# Lecture 6: Equilibrium Search 

## Economics 712, Fall 2014

## 1 Firm Decision

Wage $w$, hours fixed at 1 , either party can freely break contract.
$J$ value of filled job, $V$ value of vacant job.
Over short interval $\Delta>0$ :

$$
V=-p c \Delta+e^{-r \Delta}\left[e^{-q(\theta) \Delta} V+\left(1-e^{-q(\theta) \Delta}\right) J\right]
$$

Take limits as $\Delta \rightarrow 0$ :

$$
\begin{aligned}
& r V=-p c+q(\theta)(J-V) \\
& r J=p-w-s J
\end{aligned}
$$

So we have:

$$
J=\frac{p-w}{r+s}
$$

Free entry of firms means $V=0$. So we also have:

$$
J=\frac{p c}{q(\theta)}
$$

Equating gives the job creation condition:

$$
p-w-(r+s) \frac{p c}{q(\theta)}=0
$$

If $c \rightarrow 0$ or if $q(\theta) \rightarrow \infty$ then $p=w$.

## 2 Workers' Decisions

Now no longer a distribution of offers, no reason to turn down wage as long as $W>U$.
Value of unemployed:

$$
r U=z+\theta q(\theta)(W-U)
$$

Value of employed:

$$
r W=w+s(U-W(w))
$$

We can solve:

$$
W(w)=\frac{w}{r+s}+\frac{s}{r+s} U, \quad W^{\prime}(w)=\frac{1}{r+s}
$$

Use expression for $W$, solve for ( $W, U$ ) explicitly:

$$
\begin{aligned}
U & =\frac{s z+\theta q(\theta) w+r z}{r^{2}+r \theta q(\theta)+s r} \\
W & =\frac{s z+\theta q(\theta) w+r w}{r^{2}+r \theta q(\theta)+s r}
\end{aligned}
$$

So $W>U \Leftrightarrow w>z$.

## 3 Wage Determination

Rents in equilibrium: surplus to both workers and firms once matched. Wage splits surplus, not pinned down.

Solve for wages by Nash bargaining solution:

$$
w=\arg \max _{\hat{w}}(W(\hat{w})-U)^{\beta}(J(\hat{w})-V)^{1-\beta}
$$

Optimality condition:

$$
\beta \frac{W^{\prime}(w)}{W-U}=-(1-\beta) \frac{J^{\prime}(w)}{J-V}
$$

Simplify:

$$
W=U+\beta(W-U+J)
$$

Use expression for $J$ :

$$
W-U=\frac{\beta}{1-\beta} \frac{p c}{q(\theta)}
$$

Also can solve to show:

$$
w=r U+\beta(p-r U)
$$

Finally, can derive the wage equation:

$$
w=(1-\beta) z+\beta(p+\theta p c)
$$

## 4 Steady State Unemployment

Three key equations:

$$
\begin{aligned}
w & =(1-\beta) z+\beta(p+\theta p c) \\
p & -w-(r+s) \frac{p c}{q(\theta)}=0 \\
u & =\frac{s}{s+\theta q(\theta)}
\end{aligned}
$$

Combine first two to determine steady state $\theta$ :

$$
(1-\beta)(p-z)-\frac{r+s+\beta \theta q(\theta)}{q(\theta)} p c=0
$$

Then Beveridge curve determines steady state $u$ given $\theta$.

