Lecture 2: Expectations and Dynamics

Economics 712, Fall 2014

1 Dynamics of Linear Difference Equations

1.1 Vector example: Dornbusch (1976) exchange rate model

Then re-write dynamics as deviations from steady state:

$$
\begin{aligned}
e_{t+1}-\bar{e} & =e_{t}-\bar{e}+\frac{1}{\lambda}\left(p_{t}-\bar{p}\right) \\
p_{t+1}-\bar{p} & =\frac{\delta \alpha}{1-\alpha \sigma}\left(e_{t}-\bar{e}\right)+\left[1-\frac{\alpha}{1-\alpha \sigma}(\delta+\sigma / \lambda)\left(p_{t}-\bar{p}\right)\right]
\end{aligned}
$$

Define vector $X_{t}=\left[e_{t}-\bar{e}, p_{t}-\bar{p}\right]^{\prime}$, so can write this as a vector difference equation $X_{t+1}=A X_{t}$. What happens to X_{t} over time?

Qualitatively, can construct phase diagram.

$$
\begin{aligned}
\Delta e_{t} & =e_{t+1}-e_{t}=\left(p_{t}-\bar{p}\right) \lambda \\
\Delta p_{t} & =\frac{\alpha}{1-\alpha \sigma}\left[\delta\left(e_{t}-\bar{e}\right)-(\delta+\sigma / \lambda)\left(p_{t}-\bar{p}\right)\right]
\end{aligned}
$$

Analyze regions where $\Delta e_{t}>0, \Delta e_{t}=0, \Delta e_{t}<0$, same for p_{t}.
Given p_{t}, there is a unique value of e_{t} such that the economy is stable. This mapping $e_{t}\left(p_{t}\right)$ defines the saddle path.

2 Forward Looking Model: Cagan Model with Ra-

tional Expectations

$$
M_{t}^{d}=\exp \left(-\alpha \frac{E_{t} p_{t+1}-p_{t}}{p_{t}}\right)
$$

Take logs, rewrite:

$$
p_{t}=a E_{t} p_{t+1}+c m_{t}
$$

What happens to prices over time? Solve forward if $|a|<1$:

$$
p_{t}=c \sum_{j=0}^{\infty} a^{j} E_{t} m_{t+j}+\lim _{T \rightarrow \infty} a^{T} E_{t} p_{t+T}
$$

Example:

$$
m_{t+1}=\rho m_{t}+w_{t+1}
$$

Then:

$$
p_{t}=\frac{c}{1-a \rho} m_{t}
$$

Lucas critique and cross-equation restrictions

3 Bubbles and Indeterminacy

3.1 Bubbles

Fundamentals solution:

$$
p_{t}^{f}=c \sum_{j=0}^{\infty} a^{j} E_{t} m_{t+j}
$$

Bubble component:

$$
b_{t}=\lim _{T \rightarrow \infty} a^{T} E_{t} p_{t+T}
$$

General solution:

$$
p_{t}=p_{t}^{f}+b_{t}
$$

Bubbles explode in expectation here:

$$
E_{t} b_{t+j}=\left(\frac{1}{a}\right)^{j} b_{t}
$$

3.2 Indeterminacy

What if $|a|>1$? Can't solve forward
Say $m_{t} \equiv 1$

$$
E_{t} p_{t+1}=\frac{1}{a} p_{t}-c
$$

so

$$
p_{t+1}=\frac{1}{a} p_{t}-c+e_{t+1}
$$

Solve backward:

$$
p_{t+1}=\frac{c}{1-a}+\left(\frac{1}{a}\right)^{t+1} p_{0}+\sum_{j=0}^{t+1}\left(\frac{1}{a}\right)^{j} e_{t+1-j}
$$

3.3 Multivariate Models

$$
\begin{aligned}
p_{t} & =a E_{t} p_{t+1}+c m_{t} \\
m_{t+1} & =\rho m_{t}+\delta p_{t}+u_{t+1}
\end{aligned}
$$

Write in matrix form:

$$
x_{t}=A x_{t+1}+B w_{t+1}
$$

Diagonalize using eigenvector/eigenvalue decomposition:

$$
A=V \Lambda V^{-1}
$$

Define $z_{t}=V^{-1} x_{t}$, then:

$$
z_{t}=\Lambda z_{t+1}+V^{-1} B w_{t+1}
$$

If $\left|\lambda_{i}\right|<1$, can solve forward:

$$
z_{t}^{i}=\lambda_{i}^{t+T} E_{t} z_{t+T}^{i}
$$

So then $z_{t}^{i}=0$.
If $\left|\lambda_{i}\right|>1$, can solve backward:

$$
z_{t}^{i}=\left(\frac{1}{\lambda_{i}}\right)^{t} z_{0}
$$

For determinacy, need as many $\left|\lambda_{i}\right|>1$ as there are predetermined variables.

3.4 Back to the example

For small $\delta>0$ will have $0<\lambda_{1}<1<\lambda_{2}$ and therefore restriction:

$$
v^{11} p_{t}+v^{21} m_{t}=0
$$

This gives determinate, saddlepath solution, determines p_{0} given m_{0}.
But if δ large enough will have $\lambda_{2}>\lambda_{1}>1$. Then need initial conditions for m_{0}, p_{0}. Indeterminacy. Steady state is a sink.

