Lecture 3: More on Dynamics

Labor Market Search

Economics 712, Fall 2014

1 Dynamics of Linear Difference Equations

1.1 Multivariate Models

$$
\begin{aligned}
p_{t} & =a E_{t} p_{t+1}+c m_{t} \\
m_{t+1} & =\rho m_{t}+\delta p_{t}+u_{t+1}
\end{aligned}
$$

Write in matrix form:

$$
x_{t}=A x_{t+1}+B w_{t+1}
$$

Diagonalize using eigenvector/eigenvalue decomposition:

$$
A=V \Lambda V^{-1}
$$

Define $z_{t}=V^{-1} x_{t}$, then:

$$
z_{t}=\Lambda z_{t+1}+V^{-1} B w_{t+1}
$$

If $\left|\lambda_{i}\right|<1$, can solve forward:

$$
z_{t}^{i}=\lambda_{i}^{t+T} E_{t} z_{t+T}^{i}
$$

So then $z_{t}^{i}=0$.

If $\left|\lambda_{i}\right|>1$, can solve backward:

$$
z_{t}^{i}=\left(\frac{1}{\lambda_{i}}\right)^{t} z_{0}
$$

For determinacy, need as many $\left|\lambda_{i}\right|>1$ as there are predetermined variables.

1.2 Back to the example

For small $\delta>0$ will have $0<\lambda_{1}<1<\lambda_{2}$ and therefore restriction:

$$
v^{11} p_{t}+v^{21} m_{t}=0
$$

This gives determinate, saddlepath solution, determines p_{0} given m_{0}.
But if δ large enough will have $\lambda_{2}>\lambda_{1}>1$. Then need initial conditions for m_{0}, p_{0}. Indeterminacy. Steady state is a sink.

2 Search Labor Model

2.1 McCall (1970) Model

Risk-neutral agent searches for job:

$$
E_{0} \sum_{t=0}^{\infty} \beta^{t} x_{t}
$$

$x_{t}=w$ if employed, $x_{t}=z$ if unemployed
Job offers i.i.d. draw from $F(w)$.
Recursive formulation: state $s_{t} \in\{W, U\}$, control: accept, reject offer

Value of employed worker

$$
\begin{aligned}
W(w) & =E_{0} \sum_{t=0}^{\infty} \beta^{t} x_{t}, \text { s.t. } x_{t}=w \\
& =\frac{w}{1-\beta}
\end{aligned}
$$

Value of unemployed worker:

$$
U=z+\beta \int_{0}^{\infty} \max _{\text {acc,rej }}\left\{U, \frac{w}{1-\beta}\right\} d F(w)
$$

Reservation wage w_{R} :

$$
W\left(w_{R}\right)=U=\frac{w_{R}}{1-\beta}
$$

Characterize reservation wage:

$$
w_{R}-z=\frac{\beta}{1-\beta} \int_{w_{R}}^{\infty}\left(w-w_{R}\right) d F(w)
$$

Another characterization:

$$
w_{R}-z=\beta(E[w]-z)+\beta \int_{0}^{w_{R}} F(w) d w
$$

Factors affecting reservation wage:

- value of unemployment z
- distribution of offers F

