(c \to 0 \) or if \(q(\theta) \to \infty \) then \(p = w \).

2 Workers’ Decisions

Now no longer a distribution of offers, no reason to turn down wage as long as \(W > U \).

Value of unemployed:

\[
 rU = z + \theta q(\theta)(W - U)
\]

Value of employed:

\[
 rW = w + s(U - W(w))
\]

We can solve:

\[
 W(w) = \frac{w}{r + s} + \frac{s}{r + s}U, \quad W'(w) = \frac{1}{r + s}
\]

Use expression for \(W \), solve for \((W, U)\) explicitly:

\[
 U = \frac{sz + \theta q(\theta)w + rz}{r^2 + r\theta q(\theta) + sr}
 W = \frac{sz + \theta q(\theta)w + rw}{r^2 + r\theta q(\theta) + sr}
\]

So \(W > U \Leftrightarrow w > z \).

3 Wage Determination

Rents in equilibrium: surplus to both workers and firms once matched. Wage splits surplus, not pinned down.

Solve for wages by Nash bargaining solution:

\[
 w = \arg \max_{\hat{w}} (W(\hat{w}) - U)\beta (J(\hat{w}) - V)^{1-\beta}
\]

Optimality condition:

\[
 \beta \frac{W'(w)}{W - U} = -(1 - \beta) \frac{J'(w)}{J - V}
\]
Simplify:

\[W = U + \beta(W - U + J) \]

Use expression for \(J \):

\[W - U = \frac{\beta}{1 - \beta} \frac{pc}{q(\theta)} \]

Also can solve to show:

\[w = rU + \beta(p - rU) \]

Finally, can derive the wage equation:

\[w = (1 - \beta)z + \beta(p + \theta pc) \]

4 Steady State Unemployment

Three key equations:

\[
\begin{align*}
 w &= (1 - \beta)z + \beta(p + \theta pc) \\
 p - w - (r + s) \frac{pc}{q(\theta)} &= 0 \\
 u &= \frac{s}{s + \theta q(\theta)}
\end{align*}
\]

Combine first two to determine steady state \(\theta \):

\[
(1 - \beta)(p - z) - \frac{r + s + \beta \theta q(\theta)}{q(\theta)} pc = 0
\]

Then Beveridge curve determines steady state \(u \) given \(\theta \).